Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Zinc
3.2. Silver
3.3. Chlorhexidine
3.4. Lauric Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Glossary
AA | Actinobacillus actinomycetemcomitans |
Ag | silver |
AgNO3 | silver nitrate |
AgNP | silver nanoparticles |
AL | lauric acid |
ANA | non-antibiotic antimicrobial agents |
CA | cellulose acetate |
CHX | chlorhexidine |
COL-CS-FN | collagen chondroitin-4-sulfate fibronectin |
EC | Escherichia coli |
EF | Enterococcus faecalis |
ePTFE | expanded polytetrafluoroethylene |
FN | Fusobacterium nucleatum |
IL | interleukin |
PCL | polycaprolactone |
PDLLA | poly D-L-lactic acid |
PG | Porphyromonas gingivalis |
PLA | polylactic acid |
PLGA | poly-L-lactic acid co-glycolic acid |
PLLA | poly L-lactic acid |
PSCA | polylactic acid/siloxane/calcium carbonate |
PTFE | polytetrafluoroethylene |
PVA | polyvinyl alcohol |
GTR | guided tissue regeneration |
ROG | guided bone regeneration |
SA | Staphylococcus aureus |
TNF | tumoral necrosis factor |
CFUs | colony forming units |
Zn | zinc |
ZnO | zinc oxide |
References
- Retzepi, M.; Donos, N. Guided Bone Regeneration: Biological principle and therapeutic applications. Clin. Oral Implant Res. 2010, 21, 567–576. [Google Scholar] [CrossRef]
- Dimitriou, R.; Mataliotakis, G.I.; Calori, G.M.; Giannoudis, P.V. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: Current experimental and clinical evidence. BMC Med. 2012, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wu, C.; Shi, H.; Luo, X.; Sun, H.; Wang, Q.; Zhang, D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front. Bioeng. Biotechnol. 2022, 10, 921576. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Zhou, Z.; Lai, H.; Xu, P.; Liao, L.; Wei, J. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers 2016, 8, 115. [Google Scholar] [CrossRef]
- Omar, O.; Elgali, I.; Dahlin, C.; Thomsen, P. Barrier membranes: More than the barrier effect? J. Clin. Periodontol. 2019, 46 (Suppl. S21), 103–123. [Google Scholar] [CrossRef] [PubMed]
- Ghavimi, M.A.; Bani Shahabadi, A.; Jarolmasjed, S.; Memar, M.Y.; Maleki Dizaj, S.; Sharifi, S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci. Rep. 2020, 10, 18200. [Google Scholar] [CrossRef] [PubMed]
- Zagho, M.M.; Hussein, E.A.; Elzatahry, A.A. Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers 2018, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, M.; Shi, R.; Zhang, A.; Zhang, J. Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules 2022, 27, 5548. [Google Scholar] [CrossRef] [PubMed]
- Radu, E.R.; Semenescu, A.; Voicu, S.I. Recent Advances in Stimuli-Responsive Doxorubicin Delivery Systems for Liver Cancer Therapy. Polymers 2022, 14, 5249. [Google Scholar] [CrossRef]
- Abbasnezhad, N.; Kebdani, M.; Shirinbayan, M.; Champmartin, S.; Tcharkhtchi, A.; Kouidri, S.; Bakir, F. Development of a Model Based on Physical Mechanisms for the Explanation of Drug Release: Application to Diclofenac Release from Polyurethane Films. Polymers 2021, 13, 1230. [Google Scholar] [CrossRef]
- Sasaki, J.-I.; Abe, G.L.; Li, A.; Thongthai, P.; Tsuboi, R.; Kohno, T.; Imazato, S. Barrier membranes for tissue regeneration in dentistry. Biomater. Investig. Dent. 2021, 8, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Nyman, S.; Lindhe, J.; Karring, T.; Rylander, H. New attachment following surgical treatment of human periodontal disease. J. Clin. Periodontol. 1982, 9, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of bone defects by guided tissue regeneration. Plast. Reconstr. Surg. 1988, 81, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Caballé-Serrano, J.; Abdeslam-Mohamed, Y.; Munar-Frau, A.; Fujioka-Kobayashi, M.; Hernández-Alfaro, F.; Miron, R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: A systematic review. Arch. Oral Biol. 2019, 100, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Hämmerle, C.H.F.; Jung, R.E. Bone augmentation by means of barrier membranes. Periodontol. 2000 2003, 33, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kerns, D.G. Mechanisms of guided bone regeneration: A review. Open Dent. J. 2014, 8, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Cooperman, L.; Michaeli, D. The immunogenicity of injectable collagen. I. A 1-year prospective study. J. Am. Acad. Dermatol. 1984, 10, 638–646. [Google Scholar] [CrossRef]
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef]
- Ul Hassan, S.; Bilal, B.; Nazir, M.S.; Naqvi, S.A.R.; Ali, Z.; Nadeem, S.; Muhammad, N.; Palvasha, B.A.; Mohyuddin, A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem. Biol. Drug Des. 2021, 98, 1007–1024. [Google Scholar] [CrossRef]
- Cao, Y.-B.; Liu, C.; Pan, W.-L.; Tu, Y.; Li, C.-J.; Hua, C.-G. Research progress on the modification of guided bone regeneration membranes. Hua Xi Kou Qiang Yi Xue Za Zhi 2019, 37, 325–329. [Google Scholar] [CrossRef]
- Rudolf, J.-L.; Moser, C.; Sculean, A.; Eick, S. In-vitro antibiofilm activity of chlorhexidine digluconate on polylactide-based and collagen-based membranes. BMC Oral Health 2019, 19, 291. [Google Scholar] [CrossRef]
- Zucchelli, G.; Pollini, F.; Clauser, C.; De Sanctis, M. The effect of chlorhexidine mouthrinses on early bacterial colonization of guided tissue regeneration membranes. An in vivo study. J. Periodontol. 2000, 71, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Prakasam, A.; Elavarasu, S.S.; Natarajan, R.K. Antibiotics in the management of aggressive periodontitis. J. Pharm. Bioallied Sci. 2012, 4, S252–S255. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Qi, M.; Wang, P.; Weir, M.D.; Melo, M.A.; Sun, X.; Dong, B.; Li, C.; Wu, J.; Wang, L.; et al. Novel Bioactive and Therapeutic Dental Polymeric Materials to Inhibit Periodontal Pathogens and Biofilms. Int. J. Mol. Sci. 2019, 20, 278. [Google Scholar] [CrossRef] [PubMed]
- Oteo-Iglesias, J. Active surveillance of antimicrobial resistance. Enferm. Infecc. Microbiol. Clin. Engl. Ed. 2019, 37 (Suppl. S1), 26–31. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Vallecillo-Rivas, M.; Osorio, M.T.; Muñoz-Soto, E.; Toledano-Osorio, M.; Vallecillo, C.; Toledano, R.; Lynch, C.D.; Serrera-Figallo, M.-A.; Osorio, R. Zn-Containing Membranes for Guided Bone Regeneration in Dentistry. Polymers 2021, 13, 1797. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, G.; Li, Q.; Tang, H.; Wang, S.; Li, P.; Gu, X.; Fan, Y. In vitro degradation, biocompatibility and antibacterial properties of pure zinc: Assessing the potential of Zn as a guided bone regeneration membrane. J. Mater. Chem. B 2021, 9, 5114–5127. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Abbott, P.V. The properties and applications of chlorhexidine in endodontics. Int. Endod. J. 2009, 42, 288–302. [Google Scholar] [CrossRef]
- Olvera-Huertas, A.J.; Linares-Recatalá, M.; Herrera-Briones, F.J.; Vallecillo-Capilla, M.F.; Manzano-Moreno, F.J.; Reyes-Botella, C. Microbiological analysis of autologous bone particles obtained by low-speed drilling and treated with different decontamination agents. Int. J. Oral Maxillofac. Surg. 2021, 50, 104–108. [Google Scholar] [CrossRef]
- Dayrit, F.M. The Properties of Lauric Acid and Their Significance in Coconut Oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Delgado, A.H.; Sauro, S.; Lima, A.F.; Loguercio, A.D.; Della Bona, A.; Mazzoni, A.; Collares, F.M.; Staxrud, F.; Ferracane, J.; Tsoi, J.; et al. RoBDEMAT: A risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviews. J. Dent. 2022, 127, 104350. [Google Scholar] [CrossRef] [PubMed]
- Prado-Prone, G.; Silva-Bermudez, P.; Rodil, S.E.; Ganjkhani, Y.; Moradi, A.-R.; Méndez, F.J.; García-Macedo, J.A.; Bazzar, M.; Almaguer-Flores, A. ZnO nanoparticles-modified polycaprolactone-gelatin membranes for guided/bone tissue regeneration, antibacterial and osteogenic differentiation properties. Biomed. Phys. Eng. Express 2023, 9, 035011. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Zhang, C.; Yan, L.; Lei, H.; Peng, C.; Liu, S.; Fan, L.; Chu, Y. Antibacterial and osteoconductive polycaprolactone/polylactic acid/nano-hydroxyapatite/Cu@ZIF-8 GBR membrane with asymmetric porous structure. Int. J. Biol. Macromol. 2023, 224, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, J.; Klimek, K.; Wojnarowicz, J.; Opalińska, A.; Chodara, A.; Szałaj, U.; Dąbrowska, S.; Fudala, D.; Ginalska, G. Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles-Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro. Cells 2022, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Bilal, B.; Niazi, R.; Nadeem, S.; Farid, M.A.; Nazir, M.S.; Akhter, T.; Javed, M.; Mohyuddin, A.; Rauf, A.; Ali, Z.; et al. Fabrication of Guided Tissue Regeneration Membrane Using Lignin-Mediated ZnO Nanoparticles in Biopolymer Matrix for Antimicrobial Activity. Front. Chem. 2022, 10, 837858. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Lin, J.; Yang, Y.; Liu, M.; Guo, G.; Ji, D.; Zhang, R.; Zhang, J. Bi-layered nanofibrous membrane with osteogenic and antibacterial functions for periodontal tissue regeneration. J. Biomater. Appl. 2022, 36, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Yang, T.-S.; Yang, T.-I.; Belem, W.F.; Teng, N.-C.; Chen, I.-W.; Huang, C.-S.; Kareiva, A.; Yang, J.-C. An Insight into Nano Silver Fluoride-Coated Silk Fibroin Bioinspired Membrane Properties for Guided Tissue Regeneration. Polymers 2021, 13, 2659. [Google Scholar] [CrossRef]
- Wu, T.; Huang, L.; Sun, J.; Sun, J.; Yan, Q.; Duan, B.; Zhang, L.; Shi, B. Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydr. Polym. 2021, 269, 118276. [Google Scholar] [CrossRef]
- Craciunescu, O.; Seciu, A.-M.; Zarnescu, O. In vitro and in vivo evaluation of a biomimetic scaffold embedding silver nanoparticles for improved treatment of oral lesions. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 112015. [Google Scholar] [CrossRef]
- Nardo, T.; Chiono, V.; Carmagnola, I.; Fracchia, L.; Ceresa, C.; Tabrizian, M.; Ciardelli, G. Mussel-inspired antimicrobial coating on PTFE barrier membranes for guided tissue regeneration. Biomed. Mater. 2021, 16, 035035. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, D.; Hefnawy, A.; Al-Wakeel, E.; El-Fallal, A.; El-Sherbiny, I.M. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J. Adv. Res. 2021, 28, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.; Sánchez, M.C.; Toledano-Osorio, M.; Figuero, E.; Toledano, M.; Medina-Castillo, A.L.; Osorio, R.; Herrera, D.; Sanz, M. Antimicrobial effect of nanostructured membranes for guided tissue regeneration: An in vitro study. Dent. Mater. 2020, 36, 1566–1577. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhan, L.; Zhang, X.; Wu, R.; Liao, L.; Wei, J. Silver Nanoparticles Coated Poly(L-Lactide) Electrospun Membrane for Implant Associated Infections Prevention. Front. Pharmacol. 2020, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Cedillo, E.; Ortega-Lara, W.; Rocha-Pizaña, M.R.; Gutierrez-Uribe, J.A.; Elías-Zúñiga, A.; Rodríguez, C.A. Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO2 and Na2Ti6O13 Particles for Potential Use in Bone Regeneration. Membranes 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wu, Z.; Leung, A.; Chen, X.; Landao-Bassonga, E.; Gao, J.; Chen, L.; Zheng, M.; Yao, F.; Yang, H.; et al. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomed. Mater. 2018, 13, 065014. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Li, J.; Wang, J.; Jiang, J.; Zuo, Y.; Li, Y.; Yang, F. Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration. Int. J. Nanomed. 2018, 13, 4591–4605. [Google Scholar] [CrossRef]
- Saarani, N.N.; Jamuna-Thevi, K.; Shahab, N.; Hermawan, H.; Saidin, S. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria. Dent. Mater. J. 2017, 36, 260–265. [Google Scholar] [CrossRef]
- Barreras, U.S.; Méndez, F.T.; Martínez, R.E.M.; Valencia, C.S.; Rodríguez, P.R.M.; Rodríguez, J.P.L. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 1182–1187. [Google Scholar] [CrossRef]
- Rani, S.; Chandra, R.V.; Reddy, A.A.; Reddy, B.H.; Nagarajan, S.; Naveen, A. Evaluation of the Antibacterial Effect of Silver Nanoparticles on Guided Tissue Regeneration Membrane Colonization—An in Vitro Study. J. Int. Acad. Periodontol. 2015, 17, 66–76. [Google Scholar]
- Münchow, E.A.; Albuquerque, M.T.P.; Zero, B.; Kamocki, K.; Piva, E.; Gregory, R.L.; Bottino, M.C. Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent. Mater. 2015, 31, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.G.; Sanil, G.P.; Gopimohan, R.; Prabhakaran, J.V.; Thomas, G.; Panda, A.K. Biocompatibility and cytotoxic evaluation of drug-loaded biodegradable guided tissue regeneration membranes. J. Indian Soc. Periodontol. 2012, 16, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Sela, M.N.; Babitski, E.; Steinberg, D.; Kohavi, D.; Rosen, G. Degradation of collagen-guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents. Clin. Oral Implant Res. 2009, 20, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, S.; Obata, A.; Kasuga, T. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity. Acta Biomater. 2009, 5, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.H.K.; LeGeros, R.Z.; Chen, Z.; Li, Y. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes. Implant Dent. 2007, 16, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Hung, S.-L.; Lin, L.-W.; Chi, L.-Y.; Ling, L.-J. Attachment of periodontal ligament cells to chlorhexidine-loaded guided tissue regeneration membranes. J. Periodontol. 2003, 74, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Huertas, A.J.; Costela-Ruiz, V.J.; García-Recio, E.; Melguizo-Rodríguez, L.; Illescas-Montes, R.; Reyes-Botella, C.; Manzano-Moreno, F.J. The Effect of Chlorhexidine, Amoxicillin, and Clindamycin on the Growth and Differentiation of Primary Human Osteoblasts. Int. J. Oral Maxillofac. Implants 2022, 37, 283–288. [Google Scholar] [CrossRef]
- Jin, X.; Zhou, J.; Richey, G.; Wang, M.; Hong, S.M.C.; Hong, S.H. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J. Microbiol. Biotechnol. 2021, 31, 130–136. [Google Scholar] [CrossRef]
- Xie, Y.; Chu, Z.; Jin, W. Beyond separation: Membranes towards medicine. J. Membr. Sci. Lett. 2022, 2, 100020. [Google Scholar] [CrossRef]
Membrane | Reabsorbable | Bacterial Type | Antimicrobial Agent | Action | |
---|---|---|---|---|---|
Prado-Prone G et al., 2023 [33] | PCL | Yes | A. actinomycetemcomitans P. gingivalis, E. coli, S. epidermidis | Zn | Bacterial growth inhibition of 74–87%, 72–80%, 67–81%, and 72–82%, respectively, depending on concentration and time |
Shu Z et al., 2023 [34] | PCL/PLA | Yes | S. aureus, E. coli | Zn | Decreases bacterial count (CFUs) by 50, 20, and 0% after 12, 24, and 48 h of incubation |
Higuchi J et al., 2022 [35] | PDLLA, PLGA | Yes | S. aureus, E. coli | Zn/Ag | Inhibition halo 2–8 mm, most effective for S. aureus |
Bilal B et al., 2022 [36] | PVA/mucílage | Yes | S. aureus, E. coli | Zn | Higher inhibition zones at higher concentrations, 1, 2.5, and 5% |
Zhong M et al., 2022 [37] | PLGA | Yes | S. aureus, E. coli | Ag | Zones of inhibition 690 mm2 and 970 mm2, respectively, cell viability |
Pandey A et al., 2021 [38] | Silk Fibroin | Yes | P. gingivalis | Ag | 3.1–6.7 times greater bacterial growth inhibition, cytotoxicity |
Wu T et al., 2021 [39] | Chitin | Yes | P. gingivalis, S. aureus | Zn | Decrease in minimum CFUs after 24 h incubation, increased activity against P. gingivalis |
Craciunescu O et al., 2021 [40] | COL-CS-FN | Yes | F. nucleatum, P. gingivalis | Ag | Inhibition halo 12–18 mm, anti-inflammatory action decreases IL-1β, IL-6, and TNF-α secretion by 73, 40, and 62%, respectively |
Nardo T et al., 2021 [41] | PTFE | No | E. coli, S. aureus | Ag | Decrease in bacterial growth 92–93% to 38–49% from 4 to 24 h of incubation, respectively |
Abdelaziz D et al., 2020 [42] | PLA/CA | Yes | E. faecalis, E. coli | Ag | Inhibition zones at 8, 16, and 32 days, Ag at 1 and 2% |
Bueno J et al., 2020 [43] | PTFE | No | S. oralis, A. naeslundii, V. parvula, F. nucleatum, P. gingivalis, A. actinomycetemcomitans | Zn | Decrease in CFUs 12–24 h exponentially, but increase at 48 and 72 h |
Wang J et al., 2020 [44] | PLLA | Yes | S. aureus | Ag | Bactericidal efficiency > 95% Inhibition maintained after 14 days |
Ramirez-Cedillo et al., 2019 [45] | PCL | Yes | S. aureus | Ag | 10% decrease in bacterial growth, <0.5% Ag |
Chen P et al., 2018 [46] | Collagen | Yes | S. aureus, P. aeruginosa | Ag | Zones of increasing inhibition with 0.6–1 mg/mL Ag, decreasing IL-6 and TNFα |
Jin S et al., 2018 [47] | Calcium phosphate/chitosan | Yes | S. mutans, P. gingivalis | Ag | Bacterial adhesion is lower than control, direct contact test inhibits bacterial growth in 24 h |
Saarani N et al., 2017 [48] | PLGA | Yes | F. nucleatum, P. gingivalis | AL | AL 1, 2, and 3% Zone of inhibition 10–16 mm Antibacterial action 65–73% by bacterial counts |
Soto-Barreras U et al., 2016 [49] | Collagen | Yes | E. faecalis | CHX | CFUs show lower bacterial growth at higher CHX concentration |
Rani S et al., 2015 [50] | Collagen | Yes | S. mutans, A. actinomycetemcomitans, F. nucleatum, P. gingivalis | Ag | Decrease in CFUs in all groups |
Munchow EA et al., 2015 [51] | PCL | Yes | P. gingivalis, F. nucleatum | Zn | Zn 5, 15, 30% Inhibition halo 6–15 mm Cytotoxicity at 15% and higher |
Thomas NG et al., 2012 [52] | PLA | Yes | S. aureus resistente a meticilina (MRSA) | CHX/Ag | Higher antibacterial action for CHX, Ag, tetracycline Higher toxicity for CHX |
Sela MN et al., 2009 [53] | Collagen | Yes | P. gingivalis | CHX | Inhibits proteolytic capacity on the membrane |
Tokuda S et al., 2009 [54] | PSCA | Yes | S. aureus | Ag | Decrease of more than 90% of CFUs |
Chou AH et al., 2007 [55] | Collagen | Yes | A. actinomycetemcomitans | Zn | Significantly lower CFU counts than controls |
Chen YT et al., 2003 [56] | ePTFE, Glycolide, Collagen | Yes | A. actinomycetemcomitans | CHX | Lower bacterial count Cytotoxicity for concentrations >0.0015% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamuz-Jiménez, A.; Manzano-Moreno, F.-J.; Vallecillo, C. Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review. Polymers 2024, 16, 95. https://doi.org/10.3390/polym16010095
Adamuz-Jiménez A, Manzano-Moreno F-J, Vallecillo C. Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review. Polymers. 2024; 16(1):95. https://doi.org/10.3390/polym16010095
Chicago/Turabian StyleAdamuz-Jiménez, Ana, Francisco-Javier Manzano-Moreno, and Cristina Vallecillo. 2024. "Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review" Polymers 16, no. 1: 95. https://doi.org/10.3390/polym16010095
APA StyleAdamuz-Jiménez, A., Manzano-Moreno, F. -J., & Vallecillo, C. (2024). Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review. Polymers, 16(1), 95. https://doi.org/10.3390/polym16010095