Effect of Conductive Polymers PEDOT:PSS on Exciton Recombination and Conversion in Doped-Type BioLEDs
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Photoelectric Performance of Yellow Doped-Type BioLEDs
3.2. Effect of Injection Current on the Bio-Device MEL Response
3.3. Photoelectric Performance of Blue Exciplex BioLEDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Cao, C.; Shui, X.; Gu, J.; Sun, Y.; Ding, L.; Wei, B. Discrimination and control of the exciton-recombination region of thermal-stressed blue organic light-emitting diodes. Phys. Chem. Chem. Phys. 2023, 25, 2742–2746. [Google Scholar] [CrossRef]
- Tang, Z.; Lü, Z.; Zheng, Y.; Wang, J. Management of exciton recombination zone and energy loss for 4CzTPN-based organic light-emitting diodes via engineering hosts. Phys. B Condens. Matter 2022, 644, 414206. [Google Scholar] [CrossRef]
- Tasaki, S.; Nishimura, K.; Toyoshima, H.; Masuda, T.; Nakamura, M.; Nakano, Y.; Kuma, H. Realization of ultra-high-efficient fluorescent blue OLED. J. Soc. Inf. Display. 2022, 30, 441–451. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Aron, P.; Nir, Z. Dispersion of organic exciton polaritons—A novel undergraduate experiment. Eur. J. Phys. 2022, 43, 035301. [Google Scholar] [CrossRef]
- Lim, H.; Woo, S.J.; Ha, Y.H.; Kim, Y.H.; Kim, J.J. Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives. Adv. Mater. 2022, 34, 2100161. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fung, M.K.; Xie, Z.; Lee, S.T.; Hung, L.S.; Shi, J.; Li, Y.Q. An efficient pure blue organic light-emitting device with low driving voltages. Adv. Mater. 2002, 14, 1317–1321. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, Z.; Wang, H.; Wang, K.; Li, X.; Wang, Z. Electroplex hosts for highly efficient phosphorescent organic light-emitting diodes with extremely small efficiency roll-offs. Chem. Eng. J. 2022, 432, 134314. [Google Scholar] [CrossRef]
- Antoniadis, H.; Abkowitz, M.A.; Hsieh, B.R. Carrier deep-trapping mobility-lifetime products in poly(p-phenylene vinylene). Appl. Phys. Lett. 1994, 65, 2030–2032. [Google Scholar] [CrossRef]
- Xiao, L.X.; Chen, Z.J.; Qu, B.; Luo, J.X.; Kong, S.; Gong, Q.H.; Kido, J. Efficient pure red phosphorescent organic light-emitting diodes with a very high brightness. Adv. Mater. 2011, 23, 926–931. [Google Scholar] [CrossRef]
- Peisert, H.; Petr, A.; Dunsch, L.; Chassé, T.; Knupfer, M. Interface fermi level pinning at contacts between PEDOT:PSS and molecular organic semiconductors. ChemPhysChem 2007, 8, 386–390. [Google Scholar] [CrossRef]
- Wang, G.F.; Tao, X.M.; Wang, R.X. Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites. Compos. Sci. Technol. 2008, 68, 2837–2841. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Chen, W.; Ma, D. Poly (3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/MoO3 composite layer for efficient and stable hole injection in organic semiconductors. J. Appl. Phys. 2012, 111, 043716. [Google Scholar] [CrossRef]
- Wu, X.; Li, F.; Wu, W.; Guo, T. Flexible organic light emitting diodes based on double-layered graphene/PEDOT:PSS conductive film formed by spray-coating. Vacuum 2014, 101, 53–56. [Google Scholar] [CrossRef]
- Lee, I.; Park, S.; Lee, Y.S.; Kim, Y.; Kang, M.H.; Yun, C. Gradual morphological change in PEDOT:PSS thin films immersed in an aqueous solution. Langmuir 2023, 39, 1600–1610. [Google Scholar] [CrossRef]
- Peng, Q.M.; Li, W.J.; Zhang, S.T.; Chen, P.; Li, F.; Ma, Y.G. Evidence of the reverse intersystem crossing in intra–molecular charge-transfer fluorescence-based organic light-emitting devices through magneto-electroluminescence measurements. Adv. Opt. Mater. 2013, 1, 362–366. [Google Scholar] [CrossRef]
- Yuan, P.S.; Guo, X.M.; Qiao, X.F.; Yan, D.H.; Ma, D.G. Improvement of the electroluminescence performance of exciplex based OLEDs by effective utilization of long–range coupled electron-hole pairs. Adv. Opt. Mater. 2019, 7, 1801648. [Google Scholar] [CrossRef]
- Kang, S.W.; Baek, D.H.; Ju, B.K.; Park, Y.W. Green phosphorescent organic light-emitting diode exhibiting highest external quantum efficiency with ultra-thin undoped emission layer. Sci. Rep. 2021, 11, 8436. [Google Scholar] [CrossRef]
- Tang, X.T.; Hu, Y.Q.; Jia, W.Y.; Pan, R.H.; Deng, J.Q.; He, Z.H.; Xiong, Z.H. Facile preparation of hybrid organic/inorganic lead halide perovskite composite films with enhanced stability and optoelectronic performance. ACS Appl. Mater. Interfaces 2018, 10, 24867–24876. [Google Scholar]
- Yuan, D.; Niu, L.; Chen, Q.; Jia, W.; Chen, P.; Xiong, Z.H. The triplet-charge annihilation in copolymer-based organic light emitting diodes: Through the “Scattering Channel” or the “Dissociation Channel”? Phys. Chem. Chem. Phys. 2015, 17, 27609–27614. [Google Scholar] [CrossRef]
- Luo, Y.; Aziz, H. Correlation between triplet-triplet annihilation and electroluminescence efficiency in doped fluorescent organic lightemitting devices. Adv. Funct. Mater. 2010, 20, 128. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Gautam, B.R.; Ehrenfreund, E.; Vardeny, Z.V. Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Phys. Rev. Lett. 2010, 105, 166804. [Google Scholar] [CrossRef] [PubMed]
- Goushi, K.; Yoshida, K.; Sato, K. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photo. 2012, 6, 253–258. [Google Scholar] [CrossRef]
- Kim, J.M.; Lim, J.; Lee, J.Y. Understanding the charge dynamics in organic light-emitting diodes using convolutional neural network. Mater. Horiz. 2022, 9, 2551–2563. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Han, L.; Liang, C.; Tao, S.; Yang, C. Highly efficient white organic light-emitting diodes with ultrathin emissive layers and a spacer-free structure. Sci. Rep. 2016, 6, 25821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, L.B.; Zhang, F.J. Enhanced performance by inserting ultrathin SiO2 layer in organic light-emitting devices. Phys. Status Solidi 2007, 204, 900–906. [Google Scholar] [CrossRef]
- Yun, C.; Lee, J.; Lee, J.; Jeong, J.H.; Kim, J.J.; Lee, J.Y.; Lee, K.H. Influence of phosphorescent dopants in organic light-emitting diodes with an organic homojunction. Appl. Phys. Lett. 2012, 101, 243303. [Google Scholar] [CrossRef]
- Chen, C.H.; Yu, D.G.; Hu, E.L.; Petroff, P.M. Photoluminescence studies on radiation enhanced diffusion of dry-etch damage in GaAs and InP materials. J. Vac. Sci. Technol. B 1996, 14, 3684–3687. [Google Scholar] [CrossRef]
- Reenen, S.; Kersten, S.; Wouters, S.; Cox, M.; Janssen, P.; Koopmans, B.; Bobbert, P.; Kemerink, M. Large magnetic field effects in electrochemically doped organic light-emitting diodes. Phys. Rev. B 2013, 88, 125203. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Liu, D.; Chen, Z.; Gan, Y.; Xiao, S.; Peng, X.; Su, S.J. Afterglow OLEDs incorporating bright closely stacked molecular dimers with ultra-long thermally activated delayed fluorescence. Matter 2023, 6, 1231–1248. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Gautam, B.R.; Ehrenfreund, E.; Vardeny, Z.V. Magneto-conductance of π-conjugated polymer based unipolar and bipolar diodes. Synth. Met. 2011, 161, 604–607. [Google Scholar] [CrossRef]
- Bae, H.W.; Kim, G.W.; Lampande, R.; Sandanayaka, A.D.S.; Adachi, C. Efficiency enhancement in fluorescent deep–blue OLEDs by boosting singlet exciton generation through triplet fusion and charge recombination rate. Org. Electron. 2019, 70, 1–6. [Google Scholar] [CrossRef]
- Bai, J.W.; Chen, P.; Lei, Y.L.; Zhang, Y.; Zhang, Q.M.; Xiong, Z.H.; Li, F. Carrier concentration modulation in organic light–emitting diodes via exciplex formation. Org. Electron. 2014, 15, 169–174. [Google Scholar] [CrossRef]
- Piland, G.B.; Burdett, J.J.; Kurunthu, D.; Bardeen, C.J. Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene. J. Phys. Chem. C 2013, 117, 1224–1236. [Google Scholar] [CrossRef]
- Thompson, N.J.; Hontz, E.; Congreve, D.N.; Bahlke, M.E.; Reineke, S.; Van Voorhis, T.; Baldo, M.A. Nanostructured singlet fission photovoltaics subject to triplet-charge annihilation. Adv. Mater. 2014, 26, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Tayebjee, M.J.; McCamey, Y.; Schmidt, D.R.; Beyond, T.W. Shockley-Queisser: Molecular approaches to high-efficiency photovoltaics. J. Phys. Chem. Lett. 2015, 6, 2367–2378. [Google Scholar] [CrossRef]
- Chen, P.; Wang, L.P.; Tan, W.Y.; Peng, Q.M.; Zhang, S.T.; Zhu, X.H.; Li, F. Delayed fluorescence in a solution–processable pure red molecular organic emitter based on dithienylbenzothiadiazole: A joint optical, electroluminescence, and magneto electroluminescence study. ACS Appl. Mater. Interfaces 2015, 7, 2972–2978. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.M.; Li, A.; Fan, Y.; Xu, H.; Zhang, J.Y.; Wang, X. Studying the influence of triplet deactivation on the singlet–triplet inter-conversion in intra-molecular charge-transfer fluorescence-based OLEDs by magneto-electroluminescence. J. Mater. Chem. C 2014, 2, 6264–6268. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Sheng, Y.; Rybicki, J.; He, X.; Kozlov, V.G.; Ditenberga, I.; Granstrom, J.; Scott, J.C.; Moses, D. Magnetic field–effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices. Phys. Rev. B 2008, 77, 235209. [Google Scholar] [CrossRef]
- Fukagawa, H.; Shimizu, T.; Iwasaki, Y. Operational lifetimes of organic light-emitting diodes dominated by förster resonance energy transfer. Sci. Rep. 2017, 7, 1735. [Google Scholar] [CrossRef] [Green Version]
- Kirch, A.; Gmelch, M.; Reineke, S. Simultaneous singlet–singlet and triplet–singlet Förster resonance energy transfer from a single donor material. J. Phys. Chem. Lett. 2019, 10, 310–315. [Google Scholar] [CrossRef]
- You, S.; Kim, N.H.; Yoon, J.A.; Cheah, K.W.; Zhu, F.R.; Kim, W.Y.; Kim, J.W. Study of sequential dexter energy transfer in high efficient phosphorescent white organic light-emitting diodes with single emissive layer. Sci. Rep. 2014, 4, 7009. [Google Scholar]
- Yook, K.S.; Lee, J.Y. Recombination zone study of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure. J. Ind. Eng. Chem. 2010, 16, 181–184. [Google Scholar] [CrossRef]
- Park, J.W.; Cho, K.H.; Rhee, Y.M. Mechanism of Ir(ppy)3 guest exciton formation with the exciplex-forming TCTA:TPBI cohost within a phosphorescent organic light-emitting diode environment. Int. J. Mol. Sci. 2022, 23, 5940. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, Y.X.; Wang, B.; Huang, C.C.; Murtaza, I.; Meng, H.; Liao, L.S. Highly simplified reddish orange phosphorescent organic light-emitting diodes incorporating a novel carrier- and exciton-confining spiro-exciplex-forming host for reduced efficiency roll-off. ACS Appl. Mater. Interfaces 2017, 9, 2701–2710. [Google Scholar] [CrossRef] [PubMed]
- Vipin, C.K.; Shukla, A.; Rajeev, K.; Hasan, M.; Lo, S.C.; Namdas, E.B.; Unni, K.N. White organic light-emitting diodes from single emissive layers: Combining exciplex emission with electromer emission. J. Phys. Chem. C 2021, 125, 22809–22816. [Google Scholar] [CrossRef]
Device | MEL Values (%) 1 | Luminance (cd/m2) 1 | Maximum Luminance (cd/m2) |
---|---|---|---|
A1 | −0.80 | 2885 | 15,400 |
A2 | −1.73 | 8022 | 44,010 |
A3 | −1.60 | 5959 | 39,564 |
A4 | −1.36 | 4026 | 34,180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Guan, Y.; Wang, C.; Li, W.; Bao, X.; Niu, L. Effect of Conductive Polymers PEDOT:PSS on Exciton Recombination and Conversion in Doped-Type BioLEDs. Polymers 2023, 15, 3275. https://doi.org/10.3390/polym15153275
Song J, Guan Y, Wang C, Li W, Bao X, Niu L. Effect of Conductive Polymers PEDOT:PSS on Exciton Recombination and Conversion in Doped-Type BioLEDs. Polymers. 2023; 15(15):3275. https://doi.org/10.3390/polym15153275
Chicago/Turabian StyleSong, Jiayi, Yunxia Guan, Cheng Wang, Wanjiao Li, Xi Bao, and Lianbin Niu. 2023. "Effect of Conductive Polymers PEDOT:PSS on Exciton Recombination and Conversion in Doped-Type BioLEDs" Polymers 15, no. 15: 3275. https://doi.org/10.3390/polym15153275
APA StyleSong, J., Guan, Y., Wang, C., Li, W., Bao, X., & Niu, L. (2023). Effect of Conductive Polymers PEDOT:PSS on Exciton Recombination and Conversion in Doped-Type BioLEDs. Polymers, 15(15), 3275. https://doi.org/10.3390/polym15153275