The Evolution of the Intrinsic Flexural Strength of Jute Strands after a Progressive Delignification Process and Their Contribution to the Flexural Strength of PLA-Based Biocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Delignification Treatments
2.3. Kappa Number and Chemical Composition
2.4. The Preparation of the Fully Biodegradable Composites
2.5. Flexural Characterization
2.6. Densities Determination
2.7. Fiber Recovering from Composites
2.8. The Morphological Analysis of Fibers
2.9. The Evaluation of the Intrinsic Flexural Strength of the Reinforcements and Their Contribution to the Flexural Strength of the Composites
3. Results and Discussion
3.1. The Flexural Properties of PLA Matrix and Jute Strand-Reinforced Composites
3.2. The Evaluation and Analysis of the Intrinsic Flexural Properties
3.3. The Analysis of the Chemical Composition and Microfibril Angle of Jute Strands
3.4. The Analysis of the Impact of Chemical Composition on the Intrinsic Flexural Strength
3.5. The Analysis of the Specific Flexural Properties of the Polylactic Acid, Its Composites, and Reinforcing Jute Strands
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
The product of the crystallinity index and the cellulose content | |
The product of the crystallinity index, the cellulose content, and the microfibrillar angle cosine | |
The product of the crystallinity index and the cellulose content, divided by the microfibrillar angle. | |
length-diameter ratio | |
Volume of the pycnometer | |
Fiber diameter | |
S3 | Inner secondary layer of the cell wall |
S2 | Middle secondary layer of the cell wall |
S1 | Outermost secondary layer of the cell wall |
PLA | Poly-(lactic acid) |
MFI | Melt flow index |
Microfibrillar angle | |
Kappa number | |
J.4 | Jute strands after four subsequent delignification stages |
J.3 | Jute strands after three subsequent delignification stages |
J.2 | Jute strands after two subsequent delignification stages |
J.1 | Jute strands after one delignification stage |
J.0 | Raw jute strands |
IFSS | Interfacial shear strength |
GF | Glass fibers |
Fiber tensile strength factor | |
Fiber flexural strength factor | |
Crystallinity index | |
Cellulose content | |
Fiber tensile strength | |
Composite tensile strength | |
Contribution of the matrix to the composite flexural strength | |
Matrix flexural strength | |
Intrinsic flexural strength obtained from the ratio of flexural and tensile strengths. | |
Intrinsic flexural strength | |
Composite flexural strength | |
Fiber density | |
Composite density | |
Matrix density | |
Distilled water density | |
Elongation at break of the matrix under flexural load | |
Elongation at break of the composite under flexural load | |
Matrix weight | |
Fiber weight | |
Composite weight | |
Distilled water weight | |
Flexural coupling factor obtained from | |
Flexural coupling factor | |
Fiber volume fraction |
References
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural Fiber Reinforced Polylactic Acid Composites: A Review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Getme, A.S.; Patel, B. A Review: Bio-Fiber’s as Reinforcement in Composites of Polylactic Acid (PLA). Mater. Today Proc. 2019, 26, 2116–2122. [Google Scholar] [CrossRef]
- Mirmehdi, S.M.; Henrique, G.; Tonoli, D.; Dabbagh, F. Lignicellulose-Polyethylene Composite: Influence of Delignification, Filler Content and Filler Type. Cellul. Chem. Technol. 2017, 51, 341–346. [Google Scholar]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? In Proceedings of the American Institute of Chemical Engineers (AIChE) 2002 Annual Meeting, Indianapolis, Indiana, 3–8 November 2002. [Google Scholar]
- Jiang, N.; Yu, T.; Li, Y. Effect of Hydrothermal Aging on Injection Molded Short Jute Fiber Reinforced Poly(Lactic Acid) (PLA) Composites. J. Polym. Environ. 2018, 26, 3176–3186. [Google Scholar] [CrossRef]
- Kian, L.K.; Saba, N.; Jawaid, M.; Sultan, M.T.H. A Review on Processing Techniques of Bast Fibers Nanocellulose and Its Polylactic Acid (PLA) Nanocomposites. Int. J. Biol. Macromol. 2019, 121, 1314–1328. [Google Scholar] [CrossRef] [PubMed]
- Raju, A.; Shanmugaraja, M. Recent Researches in Polylactic Acid Reinforced with Natural Fiber Composites—A Literature Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 988, 012025. [Google Scholar] [CrossRef]
- Laine, J.; Stenius, P.; Carlsson, G.; Strom, G. The Effect of ECF and TCF Bleaching on the Surface Chemical Composition of Kraft Pulp as Determined by ESCA. Artic. Nord. Pulp Pap. Res. J. 1996, 11, 201–210. [Google Scholar] [CrossRef]
- Fang, C.C.; Zhang, Y.; Qi, S.Y.; Liao, Y.C.; Li, Y.Y.; Wang, P. Influence of Structural Design on Mechanical and Thermal Properties of Jute Reinforced Polylactic Acid (PLA) Laminated Composites. Cellulose 2020, 27, 9397–9407. [Google Scholar] [CrossRef]
- Felix Sahayaraj, A.; Muthukrishnan, M.; Ramesh, M. Experimental Investigation on Physical, Mechanical, and Thermal Properties of Jute and Hemp Fibers Reinforced Hybrid Polylactic Acid Composites. Polym. Compos. 2022, 43, 2854–2863. [Google Scholar] [CrossRef]
- Seculi, F.; Julián, F.; Llorens, J.; Espinach, F.X.; Mutjé, P.; Tarrés, Q. Methodologies to Evaluate the Micromechanics Flexural Strength Properties of Natural-Fiber-Reinforced Composites: The Case of Abaca-Fiber-Reinforced Bio Polyethylene Composites. Polymers 2023, 15, 3137. [Google Scholar] [CrossRef]
- Hao, X.; Zhou, H.; Mu, B.; Chen, L.; Guo, Q.; Yi, X.; Sun, L.; Wang, Q.; Ou, R. Effects of Fiber Geometry and Orientation Distribution on the Anisotropy of Mechanical Properties, Creep Behavior, and Thermal Expansion of Natural Fiber/HDPE Composites. Compos. Part B Eng. 2020, 185, 107778. [Google Scholar] [CrossRef]
- Oliver-Ortega, H.; Julian, F.; Espinach, F.X.; Tarrés, Q.; Ardanuy, M.; Mutjé, P. Research on the Use of Lignocellulosic Fibers Reinforced Bio-Polyamide 11 with Composites for Automotive Parts: Car Door Handle Case Study. J. Clean. Prod. 2019, 226, 64–73. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. Possibilities for Improving the Mechanical Properties of Jute/Epoxy Composites by Alkali Treatment of Fibres. Compos. Sci. Technol. 1999, 59, 1303–1309. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; Oliver-Ortega, H.; Alberto Méndez, J.; Camps, J.; Espinach, F.X.; Mutjé, P. The Role of Lignin on the Mechanical Performance of Polylactic Acid and Jute Composites. Int. J. Biol. Macromol. 2018, 116, 299–304. [Google Scholar] [CrossRef] [PubMed]
- TAPPI T204 cm-97; Solvent Extractives of Wood and Pulp (Proposed Revision of T 204 Cm-97). Approved by Standard-Specific Interest Group for this Method. Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2007.
- TAPPI T413 om-93; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 900 °C. Approved by Chemical Properties Committee of the Process and Product Quality Division. Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 1993.
- TAPPI T222; Acid-Insoluble Lignin in Wood and Pulp (Reaffirmation of T 222 Om-02). Approved by Standard Specific Interest Group for this Test Method. Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2006.
- TAPPI T 212 om-12 (2022); One Percent Sodium Hydroxide Solubility of Wood and Pulp. Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2012.
- ISO 178:2001/Amd 1:2004; Plastics—Determination of Flexural Properties—Amendment 1: Precision Statement. Approved by ISO/TC 61/SC 2—Mechanical Behavior. International Organization for Standarization—ISO Central Secretariat: Vernier, Switzerland, 2004.
- UNE-EN ISO 1183-1:2019; Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method (ISO 1183-1: 2019, Corrected Version 2019-05). Spanish Association for Standardization: Madrid, Spain, 2019.
- Aruan Efendy, M.G.; Pickering, K.L. Comparison of Strength and Young Modulus of Aligned Discontinuous Fibre PLA Composites Obtained Experimentally and from Theoretical Prediction Models. Compos. Struct. 2019, 208, 566–573. [Google Scholar] [CrossRef]
- Espinach, F.X.; Delgado-Aguilar, M.; Puig, J.; Julian, F.; Boufi, S.; Mutjé, P. Flexural Properties of Fully Biodegradable Alpha-Grass Fibers Reinforced Starch-Based Thermoplastics. Compos. Part B Eng. 2015, 81, 98–106. [Google Scholar] [CrossRef]
- Gironès, J.; Lopez, J.P.; Vilaseca, F.; Bayer, R.; Herrera-Franco, P.J.; Mutjé, P. Biocomposites from Musa Textilis and Polypropylene: Evaluation of Flexural Properties and Impact Strength. Compos. Sci. Technol. 2011, 71, 122–128. [Google Scholar] [CrossRef]
- Hashemi, S. Hybridisation Effect on Flexural Properties of Single- and Double-Gated Injection Moulded Acrylonitrile Butadiene Styrene (ABS) Filled with Short Glass Fibres and Glass Beads Particles. J. Mater. Sci. 2008, 43, 4811–4819. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Wan, G.; Li, B.; Zhao, G. Glass Fiber Reinforced PLA Composite with Enhanced Mechanical Properties, Thermal Behavior, and Foaming Ability. Polymer 2019, 181, 121803. [Google Scholar] [CrossRef]
- RTP Company. Glass Fiber Reinforced PLA Bioplastic: Sustainable Bio-Based Plastic Suitable for Durable and Semi-Durable Applications; RTP Company: Winona, MN, USA, 2011. [Google Scholar]
- Ma, H.; Joo, C.W. Structure and Mechanical Properties of Jute-Polylactic Acid Biodegradable Composites. J. Compos. Mater. 2011, 45, 1451–1460. [Google Scholar] [CrossRef]
- Gibeop, N.; Lee, D.W.; Prasad, C.V.; Toru, F.; Kim, B.S.; Song, J. Il Effect of Plasma Treatment on Mechanical Properties of Jute Fiber/Poly (Lactic Acid) Biodegradable Composites. Adv. Compos. Mater. 2013, 22, 389–399. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites Reinforced with Cellulose Based Fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Böras, L.; Gatenholm, P. Surface Composition and Morphology of CTMP Fibers. Holzforschung 1999, 53, 188–194. [Google Scholar] [CrossRef]
- Hu, R.; Lim, J.K. Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites. J. Compos. Mater. 2007, 41, 1655–1669. [Google Scholar] [CrossRef]
- Alila, S.; Besbes, I.; Vilar, M.R.; Mutjé, P.; Boufi, S. Non-Woody Plants as Raw Materials for Production of Microfibrillated Cellulose (MFC): A Comparative Study. Ind. Crops Prod. 2013, 41, 250–259. [Google Scholar] [CrossRef]
- Lau, K.T.; Hung, P.Y.; Zhu, M.H.; Hui, D. Properties of Natural Fibre Composites for Structural Engineering Applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Sedan, D.; Pagnoux, C.; Chotard, T.; Smith, A.; Lejolly, D.; Gloaguen, V.; Krausz, P. Effect of Calcium Rich and Alkaline Solutions on the Chemical Behaviour of Hemp Fibres. J. Mater. Sci. 2007, 42, 9336–9342. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped Glass and Recycled Newspaper as Reinforcement Fibers in Injection Molded Poly(Lactic Acid) (PLA) Composites: A Comparative Study. Compos. Sci. Technol. 2006, 66, 1813–1824. [Google Scholar] [CrossRef]
- Tarrés, Q.; Oliver-Ortega, H.; Espinach, F.X.; Mutjé, P.; Delgado-Aguilar, M.; Méndez, J.A. Determination of Mean Intrinsic Flexural Strength and Coupling Factor of Natural Fiber Reinforcement in Polylactic Acid Biocomposites. Polymers 2019, 11, 1736. [Google Scholar] [CrossRef]
- Placet, V.; Trivaudey, F.; Cisse, O.; Gucheret-Retel, V.; Boubakar, M.L. Diameter Dependence of the Apparent Tensile Modulus of Hemp Fibres: A Morphological, Structural or Ultrastructural Effect? Compos. Part A Appl. Sci. Manuf. 2012, 43, 275–287. [Google Scholar] [CrossRef]
- Königsberger, M.; Lukacevic, M.; Füssl, J. Multiscale Micromechanics Modeling of Plant Fibers: Upscaling of Stiffness and Elastic Limits from Cellulose Nanofibrils to Technical Fibers. Mater. Struct. 2023, 56, 13. [Google Scholar] [CrossRef] [PubMed]
- Naili, H.; Jelidi, A.; Limam, O.; Khiari, R. Extraction Process Optimization of Juncus Plant Fibers for Its Use in a Green Composite. Ind. Crops Prod. 2017, 107, 172–183. [Google Scholar] [CrossRef]
- Meshram, J.H.; Palit, P. On the Role of Cell Wall Lignin in Determining the Fineness of Jute Fibre. Acta Physiol. Plant. 2013, 35, 1565–1578. [Google Scholar] [CrossRef]
- Bourmaud, A.; Shah, D.U.; Beaugrand, J.; Dhakal, H.N. Property Changes in Plant Fibres during the Processing of Bio-Based Composites. Ind. Crops Prod. 2020, 154, 112705. [Google Scholar] [CrossRef]
- Gassan, J.; Chate, A.; Bledzki, A.K. Calculation of Elastic Properties of Natural Fibers. J. Mater. Sci. 2001, 34, 3715–3720. [Google Scholar] [CrossRef]
- Tenazoa, C.; Savastano, H.; Charca, S.; Quintana, M.; Flores, E. The Effect of Alkali Treatment on Chemical and Physical Properties of Ichu and Cabuya Fibers. J. Nat. Fibers 2021, 18, 923–936. [Google Scholar] [CrossRef]
- Gerald Arul Selvan, M.T.; Binoj, J.S.; Mansingh, B.B.; Baby Sajin, J.A. Physico-Chemical Properties of Alkali Treated Cellulosic Fibers from Fragrant Screw Pine Prop Root. J. Nat. Fibers 2023, 20, 148–161. [Google Scholar] [CrossRef]
- Bartos, A.; Anggono, J.; Farkas, Á.E.; Kun, D.; Soetaredjo, F.E.; Móczó, J.; Antoni; Purwaningsih, H.; Pukánszky, B. Alkali Treatment of Lignocellulosic Fibers Extracted from Sugarcane Bagasse: Composition, Structure, Properties. Polym. Test. 2020, 88, 106549. [Google Scholar] [CrossRef]
- Gassan, J.; Mildner, I.; Bledzki, A.K. Influence of Fiber Structure Modification on the Mechanical Properties of Flax Fiber-Epoxy Composites. Mech. Compos. Mater. 1999, 35, 435–440. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical Properties of Alkali Treated Plant Fibres and Their Potential as Reinforcement Materials. I. Hemp Fibres. J. Mater. Sci. 2006, 41, 2483–2496. [Google Scholar] [CrossRef]
- Rayirath, P.; Avramidis, S.; Mansfield, S.D. The Effect of Wood Drying on Crystallinity and Microfibril Angle in Black Spruce (Picea Mariana). J. Wood Chem. Technol. 2008, 28, 167–179. [Google Scholar] [CrossRef]
- Wong, K.J.; Yousif, B.F.; Low, K.O. The Effects of Alkali Treatment on the Interfacial Adhesion of Bamboo Fibres. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2010, 224, 139–148. [Google Scholar] [CrossRef]
- Mukherjee, P.S.; Satyanarayana, K.G. An Empirical Evaluation of Structure-Property Relationships in Natural Fibres and Their Fracture Behaviour. J. Mater. Sci. 1986, 21, 4162–4168. [Google Scholar] [CrossRef]
- Bourmaud, A.; Morvan, C.; Bouali, A.; Placet, V.; Perré, P.; Baley, C. Relationships between Micro-Fibrillar Angle, Mechanical Properties and Biochemical Composition of Flax Fibers. Ind. Crops Prod. 2013, 44, 343–351. [Google Scholar] [CrossRef]
- Heyn, A.N.J. The Microcrystalline Structure of Cellulose in Cell Walls of Cotton, Ramie, and Jute Fibers as Revealed by Negative Staining of Sections. J. Cell Biol. 1966, 29, 181–197. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A Review on Natural Fibers for Development of Eco-Friendly Bio-Composite: Characteristics, and Utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Komuraiah, A.; Kumar, S.; Prasad, D. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical Properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Burgert, I. Exploring the Micromechanical Design of Plant Cell Walls. Am. J. Bot. 2006, 93, 1391–1401. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, S.K. Biobased Composites and Applications. In Biopolymers: Biomedical and Environmental Applications; Kalia, S., Avérous, L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 225–266. [Google Scholar]
- Bian, Z.X.; Miao, X.R.; Lin, J.Y.; Tian, F.; Bian, F.G.; Li, H. Extraction and Structural Investigation of Jute Cellulose Nanofibers. Nucl. Sci. Tech. 2018, 29, 106. [Google Scholar] [CrossRef]
- Akonda, M.; Alimuzzaman, S.; Shah, D.U.; Rahman, A.N.M.M. Physico-Mechanical, Thermal and Biodegradation Performance of Random Flax/Polylactic Acid and Unidirectional Flax/Polylactic Acid Biocomposites. Fibers 2018, 6, 98. [Google Scholar] [CrossRef]
- Öteyaka, M.Ö.; Aybar, K.; Öteyaka, H.C. Effect of Infill Ratio on the Tensile and Flexural Properties of Unreinforced and Carbon Fiber-Reinforced Polylactic Acid Manufactured by Fused Deposition Modeling. J. Mater. Eng. Perform. 2021, 30, 5203–5215. [Google Scholar] [CrossRef]
- Pappu, A.; Pickering, K.L.; Thakur, V.K. Manufacturing and Characterization of Sustainable Hybrid Composites Using Sisal and Hemp Fibres as Reinforcement of Poly (Lactic Acid) via Injection Moulding. Ind. Crops Prod. 2019, 137, 260–269. [Google Scholar] [CrossRef]
Stages | (g cm−3) | (μm) 1 | KN 1 | Lignin (%) | Hemicellulose (%) | Cellulose (%) | (%) |
---|---|---|---|---|---|---|---|
J.0 | 1.48 | 22.90 | 27.3 ± 2.5 | 13.0 | 18.3 | 66.6 | 65.0 |
J.1 | 1.50 | 22.80 | 20.0 ± 1.7 | 9.2 | 16.1 | 69.8 | 68.1 |
J.2 | 1.51 | 22.60 | 14.8 ± 1.5 | 7.5 | 15.8 | 77.3 | 70.0 |
J.3 | 1.53 | 22.55 | 7.7 ± 0.8 | 3.9 | 13.6 | 82.7 | 79.0 |
J.4 | 1.54 | 22.40 | 2.1 ± 0.6 | 0.8 | 13.1 | 86.9 | 80.0 |
Stages | wt% | (MPa) 4 | (MPa) 1,4 | (MPa) 4 | (MPa) | |
---|---|---|---|---|---|---|
NA | 0 | 0 | 68.35 ± 0.90 a | 49.8 ± 1.54 a | 3.27 ± 0.40 a | NA |
J.0 | 30 | 0.264 | 82.15 ± 3.20 b | 54.7 ± 2.75 b | 2.42 ± 0.20 b | 61.52 |
J.1 | 30 | 0.262 | 100.05 ± 2.40 c | 68.6 ± 0.54 c | 2.62 ± 0.04 b | 65.46 |
J.2 | 30 | 0.260 | 99.35 ± 2.90 c | 70.0 ± 0.84 d | 2.48 ± 0.04 b | 62.75 |
J.3 | 30 | 0.258 | 104.55 ± 1.70 d | 72.9 ± 1.08 e | 2.54 ± 0.04 b | 63.94 |
J.4 | 30 | 0.257 | 100.55 ± 2.70 c | 71.7 ± 1.53 e | 2.55 ± 0.05 b | 64.13 |
GF 2 | 30 | 0.173 | 140 | 92 | 0.90 | NA |
GF 3 | 30 | 0.173 | 145 | 114 | NA | NA |
Stages | wt% | FFSF (MPa) | FTSF (MPa) 1 | (MPa) 1 | (MPa) | (MPa) | |||
---|---|---|---|---|---|---|---|---|---|
J.0 | 30 | 0.264 | 139.66 | 96.20 | 597 | 867 | 0.161 | 897 | 0.156 |
J.1 | 30 | 0.262 | 197.48 | 128.60 | 726 | 1115 | 0.177 | 1059 | 0.187 |
J.2 | 30 | 0.260 | 203.52 | 137.80 | 806 | 1190 | 0.171 | 1144 | 0.178 |
J.3 | 30 | 0.258 | 221.34 | 147.50 | 846 | 1270 | 0.174 | 1213 | 0.182 |
J.4 | 30 | 0.257 | 205.84 | 142.90 | 822 | 1184 | 0.174 | 1153 | 0.179 |
GF 2 | 30 | 0.173 | 417.26 | 326.24 | 2400 | 3069 | 0.136 | 3652 | 0.114 |
GF 3 | 30 | 0.173 | 321.87 | 362.58 | 2400 | 2131 | 0.151 | 3053 | 0.105 |
Stages | (%) | Cellulose (%) | MFA (°) | |||
---|---|---|---|---|---|---|
Total | Crystalline | Amorphous | Constant | Variable | ||
J.0 | 65.0 | 66.6 | 43.3 | 23.3 | 8 | 8 |
J.1 | 68.1 | 69.8 | 47.5 | 22.3 | 8 | 9 |
J.2 | 70.0 | 77.3 | 54.4 | 22.9 | 8 | 10 |
J.3 | 79.0 | 82.7 | 65.3 | 17.4 | 8 | 11 |
J.4 | 80.0 | 86.9 | 69.5 | 17.4 | 8 | 12 |
Stages | wt% | (g cm−3) | (MPa) | (%) | (g cm−3) | (MPa) | |
---|---|---|---|---|---|---|---|
NA | 0 | 0 | 1.24 | 55.1 | 2.64 | NA | NA |
J.0 | 30 | 0.264 | 1.30 | 63.2 | 1.85 | 1.48 | 585.6 |
J.1 | 30 | 0.262 | 1.31 | 76.4 | 2.00 | 1.50 | 743.3 |
J.2 | 30 | 0.260 | 1.31 | 75.8 | 1.88 | 1.51 | 788.3 |
J.3 | 30 | 0.258 | 1.32 | 79.2 | 1.93 | 1.53 | 829.8 |
J.4 | 30 | 0.257 | 1.32 | 76.2 | 1.93 | 1.54 | 768.9 |
GF 1 | 30 | 0.173 | 1.47 | 98.6 | NA | 2.55 | 941.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Montemayor, F.J.; Espinach, F.X.; Tarrés, Q.; Alcalà, M.; Delgado-Aguilar, M.; Mutjé, P. The Evolution of the Intrinsic Flexural Strength of Jute Strands after a Progressive Delignification Process and Their Contribution to the Flexural Strength of PLA-Based Biocomposites. Polymers 2024, 16, 37. https://doi.org/10.3390/polym16010037
Alonso-Montemayor FJ, Espinach FX, Tarrés Q, Alcalà M, Delgado-Aguilar M, Mutjé P. The Evolution of the Intrinsic Flexural Strength of Jute Strands after a Progressive Delignification Process and Their Contribution to the Flexural Strength of PLA-Based Biocomposites. Polymers. 2024; 16(1):37. https://doi.org/10.3390/polym16010037
Chicago/Turabian StyleAlonso-Montemayor, Francisco J., Francesc X. Espinach, Quim Tarrés, Manel Alcalà, Marc Delgado-Aguilar, and Pere Mutjé. 2024. "The Evolution of the Intrinsic Flexural Strength of Jute Strands after a Progressive Delignification Process and Their Contribution to the Flexural Strength of PLA-Based Biocomposites" Polymers 16, no. 1: 37. https://doi.org/10.3390/polym16010037
APA StyleAlonso-Montemayor, F. J., Espinach, F. X., Tarrés, Q., Alcalà, M., Delgado-Aguilar, M., & Mutjé, P. (2024). The Evolution of the Intrinsic Flexural Strength of Jute Strands after a Progressive Delignification Process and Their Contribution to the Flexural Strength of PLA-Based Biocomposites. Polymers, 16(1), 37. https://doi.org/10.3390/polym16010037