Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Polymers in the Oral Environment
4.1.1. Polymer and Microbial Adhesion
4.1.2. PMMA and Adhesion
4.1.3. Polyamide and Adhesion
4.1.4. PEEK and Adhesion
4.1.5. Polymer and Accumulation of DMP
4.1.6. Polishing to Limit Microbial Adhesion
4.1.7. Denture Base Surface Coating to Limit Adhesion
4.1.8. Effects of Cleaning on Denture Materials (Table 3)
4.2. Denture Base Relining (Table 4)
4.3. General Conditions and Dentures
5. Conclusions
- To limit the adhesion and accumulation of prosthetic microbial plaque, removable prostheses milled from a PMMA block best meet this requirement. Those made from PA are less efficient in terms of the colonization of microorganisms. As for PEEK, the long-term anti-adhesion properties seem to gradually diminish.
- Regarding the polishing and maintenance of removable prostheses, PMMA is also more efficient than PA and PEEK.
- Relined PMMA bases, both via thermosetting and machining, are easy to implement and effective.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jorge, J.H.; Giampaolo, E.T.; Vergani, C.E.; Machado, A.L.; Pavarina, A.C.; Carlos, I.Z. Biocompatibility of denture base acrylic resins evaluated in culture of l929 cells. effect of polymerisation cycle and post-polymerisation treatments. Gerodontology 2007, 24, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Sehajpal, S.B.; Sood, V.K. Effect of metal fillers on some physical properties of acrylic resin. J. Prosthet. Dent. 1989, 61, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Urban, V.M.; Machado, A.L.; Oliveira, R.V.; Vergani, C.E.; Pavarina, A.C.; Cass, Q.B. Residual monomer of reline acrylic resins: Effect of water-bath and microwave post-polymerization treatments. Dent. Mater. 2007, 23, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Ayman, A.-D. The residual monomer content and mechanical properties of CADnCAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron. Physician 2017, 9, 4766–4772. [Google Scholar] [CrossRef]
- Anadioti, E.; Musharbash, L.; Blatz, M.B.; Papavasiliou, G.; Kamposiora, P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health 2020, 20, 343. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Patil, S.; Licari, F.W.; Bhandi, S.; Awan, K.H.; Badnjević, A.; Belli, V.; Cervino, G.; Minervini, G. The cytotoxic effect of thermoplastic denture base resins: A systematic review. J. Funct. Biomater. 2023, 14, 411. [Google Scholar] [CrossRef]
- Chladek, G.; Nowak, M.; Pakieła, W.; Mertas, A. Effect of Candida Albicans Suspension on the Mechanical Properties of Denture Base Acrylic Resin. Materials 2022, 15, 3841. [Google Scholar] [CrossRef]
- Rüttermann, S.; Trellenkamp, T.; Bergmann, N.; Raab, W.H.R.; Ritter, H.; Janda, R. A new approach to influence contact angle and surface free energy of resin-based dental restorative materials. Acta Biomater. 2011, 7, 1160–1165. [Google Scholar] [CrossRef]
- Liber-Knéc, A.; Łagan, S. Surface Testing of Dental Biomaterial Determination of Contact Angle and Surface Free Energy. Materials 2021, 14, 2716. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A Comparison of the Surface Properties of CAD/CAM and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Benli, M.; Eker Gümüş, B.; Kahraman, Y.; Gökçen-Rohlig, B.; Evlioğlu, G.; Huck, O.; Özcan, M. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers. Odontology 2020, 108, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Radford, D.R.; Sweet, S.P.; Challacombe, S.J.; Walter, J.D. Adherence of candida albicans to denture base materials with different surface finishes. J. Dent. 1998, 26, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Steinmassl, O.; Dumfahrt, H.; Grunert, I.; Steinmassl, P.A. Influence of cad/cam fabrication on denture surface properties. J. Oral Rehabil. 2018, 45, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.; Bürgers, R.; Baum, F.; Kurbad, O.; Wassmann, T. Influence of the Manufacturing Method on the Adhesion of Candida albicans and Streptococcus mutans to Oral Splint Resins. Polymers 2021, 13, 1534. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Ahmed, S.; Nandini, V.V.; Lathief, J.; Boruah, S. An in vitro comparison of microbial adhesion on three different denture base materials and its relation to surface roughness. Cureus 2023, 15, e37085. [Google Scholar] [CrossRef] [PubMed]
- Abuzar, M.A.; Bellur, S.; Duong, N.; Kim, B.B.; Lu, P.; Palfreyman, N.; Surendran, D.; Tran, V.T. Evaluating surface roughness of a polyamide denture base material in comparison with poly(methyl methacrylate). J. Oral Sci. 2010, 52, 577–581. [Google Scholar] [CrossRef]
- Cabanillas, B.; Mallma-Medina, A.; Petkova-Gueorguieva, M.; Alvitez-Temoche, D.; Mendoza, R.; Mayta-Tovalino, F. Influence of the surface energy of different brands of polymethyl methacrylate on the adherence of candida albicans: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2021, 11, 6–12. [Google Scholar]
- Gad, M.M.; Abualsaud, R.; Khan, S.Q. Hydrophobicity of denture base resins: A systematic review and meta-analysis. J. Int. Soc. Prev. Community Dent. 2022, 12, 139–159. [Google Scholar] [CrossRef]
- Osman, R.B.; Khoder, G.; Fayed, B.; Kedia, R.A.; Elkareimi, Y.; Alharbi, N. Influence of Fabrication Technique on Adhesion and Biofilm Formation of Candida albicans to Conventional, Milled, and 3D-Printed Denture Base Resin Materials: A Comparative In Vitro Study. Polymers 2023, 15, 1836. [Google Scholar] [CrossRef]
- Moslehifard, E.; Ghaffari, T.; Abolghasemi, H.; Maleki Dizaj, S. Comparison of conventional pressure-packed and injection molding processing methods for an acrylic resin denture based on microhardness, surface roughness, and water sorption. Int. J. Dent. 2022, 2022, 7069507. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent. Mater. J. 2010, 29, 353–361. [Google Scholar] [CrossRef] [PubMed]
- de Freitas-Fernandes, F.S.; Cavalcanti, Y.W.; Ricomini, A.P.F.; Silva, W.J.; Cury, A.A.D.B.; Bertolini, M.M. Effect of daily use of an enzymatic denture cleanser on candida albicans biofilms formed on polyamide and poly(methyl methacrylate) resins: An in vitro study. J. Prosthet. Dent. 2014, 112, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Batak, B.; Çakmak, G.; Johnston, W.M.; Yilmaz, B. Surface roughness of high-performance polymers used for fixed implant-supported prostheses. J. Prosthet. Dent. 2021, 126, 254.e1–254.e6. [Google Scholar]
- Vulović, S.; Todorović, A.; Stančić, I.; Popovac, A.; Stašić, J.N.; Vencl, A.; Milić-Lemić, A. Study on the surface properties of different commercially available cad/cam materials for implant-supported restorations. J. Esthet. Restor. Dent. 2022, 34, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, M.; Tsutsumi-Arai, C.; Takakusaki, K.; Oya, T.; Fueki, K.; Wakabayashi, N. Superhydrophilic co-polymer coatings on denture surfaces reduce candida albicans adhesion—An in vitro study. Arch. Oral Biol. 2018, 87, 143–150. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, L.G.D.O.; Ribeiro, V.S.T.; de Andrade, A.P.; Gonçalves, G.A.; Kraft, L.; Cieslinski, J.; Suss, P.H.; Tuon, F.F. Evaluation of staphylococcus aureus and candida albicans biofilms adherence to peek and titanium-alloy prosthetic spine devices. Eur. J. Orthop. Surg. Traumatol. 2022, 32, 981–989. [Google Scholar] [CrossRef]
- D’Ercole, S.; Cellini, L.; Pilato, S.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; Petrini, M. Material characterization and Streptococcus oralis adhesion on polyetheretherketone (peek) and titanium surfaces used in implantology. J. Mater. Sci. Mater. Med. 2020, 31, 84. [Google Scholar] [CrossRef]
- Ichikawa, T.; Kurahashi, K.; Liu, L.; Matsuda, T.; Ishida, Y. Use of a polyetheretherketone clasp retainer for removable partial denture: A case report. Dent. J. 2019, 7, 4. [Google Scholar] [CrossRef]
- Barkarmo, S.; Longhorn, D.; Leer, K.; Johansson, C.B.; Stenport, V.; Franco-Tabares, S.; Kuehne, S.A.; Sammons, R. Biofilm formation on polyetheretherketone and titanium surfaces. Clin. Exp. Dent. Res. 2019, 5, 427–437. [Google Scholar] [CrossRef]
- Alammari, M.R. The influence of polishing techniques on pre-polymerized cad/cam acrylic resin denture bases. Electron. Physician 2017, 9, 5452–5458. [Google Scholar] [CrossRef] [PubMed]
- ISO 20795-1:2008; Dentistry—Part 1: Denture Base Polymers. International Organization for Standardization: Geneva, Switzerland, 2008.
- Corsalini, M.; Boccaccio, A.; Lamberti, L.; Pappalettere, C.; Catapano, S.; Carossa, S. Analysis of the performance of a standardized method for the polishing of methacrylic resins. Open Dent. J. 2009, 3, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifaiy, M.Q. The effect of mechanical and chemical polishing techniques on the surface roughness of denture base acrylic resins. Saudi Dent. J. 2010, 22, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Al-Kheraif, A.A. The effect of mechanical and chemical polishing techniques on the surface roughness of heat-polymerized and visible light-polymerized acrylic denture base resins. Saudi Dent. J. 2014, 26, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.C.; Kalavathy, N.; Mohammad, H.S.; Hariprasad, A.; Kumar, C.R. Evaluation of the surface roughness of three heat-cured acrylic denture base resins with different conventional lathe polishing techniques: A comparative study. J. Indian. Prosthodont. Soc. 2015, 15, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Quezada, M.M.; Salgado, H.; Correia, A.; Fernandes, C.; Fonseca, P. Investigation of the effect of the same polishing protocol on the surface roughness of denture base acrylic resins. Biomedicines 2022, 10, 1971. [Google Scholar] [CrossRef] [PubMed]
- Wieckiewicz, M.; Opitz, V.; Richter, G.; Boening, K.W. Physical properties of polyamide-12 versus pmma denture base material. Biomed Res. Int. 2014, 2014, 150298. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, K.; Matsuda, T.; Ishida, Y.; Ichikawa, T. Effect of polishing protocols on the surface roughness of polyetheretherketone. J. Oral Sci. 2020, 62, 40–42. [Google Scholar] [CrossRef]
- Sturz, C.R.; Faber, F.J.; Scheer, M.; Rothamel, D.; Neugebauer, J. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent. Mater. J. 2015, 34, 796–813. [Google Scholar] [CrossRef]
- Heimer, S.; Schmidlin, P.R.; Roos, M.; Stawarczyk, B. Surface properties of polyetheretherketone after different laboratory and chairside polishing protocols. J. Prosthet. Dent. 2017, 117, 419–425. [Google Scholar] [CrossRef]
- Heimer, S.; Schmidlin, P.R.; Stawarczyk, B. Discoloration of pmma, composite, and peek. Clin. Oral Investig. 2017, 21, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y.; Seto, K.; Murakami, M.; Harada, K.; Ishii, M.; Kamashita, Y.; Kawamoto, S.; Hamano, T.; Yoshimura, T.; Kurono, A.; et al. Effects of denture cleaning regimens on the quantity of Candida on dentures: A cross-sectional survey on nursing home residents. Int. J. Environ. Res. Public. Health. 2022, 19, 15805. [Google Scholar] [CrossRef] [PubMed]
- Duyck, J.; Vandamme, K.; Krausch-Hofmann, S.; Boon, L.; De Keersmaecker, K.; Jalon, E.; Teughels, W. Impact of denture cleaning method and overnight storage condition on denture biofilm mass and composition: A cross-over randomized clinical trial. PLoS ONE 2016, 11, e0145837. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Young, T.; McKloud, E.; Butcher, M.C.; Bradshaw, D.; Pratten, J.R.; Ramage, G. An in vitro evaluation of denture cleansing regimens against a polymicrobial denture biofilm model. Antibiotics 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Zhang, J.; McGrath, C.; Tsang, P.; Lam, O. A randomized trial of the effectiveness of an ultrasonic denture hygiene intervention program among community dwelling elders. Eur. Oral Res. 2023, 57, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghe, T.V.; Wyatt, C.C.; Mostafa, N.Z. The effect of overnight storage conditions on complete denture colonization by Candida albicans and dimensional stability: A systematic review. J. Prosthet. Dent. 2020, 124, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Hayran, Y.; Sarikaya, I.; Aydin, A.; Tekin, Y.H. Determination of the effective anticandidal concentration of denture cleanser tablets on some denture base resins. J. Appl. Oral Sci. 2018, 26, e20170077. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, X.; Cai, Y. Effects of two peroxide enzymatic denture cleaners on Candida albicans biofilms and denture surface. BMC Oral Health 2020, 20, 193. [Google Scholar] [CrossRef]
- Jo, Y.H.; Lee, W.J.; Yoon, H.I. Feasibility of microencapsulated phytochemical as disinfectant for inhibition of Candida albicans proliferation on denture base produced by digital light processing. PLoS ONE 2023, 18, e0287867. [Google Scholar] [CrossRef]
- Tsutsumi-Arai, C.; Takakusaki, K.; Arai, Y.; Terada-Ito, C.; Takebe, Y.; Imamura, T.; Ide, S.; Tatehara, S.; Tokuyama-Toda, R.; Wakabayashi, N.; et al. Grapefruit seed extract effectively inhibits the Candida albicans biofilms development on polymethyl methacrylate denture-base resin. PLoS ONE 2019, 14, e0217496. [Google Scholar] [CrossRef]
- Shichiri-Negoro, Y.; Tsutsumi-Arai, C.; Arai, Y.; Satomura, K.; Arakawa, S.; Wakabayashi, N. Ozone ultrafine bubble water inhibits the early formation of Candida albicans biofilms. PLoS ONE 2021, 16, e0261180. [Google Scholar] [CrossRef] [PubMed]
- Procopio, A.L.F.; da Silva, R.A.; Maciel, J.G.; Sugio, C.Y.C.; Soares, S.; Urban, V.M. Antimicrobial and cytotoxic effects of denture base acrylic resin impregnated with cleaning agents after long-term immersion. Toxicol. Vitr. 2018, 52, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, A.F.; Tuwaym, M.; Aldaghri, E.N.; Alojaymi, T.; Alotiabi, H.M.; Taweel, S.M.A.; Al-Otaibi, H.N.; Ali, R.; Alshehri, H.; Labban, N. Efficacy of denture cleansers on microbial adherence and surface topography of conventional and cad/cam-processed denture base resins. Polymers 2023, 15, 460. [Google Scholar] [CrossRef] [PubMed]
- Durkan, R.; Ayaz, E.A.; Bagis, B.; Gurbuz, A.; Ozturk, N.; Korkmaz, F.M. Comparative effects of denture cleansers on physical properties of polyamide and polymethyl methacrylate base polymers. Dent. Mater. J. 2013, 32, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Richa, G.; Reddy, K.M.; Shastry, Y.M.; Aditya, S.V.; Babu, P.J.K. Effectiveness of denture cleansers on flexible denture base resins in the removal of stains colored by food colorant solution: An in vitro study. J. Indian. Prosthodont. Soc. 2022, 22, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Polychronakis, N.C.; Polyzois, G.L.; Lagouvardos, P.E.; Papadopoulos, T.D. Effects of cleansing methods on 3-D surface roughness, gloss, and color of a polyamide denture base material. Acta Odontol. Scand. 2015, 73, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Polychronakis, N.; Polyzois, G.; Lagouvardos, P.; Andreopoulos, A.; Ngo, H.C. Long-term microwaving of denture base materials: Effects on dimensional, color, and translucency stability. J. Appl. Oral Sci. 2018, 26, e20170587. [Google Scholar] [CrossRef]
- Ozyilmaz, O.Y.; Kara, O.; Akin, C. Evaluation of various denture cleansers on color stability and surface topography of polyetherketoneketone, polyamide, and polymethylmethacrylate. Microsc. Res. Tech. 2021, 84, 3–11. [Google Scholar] [CrossRef]
- Ozyilmaz, O.Y.; Akin, C. Effect of cleansers on denture base resins’ structural properties. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019827797. [Google Scholar] [CrossRef]
- Tulbah, H.I. Anticandidal efficacy on polymide based denture resin using Photodynamic therapy, chemical and herbal disinfectants and their effect on surface roughness and hardness. Photodiagn. Photodyn. Ther. 2022, 39, 102874. [Google Scholar] [CrossRef]
- Demirci, F.; Tanik, A. Comparison of the effect of denture cleansers on long-term water sorption and solubility of polyetheretherketone with other denture base materials. Clin. Exp. Health Sci. 2022, 12, 672–677. [Google Scholar] [CrossRef]
- Vulović, S.; Popovac, A.; Radunović, M.; Petrović, S.; Todorović, M.; Milić-Lemić, A. Microbial adhesion and viability on novel CAD/CAM framework materials for implant-supported hybrid prostheses. Eur. J. Oral Sci. 2023, 131, e12911. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.Y.; Lee, H.R.; Lee, H.; Pae, A. Wettability of denture relining materials under water storage over time. J. Adv. Prosthodont. 2009, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mendonça e Bertolini, M.d.; Cavalcanti, Y.W.; Bordin, D.; Silva, W.J.; Cury, A.A. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin. Braz. Oral Res. 2014, 28, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, M.; Tugut, F.; Akin, H. Tensile bond strength of soft and hard relining materials to conventional and additively manufactured denture-base materials. J. Prosthodont. 2023, 32, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, J.S. Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base. J. Adv. Prosthodont. 2022, 14, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Mert, D.; Kamnoedboon, P.; Al-Haj Husain, N.; Özcan, M.; Srinivasan, M. CAD-CAM complete denture resins: Effect of relining on the shear bond strength. J. Dent. 2023, 131, 104438. [Google Scholar] [CrossRef]
- Kim, J.H.; Choe, H.C.; Son, M.K. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent. Mater. J. 2014, 33, 32–38. [Google Scholar] [CrossRef]
- Vuksic, J.; Pilipovic, A.; Poklepovic Pericic, T.; Kranjcic, J. Tensile bond strength between different denture base materials and soft denture liners. Materials 2023, 16, 4615. [Google Scholar] [CrossRef]
- Soares Machado, P.; Cadore Rodrigues, A.C.; Chaves, E.T.; Susin, A.H.; Valandro, L.F.; Pereira, G.K.R.; Rippe, M.P. Surface treatments and adhesives used to increase the bond strength between polyetheretherketone and resin-based dental materials: A scoping review. J. Adhes. Dent. 2022, 24, 233–245. [Google Scholar]
- Parkar, U.; Dugal, R.; Madanshetty, P.; Devadiga, T.; Khan, A.S.; Godil, A. Assessment of different surface treatments and shear bond characteristics of poly-ether-ether-ketone: An in vitro SEM analysis. J. Indian. Prosthodont. Soc. 2021, 21, 412–419. [Google Scholar] [PubMed]
- Gad, M.M.; Fouda, S.M. Current perspectives and the future of Candida albicans-associated denture stomatitis treatment. Dent. Med. Probl. 2020, 57, 95–102. [Google Scholar] [CrossRef]
- Meirowitz, A.; Rahmanov, A.; Shlomo, E.; Zelikman, H.; Dolev, E.; Sterer, N. Effect of denture base fabrication technique on Candida albicans adhesion in vitro. Materials 2021, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Przykaza, K.; Jurak, M.; Kalisz, G.; Mroczka, R.; Wiacek, A.E. Characteristics of hybrid bioglass-chitosan coatings on the plasma activated peek polymer. Molecules 2023, 28, 1729. [Google Scholar] [CrossRef] [PubMed]
- Katzer, A.; Marquardt, H.; Westendorf, J.; Wening, J.V.; von Foerster, G. Polyetheretherketone—Cytotoxicity and mutagenicity in vitro. Biomaterials 2002, 23, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Deqiang, C.; Xiyan, G.; Lirong, L.; Weizeng, C. Biological Tribology Properties of the Modified Polyether Ether Ketone Composite Materials. Rev. Adv. Mater. Sci. 2020, 59, 399–405. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of dental prosthesis and restorative materials interface on oral biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef]
- Sachdeo, A.; Haffajee, A.D.; Socransky, S.S. Biofilms in the edentulous oral cavity. J. Prosthodont. 2008, 17, 348–356. [Google Scholar] [CrossRef]
- Sang, T.; Ye, Z.; Fischer, N.G.; Skoe, P.E.; Echeverría, C.; Wu, J.; Aparicio, C. Physical-chemical interactions between dental materials surface, salivary pellicle and Streptococcus gordonii. Colloids Surf. B 2020, 190, 110938. [Google Scholar] [CrossRef]
- Mitchell, K.F.; Zarnowski, R.; Sanchez, H.; Edward, J.A.; Reinicke, E.L.; Nett, J.E.; Mitchell, A.P.; Andes, D.R. Community participation in biofilm matrix assembly and function. Proc. Natl. Acad. Sci. USA 2015, 112, 4092–4097. [Google Scholar] [CrossRef]
- Ercalik-Yalcinkaya, S.; Ozcan, M. Association between oral mucosal lesions and hygiene habits in a population of removable prosthesis wearers. J. Prosthodont. 2015, 24, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Latib, Y.O.; Owen, C.P.; Patel, M. Viability of Candida albicans in denture base resin after disinfection: A preliminary study. Int. J. Prosthodont. 2018, 31, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Cruz, P.C.; Andrare, I.M.; Peracini, A.; Souza-Gugelmin, M.C.M.; Silva-Lovato, C.H.; de Souza, R.F.; Paranhos, H.d.F.O. The effectiveness of chemical denture cleansers and ultrasonic device in biofilm removal from complete dentures. J. Appl. Oral Sci. 2011, 19, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Axe, A.S.; Varghese, R.; Bosma, M.; Kitson, N.; Bradshaw, D.J. Dental health professional recommendation and consumer habits in denture cleansing. J. Prosthet. Dent. 2016, 115, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Abaci, Ö. Investigation of extracellular phospholipase and proteinase activities of Candida species isolated from individual’s denture wearers and genotypic distribution of Candida albicans strains. Curr. Microbiol. 2011, 62, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, R.; Westler, W.M.; Lacmbouh, G.A.; Marita, J.M.; Bothe, J.R.; Bernhardt, J.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Sanchez, H.; Hatfield, R.D.; et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio 2014, 5, e01333-14. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, J.S.; Flack, C.E.; Lister, J.; Ricker, E.B.; Ibberson, C.B.; Jenul, C.; Moormeier, D.E.; Delmain, E.A.; Bayles, K.W.; Horswill, A.R. Identification of extracellular DNA-binding proteins in the biofilm matrix. mBio 2019, 10, e01137-19. [Google Scholar] [CrossRef]
- Cahn, L.R. The Denture sore mouth. Ann. Dent. 1936, 3, 33–36. [Google Scholar]
- Koopmans, A.S.; Kippuw, N.; de Graaff, J. Bacterial involvement in denture-induced stomatitis. J. Dent. Res. 1988, 67, 1246–1250. [Google Scholar] [CrossRef]
- Campos, M.S.; Marchini, L.; Bernardes, L.A.; Paulino, L.C.; Nobrega, F.G. Biofilm microbial communities of denture stomatitis. Oral Microbiol. Immunol. 2008, 23, 419–424. [Google Scholar] [CrossRef]
- Salerno, C.; Pascale, M.; Contaldo, M.; Esposito, V.; Busciolano, M.; Milillo, L.; Guida, A.; Petruzzi, M.; Serpico, R. Candida-associated denture stomatitis. Med. Oral Patol. Oral Cir. Bucal 2011, 16, e139–e143. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Borelli, C.; Korting, H.C.; Hube, B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005, 48, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, Y.W.; Wilson, M.; Lewis, M.; Williams, D.; Senna, P.M.; Del-Bel-Cury, A.A.; Silva, W.J. Salivary pellicles equalize surfaces’ charges and modulate the virulence of Candida albicans biofilm. Arch. Oral Biol. 2016, 6, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Rickard, A.H.; Gilbert, P.; High, N.J.; Kolenbrander, P.E.; Handley, P.S. Bacterial coaggregation: An integral process in the development of multi-species biofilms. Trends Microbiol. 2003, 11, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, S.; Eidt, A.; Melzl, H.; Reischl, U.; Cisar, J.O. Probing of microbial biofilm communities for coadhesion partners. Appl. Environ. Microbiol. 2014, 80, 6583–6590. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.P.; Bui, C.K.; Nett, J.E.; Hartooni, N.; Mui, M.C.; Andes, D.R.; Nobile, C.J.; Johnson, A.D. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol. Microbiol. 2015, 96, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Seneviratne, C.J.; Alpi, E.; Vizcaino, J.A.; Jin, L. Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob. Agents Chemother. 2015, 59, 6101–6112. [Google Scholar] [CrossRef]
- Santana, I.L.; Gonçalves, L.M.; de Vasconcellos, A.A.; da Silva, W.J.; Cury, J.A.; Cury, A.A.D.B. Dietary carbohydrates modulate Candida albicans biofilm development on the denture surface. PLoS ONE 2013, 8, e64645. [Google Scholar] [CrossRef]
- Arendorf, T.M.; Walker, D.M. The prevalence and intra-oral distribution of Candida albicans in man. Arch. Oral Biol. 1980, 25, 1–10. [Google Scholar] [CrossRef]
- Morse, D.J.; Smith, A.; Wilson, M.J.; Marsh, L.; White, L.; Posso, R.; Bradshaw, D.J.; Wei, X.; Lewis, M.A.O.; Williams, D.W. Molecular community profiling of the bacterial microbiota associated with denture-related stomatitis. Sci. Rep. 2019, 9, 10228. [Google Scholar] [CrossRef]
- O’Donnell, L.E.; Robertson, D.; Nile, C.J.; Cross, L.J.; Riggio, M.; Sherriff, A.; Bradshaw, D.; Lambert, M.; Malcolm, J.; Buijs, M.J.; et al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE 2015, 10, e0137717. [Google Scholar] [CrossRef] [PubMed]
- Teles, F.R.; Teles, R.P.; Sachdeo, A.; Uzel, N.G.; Song, X.Q.; Torresyap, G.; Singh, M.; Papas, A.; Haffajee, A.; Socransky, S. Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. J. Periodontol. 2012, 83, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Al Ahmad, S.F.; Singh, P.; Saadaoui, M.; Kumar, M.; Al Khodor, S. Profiling the salivary microbiome of the Qatari population. J. Transl. Med. 2020, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Perić, M.; Živković, R.; Milić Lemić, A.; Radunović, M.; Miličić, B.; Arsenijević, V.A. The severity of denture stomatitis as related to risk factors and different Candida spp. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A disease of opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.G.; Treasure, E.T.; Fuller, E.; Morgan, M.Z. Complexity and maintenance—A report from the Adult Dental Health Survey. In Adult Dental Health Survey 2009—Northern Ireland Key Findings; O’Sullivan, I., Ed.; The Health and Social Care Information Centre: London, UK, 2011; pp. 7–9. [Google Scholar]
- Theilade, E.; Budtz-Jørgensen, E.; Theilade, J. Predominant cultivable microflora of plaque on removable dentures in patients with healthy oral mucosa. Arch. Oral Biol. 1983, 28, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wu, T.; McLean, J.; Edlund, A.; Young, Y.; He, X.; Lv, H.; Zhou, X.; Shi, W.; Li, H.; et al. The denture-associated oral microbiome in health and stomatitis. mSphere 2016, 1, e00215–e00216. [Google Scholar] [CrossRef] [PubMed]
- Lof, M.; Janus, M.; Krom, B. Metabolic interactions between bacteria and fungi in commensal oral biofilms. J. Fungi 2017, 3, 40. [Google Scholar] [CrossRef]
- Senpuku, H.; Sogame, A.; Inoshita, E.; Tsuha, Y.; Miyazaki, H.; Hanada, N. Systemic diseases in association with microbial species in oral biofilm from elderly requiring care. Gerontology 2003, 49, 301–309. [Google Scholar] [CrossRef]
- Yildirim-Bicer, A.Z.; Peker, I.; Akca, G.; Celik, I. In vitro antifungal evaluation of seven different disinfectants on acrylic resins. Biomed Res. Int. 2014, 2014, 519098. [Google Scholar] [CrossRef]
- Ardizzoni, A.; Pericolini, E.; Paulone, S.; Orsi, C.F.; Castagnoli, A.; Oliva, I.; Strozzi, E.; Blasi, E. In vitro effects of commercial mouthwashes on several virulence traits of Candida albicans, viridans streptococci and Enterococcus faecalis colonizing the oral cavity. PLoS ONE 2018, 13, e0207262. [Google Scholar] [CrossRef] [PubMed]
- Bajunaid, S.O.; Baras, B.H.; Weir, M.D.; Xu, H.H.K. Denture acrylic resin material with antibacterial and protein-repelling properties for the prevention of denture stomatitis. Polymers 2022, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Radford, D.R.; Challacombe, S.; Walter, J.D. Denture plaque and adherence of candida albicans to denture-base materials in vivo and in vitro. Crit. Rev. Oral Biol. Med. 1999, 10, 99–116. [Google Scholar] [CrossRef]
- Zheng, W.; Tsompana, M.; Ruscitto, A.; Sharma, A.; Genco, R.; Sun, Y.; Buck, M.J. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 2015, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, W.; Nishikawa, K.; Ozawa, S.; Hasegawa, Y.; Takebe, J. Correlation between the relative abundance of oral bacteria and Candida albicans in denture and dental plaques. J. Oral Biosci. 2021, 63, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Delaney, C.; O’Donnell, L.E.; Kean, R.; Sherry, L.; Brown, J.L.; Calvert, G.; Nile, C.J.; Cross, L.; Bradshaw, D.J.; Brandt, B.W.; et al. Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm 2019, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Kostic, M.; Pejcic, A.; Igic, M.; Gligorijević, N. Adverse reactions to denture resin materials. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5298–5305. [Google Scholar]
- Figueiral, M.H.; Azul, A.; Pinto, E.; Fonseca, P.A.; Branco, F.M.; Scully, C. Denture-related stomatitis: Identification of aetiological and predisposing factors? A large cohort. J. Oral Rehabil. 2007, 34, 448–455. [Google Scholar] [CrossRef]
- Coulthwaite, L.; Verran, J. Development of an in vitro denture plaque biofilm to model denture malodour. J. Breath Res. 2008, 2, 017004. [Google Scholar] [CrossRef]
- Yitzhaki, S.; Reshef, L.; Gophna, U.; Rosenberg, M.; Sterer, N. Microbiome associated with denture malodour. J. Breath Res. 2018, 12, 027103. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.K. Denture hygiene, different strategies. Webmed Cent. Dent. 2010, 10, WMC00932. [Google Scholar]
- Helal, M.A.; Fadl-Alah, A.; Baraka, Y.M.; Gad, M.M.; Emam, A.-N.M. In-vitro comparative evaluation for the surface properties and impact strength of CAD/CAM milled, 3D printed, and polyamide denture base resins. J. Int. Soc. Prev. Community Dent. 2022, 12, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Cenci, T.; Cury, A.A.D.B.; Cenci, M.S.; Rodrigues-Garcia, R.C.M. In vitro candida colonization on acrylic resins and denture liners: Influence of surface free energy, roughness, saliva, and adhering bacteria. Int. J. Prosthodont. 2007, 20, 308–310. [Google Scholar] [PubMed]
- Olms, C.; Yahiaoui-Doktor, M.; Remmerbach, T.; Stingu, C. Bacterial colonization and tissue compatibility of denture base resins. Dent. J. 2018, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Mukai, Y.; Torii, M.; Urushibara, Y.; Kawai, T.; Takahashi, Y.; Maeda, N.; Ohkubo, C.; Ohshima, T. Analysis of plaque microbiota and salivary proteins adhering to dental materials. J. Oral Biosci. 2020, 62, 182–188. [Google Scholar] [CrossRef]
- de Foggi, C.C.; Machado, A.L.; Zamperini, C.A.; Fernandes, D.; Wady, A.F.; Vergani, C.E. Effect of surface roughness on the hydrophobicity of a denture-base acrylic resin and Candida albicans colonization. J. Investig. Clin. Dent. 2016, 7, 141–148. [Google Scholar] [CrossRef]
- Vila, T.; Rizk, A.M.; Sultan, A.S.; Jabra-Rizk, M.A. The power of saliva: Antimicrobial and beyond. PLoS Pathog. 2019, 15, 1008058. [Google Scholar] [CrossRef]
- Queiroz, J.R.C.; Fissmer, S.F.; Koga-Ito, C.Y.; Salvia, A.C.R.D.; Massi, M.; Sobrinho, A.S.d.S.; Júnior, L.N. Effect of diamond-like carbon thin film coated acrylic resin on candida albicans biofilm formation: Effect of dlc film on biofilm formation. J. Prosthodont. 2013, 22, 451–455. [Google Scholar] [CrossRef]
- Sarkar, A.; Kuehl, M.N.; Alman, A.C.; Burkhardt, B.R. Linking the oral microbiome and salivary cytokine abundance to circadian oscillations. Sci. Rep. 2021, 11, 2658. [Google Scholar] [CrossRef]
- Choi, S.Y.; Habimana, O.; Flood, P.; Reynaud, E.G.; Rodriguez, B.J.; Zhang, N.; Casey, E.; Gilchrist, M.D. Material-and feature-dependent effects on cell adhesion to micro injection moulded medical polymers. Colloids Surf. B Biointerfaces 2016, 145, 46–54. [Google Scholar] [CrossRef]
- Sipahi, C.; Anil, N.; Bayramli, E. The effect of acquired salivary pellicle on the surface free energy and wettability of different denture base materials. J. Dent. 2001, 29, 197–204. [Google Scholar] [CrossRef] [PubMed]
- de Freitas Fernandes, F.S.; Pereira-Cenci, T.; da Silva, W.J.; Filho, A.P.R.; Straioto, F.G.; Del Bel Cury, A.A. Efficacy of denture cleansers on candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. J. Prosthet. Dent. 2011, 105, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, M.; Giti, R. Polyamide as a denture base material: A literature review. J. Dent. 2015, 16, 1–9. [Google Scholar]
- Chuchulska, B.; Hristov, I.; Dochev, B.; Raychev, R. Changes in the surface texture of thermoplastic (monomer-free) dental materials due to some minor alterations in the laboratory protocol—Preliminary study. Materials 2022, 15, 6633. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, S.; Wieser, A.; Lang, R.; Rosentritt, M. Biofilm formation on the surface of modern implant abutment materials. Clin. Oral Impl Res. 2015, 26, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Skirbutis, G.; Dzingutė, A.; Masiliūnaitė, V.; Šulcaitė, G.; Žilinskas, J. A review of peek polymer’s properties and its use in prosthodontics. Stomatologija 2017, 19, 19–23. [Google Scholar] [PubMed]
- Neugebauer, J.; Adler, S.; Kisttler, F.; Kistler, S.; Bayer, G. The use of plastics in fixed prosthetic implant restoration. Zwr-Ger. Dent. J. 2013, 122, 242–245. [Google Scholar]
- Gad, M.M.; Abu-Rashid, K.; Alkhaldi, A.; Alshehri, O.; Khan, S.Q. Evaluation of the effectiveness of bioactive glass fillers against candida albicans adhesion to PMMA denture base materials: An in vitro study. Saudi Dent. J. 2022, 34, 730–737. [Google Scholar] [CrossRef]
- Khattar, A.; Alghafli, J.A.; Muheef, M.A.; Alsalem, A.M.; Al-Dubays, M.A.; AlHussain, H.M.; AlShoalah, H.M.; Khan, S.Q.; AlEraky, D.M.; Gad, M.M. Antibiofilm activity of 3D-printed nanocomposite resin: Impact of ZrO2 nanoparticles. Nanomaterials 2023, 13, 591. [Google Scholar] [CrossRef]
- Sawada, T.; Sawada, T.; Kumasaka, T.; Hamada, N.; Shibata, T.; Nonami, T.; Kimoto, K. Self-cleaning effects of acrylic resin containing fluoridated apatite-coated titanium dioxide. Gerodontology 2014, 31, 68–75. [Google Scholar] [CrossRef]
- Lazarin, A.A.; Machado, A.L.; Zamperini, C.A.; Wady, A.F.; Spolidorio, D.M.P.; Vergani, C.E. Effect of experimental photopolymerized coatings on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Arch. Oral Biol. 2013, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Pan, H.; Li, Y.; Wang, G.; Zhang, J.; Pan, J. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma. Dent. Mater. J. 2016, 35, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.S.; Hasanreisoglu, U.; Hasirci, N.; Sultan, N. Adherence of candida albicans to glow-discharge modified acrylic denture base polymers. J. Oral Rehabil. 2005, 32, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xu, C.; Hong, L.; Garcia-Godoy, F.; Hottel, T.; Babu, J.; Yu, Q. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin sur-faces. J. Prosthet. Dent. 2017, 118, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Darwish, G.; Huang, S.; Knoernschild, K.; Sukotjo, C.; Campbell, S.; Bishal, A.K.; Barão, V.A.; Wu, C.D.; Taukodis, C.G.; Yang, B. Improving polymethyl methacrylate resin using a novel titanium dioxide coating. J. Prosthodont. 2019, 28, 1011–1017. [Google Scholar] [CrossRef]
- Zamperini, C.A.; Machado, A.L.; Vergani, C.E.; Pavarina, A.C.; Giampaolo, E.T.; da Cruz, N.C. Adherence in vitro of candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle. Arch. Oral Biol. 2010, 55, 763–770. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Wang, J.; Li, Y.; Zhou, X.; Guo, X.; Zhang, T.; Guo, H. Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: In vitro and in vivo animal study. Dent. Mater. J. 2021, 40, 1100–1108. [Google Scholar] [CrossRef]
- Garcia, A.A.M.N.; Sugio, C.Y.C.; de Azevedo-Silva, L.J.; Gomes, A.C.G.; Batista, A.U.D.; Porto, V.C.; Soares, S.; Neppelenbroek, K.H. Nanoparticle-modified PMMA to prevent denture stomatitis: A systematic review. Arch. Microbiol. 2022, 204, 75. [Google Scholar] [CrossRef]
- Apip, C.; Martínez, A.; Meléndrez, M.; Domínguez, M.; Marzialetti, T.; Báez, R.; Sánchez-Sanhueza, G.; Jaramillo, A.; Catalán, A. An in vitro study on the inhibition and ultrastructural alterations of candida albicans biofilm by zinc oxide nanowires in a PMMA matrix. Saudi Dent. J. 2021, 33, 944–953. [Google Scholar] [CrossRef]
- Young, B.; Jose, A.; Cameron, D.; McCord, F.; Murray, C.; Bagg, J.; Ramage, G. Attachment of candida albicans to denture base acrylic resin processed by three different methods. Int. J. Prosthodont. 2009, 22, 488–489. [Google Scholar]
- Mondelli, R.; Garrido, L.M.; Soares, A.; Rodriguez-Medina, A.; Mondelli, J.; de Lucena, F.; Furuse, A. Effect of simulated brushing on surface roughness and wear of bis-acryl-based materials submitted to different polishing protocols. J. Clin. Exp. Dent. 2022, 14, e168–e176. [Google Scholar] [CrossRef] [PubMed]
- Al-Fouzan, A.F.; Al-mejrad, L.A.; Albarrag, A.M. Adherence of candida to complete denture surfaces in vitro: A comparison of conventional and CAD/CAM complete dentures. J. Adv. Prosthodont. 2017, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Sahin, O.; Koroglu, A.; Dede, D.Ö.; Yilmaz, B. Effect of surface sealant agents on the surface roughness and color stability of denture base materials. J. Prosthet. Dent. 2016, 116, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical characterization of polyetheretherketone and current esthetic dental cad/cam polymers after aging in different storage media. J. Prosthet. Dent. 2016, 115, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical applications of polyetheretherketone in removable dental prostheses: Accuracy characteristics, and performance. Polymers 2022, 14, 4615. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.J.E.; Uy, C.E.; Plaksina, P.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. Bond strength of denture teeth to heat cured, cad/cam and 3d printed denture acrylics. J. Prosthodont. 2020, 29, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Rosentritt, M.; Lang, R.; Handel, G. Glass fiber-reinforced abutments for dental implants. a pilot study: Glass fiber-reinforced abutments for dental implants. A pilot study. Clin. Oral Implant. Res. 2001, 12, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wang, G.; Pan, J.; Ye, G.; Sun, K.; Zhang, J.; Wang, J. Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of candida albicans. Dent. Mater. J. 2015, 34, 529–536. [Google Scholar] [CrossRef]
- Gül, E.B.; Atala, M.H.; Eşer, B.; Polat, N.T.; Asiltürk, M.; Gültek, A. Effects of coating with different ceromers on the impact strength, transverse strength and elastic modulus of polymethyl methacrylate. Dent. Mater. J. 2015, 34, 379–387. [Google Scholar] [CrossRef]
- Güngör, A.; Kayaman-Apohan, N.; Mert, A.; Kahraman, M.V. Preparation and characterization of light curable hybrid coating: Its potential application for dental restorative material. J. Polym. Res. 2008, 15, 389–395. [Google Scholar] [CrossRef]
- Mylonas, P.; Milward, P.; McAndrew, R. Denture cleanliness and hygiene: An overview. Br. Dent. J. 2022, 233, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Estrela, A.; Estrela, C.R.A.; Barbin, E.L.; Spano, J.C.E.; Marchesan, M.A.; Pecora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Porta, S.R.; de Lucena-Ferreira, S.C.; da Silva, W.J.; Del Bel Cury, A.A. Evaluation of sodium hypochlorite as a denture cleanser: A clinical study. Gerodontology 2015, 32, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Milward, P.; Katechia, D.; Morgan, M.Z. Knowledge of removable partial denture wearers on denture hygiene. Br. Dent. J. 2013, 215, E20. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Sandhu, P.K.; Kumar, A.N.; Patil, C.P. A comparative study for plaque removing efficacy between commonly used denture cleansers in India. J. Indian. Prosthodont. Soc. 2017, 17, 295–300. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.F.; de Freitas Oliveira Paranhos, H.; Lovato da Silva, C.H.; Abu-Naba’a, L.; Fedorowicz, Z.; Gurgan, C.A. Interventions for cleaning dentures in adults. Cochrane Data-Base Syst. Rev. 2009, 4, CD007395. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; O’Donnell, L.; Sherry, L.; Culshaw, S.; Bagg, J.; Czesnikiewicz-Guzik, M.; Brown, C.; McKenzie, D.; Cross, L.; MacInnes, A.; et al. Impact of frequency of denture cleaning on microbial and clinical parameters—A bench to chairside approach. J. Oral Microbiol. 2019, 11, 1538437. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.T.F.; Pellizzer, E.P.; Vasconcelos, B.C.d.E.; Gomes, J.M.L.; Lemos, C.A.A.; Moraes, S.L.D. Surface roughness of acrylic resins used for denture base after chemical disinfection: A systematic review and meta-analysis. Gerodontology 2021, 38, 242–251. [Google Scholar] [CrossRef]
- Masetti, P.; Arbeláez, M.I.A.; Pavarina, A.C.; Sanitá, P.V.; Jorge, J.H. Cytotoxic potential of denture base and reline acrylic resins after immersion in disinfectant solutions. J. Prosthet. Dent. 2018, 120, 155. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R.; Fouda, S.M.; Rahoma, A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Al-Harbi, F.A. Effects of denture cleansers on the flexural strength of PMMA denture base resin modified with ZrO2 nanoparticles. J. Prosthodont. 2021, 30, 2356244. [Google Scholar] [CrossRef]
- Amaya, A.M.I.; Vergani, C.E.; Barbugli, P.A.; Pavarina, A.C.; Sanitá, P.V.; Jorge, J.H. Long-term effect of daily chemical disinfection on surface topography and Candida albicans biofilm formation on denture base and reline acrylic resins. Oral Health Prev. Dent. 2020, 18, 999–1010. [Google Scholar]
- Kiesow, A.; Sarembe, S.; Pizzey, R.L.; Axe, A.S.; Bradshaw, D.J. Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. J. Prosthet. Dent. 2016, 115, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.P.; Lin, H.; Pan, S.; Lou, L.L.; Xu, Y.X. Effect of Polident denture cleansers on the properties of heat-polymerized denture base acrylic resin. Beijing Da Xue Xue Bao Yi Xue Ban 2012, 44, 946–949. [Google Scholar] [PubMed]
- Sesma, N.; Rocha, A.L.; Lagana, D.C.; Costa, B.; Morimoto, S. Effectiveness of denture cleanser associated with microwave disinfection and brushing of complete dentures: In vivo study. Braz. Dent. J. 2013, 24, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Arun Kumar, P.; Iniyan, K.; Balasubramaniam, R.; Viswanathan, M.; Hines, P.J.; Monnica, V. The effect of surface treatments on the shear bond strength of acrylic resin denture base with different repair acrylic resin: An in vitro study. J. Pharm. Bioall Sci. 2019, 11, 380. [Google Scholar] [CrossRef] [PubMed]
- Kreve, S.; Dos Reis, A.C. Denture liners: A systematic review relative to adhesion and mechanical properties. Sci. World J. 2019, 2019, 6913080. [Google Scholar] [CrossRef] [PubMed]
- Ates, S.M.; Caglar, I.; Ozdogan, A.; Duymus, Z.Y. The effect of denture cleansers on surface roughness and bond strength of a denture base resin. J. Adhes. Sci. Technol. 2017, 31, 171–181. [Google Scholar] [CrossRef]
- Kümbüloğlu, Ö.; Yildirim, B.; Al-Haj Husain, N.; Özcan, M. Adhesion potential of relining materials to polyamide and PMMA-based denture base materials: Effect of surface conditioning methods. J. Adhes. Sci. Technol. 2019, 33, 1939–1947. [Google Scholar] [CrossRef]
- AlZaher, Z.A.; Almaskin, D.F.; Qaw, M.S.; Abu Showmi, T.H.; Abualsaud, R.; Akhtar, S.; Gad, M.M. Chemo-mechanical approach to improve repair bond strength of denture teeth. Int. J. Dent. 2020, 2020, 8870361. [Google Scholar] [CrossRef]
- Choi, J.E.; Ng, T.E.; Leong, C.K.Y.; Kim, H.; Li, P.; Waddell, J.N. Adhesive evaluation of three types of resilient denture liners bonded to heat-polymerized, autopolymerized, or CAD-CAM acrylic resin denture bases. J. Prosthet. Dent. 2018, 120, 699–705. [Google Scholar] [CrossRef]
- Takahashi, Y.; Chai, J. Shear bond strength of denture reline polymers to denture base polymers. Int. J. Prosthodont. 2001, 14, 271–275. [Google Scholar] [PubMed]
- Taghva, M.; Enteghad, S.; Jamali, A.; Mohaghegh, M. Comparison of shear bond strength of CAD/CAM and conventional heat-polymerized acrylic resin denture bases to auto-polymerized and heat-polymerized acrylic resins after aging. J. Clin. Exp. Dent. 2022, 14, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.J.E.; Ramani, R.S.; Ganjigatti, R.; Uy, C.E.; Plaksina, P.; Waddell, J.N. Adhesion of denture characterizing composites to heat cured, CAD/CAM and 3D printed denture base resins. J. Prosthodont. 2021, 30, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for oral applications: Recent advances in mechanical and adhesive properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef]
- Müller, F. Oral hygiene reduces the mortality from aspiration pneumonia in frail elders. J. Dent. Res. 2015, 94, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, P.; Kouadio, A.A.; Bandiaky, O.N.; Le Guéhennec, L.; de La Cochetière, M.F. Host’s immunity and Candida species associated with denture stomatitis: A narrative review. Microorganisms 2022, 10, 1437. [Google Scholar] [CrossRef]
- Ruiz Núñez, M.d.R.; Raulino, M.; Goulart Castro, R.; Schaefer Ferreira de Mello, A.L. Dental plaque control strategies for the elderly population: A scoping review. Int. J. Dent. Hyg. 2022, 20, 167–181. [Google Scholar] [CrossRef]
- Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral candida infection and therapeutic strategies. Front. Microbiol. 2015, 6, 1391. [Google Scholar] [CrossRef]
- Dhiman, R.; Chowdhury, S.R. Midline fractures in single maxillary complete acrylic vs flexible dentures. Med. J. Armed Forces India 2009, 65, 141–145. [Google Scholar] [CrossRef]
- Takahashi, Y.; Imazato, S.; Russell, R.R.B.; Noiri, Y.; Ebisu, S. Influence of Resin Monomers on Growth of Oral Streptococci. J. Dent. Res. 2004, 83, 302–306. [Google Scholar] [CrossRef]
- Kostić, M.; Igić, M.; Gligorijević, N.; Nikolić, V.; Stošić, N.; Nikolić, L. The use of acrylate polymers in dentistry. Polymers 2022, 14, 4511. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, E. Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity. J. Biomed. Mater. Res. A 1997, 37, 517–524. [Google Scholar] [CrossRef]
- Hinz, S.; Bensel, T.; Bömicke, W.; Boeckler, A.F. In Vitro analysis of the mechanical properties of hypoallergenic denture base resins. Materials 2022, 15, 3611. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, P.; An, N.; Schmage, P. Repair strength of hypoallergenic denture base materials. J. Prosthet. Dent. 2008, 100, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Hamada, N.; Kimoto, K.; Sawada, T.; Sawada, T.; Kumada, H.; Umemoto, T.; Toyoda, M. Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dent. Mater. J. 2007, 26, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Casemiro, L.A.; Gomes Martins, C.H.; Pires-de-Souza, F.C.; Panzeri, H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite—Part I. Gerodontology 2008, 25, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Torres, L.S.; Mendieta, I.; Nunez-Anita, R.E.; Cajero-Juarez, M.; Castano, V.M. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int. J. Nanomed. 2012, 7, 4777–4786. [Google Scholar]
- Monteiro, D.R.; Gorup, L.F.; Takamiya, A.S.; de Camargo, E.R.; Filho, A.C.R.; Barbosa, D.B. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J. Prosthodont. 2012, 21, 7–15. [Google Scholar] [CrossRef]
- Al-Bakri, I.; Harty, D.; Al-Omari, W.; Swain, M.; Chrzanowski, W.; Ellakwa, A. Surface characteristics and microbial adherence ability of modified polymethylmethacrylate by fluoridated glass fillers. Aust. Dent. J. 2014, 59, 482–489. [Google Scholar] [CrossRef]
- Tsutsumi, C.; Takakuda, K.; Wakabayashi, N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J. Dent. 2016, 44, 37–43. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Vakalopoulou, E.; Tsagkalias, I.; Ioannidou, M.D.; Achilias, D.S. Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur. Polym. J. 2015, 72, 256–269. [Google Scholar] [CrossRef]
- Lee, J.H.; El-Fiqi, A.; Jo, J.K.; Kim, D.A.; Kim, S.C.; Jun, S.K.; Kim, H.W.; Lee, H.H. Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent. Mater. 2016, 32, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Kurt, A.; Erkose-Genc, G.; Uzun, M.; Emrence, Z.; Ustek, D.; Isik-Ozkol, G. The antifungal activity and cytotoxicity of silver containing denture base material. Niger. J. Clin. Pract. 2017, 20, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Randjelović, M.; Igić, M.; Randjelović, M.; Arsić Arsenijević, V.; Mionić Ebersold, M.; Otašević, S.; Milošević, I. Poly(methyl methacrylate) with oleic acid as an efficient Candida albicans biofilm repellent. Materials 2022, 15, 3750. [Google Scholar] [CrossRef] [PubMed]
- Uzun, I.H.; Tatar, A.; Hacimuftuoglu, A.; Saruhan, F.; Bayindir, F. In vitro evaluation of long-term cytotoxic response of injection-molded polyamide and polymethyl methacrylate denture base materials on primary fibroblast cell culture. Acta Odontol. Scand. 2013, 71, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Wicks, R.; Babu, J.; Garcia-Godoy, F.; Tipton, D. Cytotoxic Effects of Three Denture Base Materials on Gingival Epithelial Cells and Fibroblasts: An in Vitro Study. Int. J. Exp. Dent. Sci. 2015, 4, 11–16. [Google Scholar] [CrossRef]
- Jang, D.E.; Lee, J.Y.; Jang, H.S.; Lee, J.J.; Son, M.K. Color stability, water sorption, and cytotoxicity of thermoplastic acrylic resin for non-metal clasp denture. J. Adv. Prosthodont. 2015, 7, 278–287. [Google Scholar] [CrossRef]
- Al-Dharrab, A.S. LA Biocompatibility and cytotoxicity of two different polymerized denture base resins cultured on human mesenchymal stem cells. J. Int. Oral Health 2016, 8, 1114–1118. [Google Scholar]
- Lee, J.H.; Jun, S.K.; Kim, S.C.; Okubo, C.; Lee, H.H. Investigation of the cytotoxicity of thermoplastic denture base resins. J. Adv. Prosthodont. 2017, 9, 453–462. [Google Scholar] [CrossRef]
- Elmwafya, D.A.; Abdallahb, R.; Osmand, A.A.M.F. Evaluation of Biologic and Some Physical Properties of Flexible Resin Modified with Antimicrobial Nanostructures. Mansoura J. Dent. 2019, 6, 34–44. [Google Scholar]
- Cengiz, S.; Velioğlu, N.; Cengiz, M.İ.; Çakmak Özlü, F.; Akbal, A.U.; Çoban, A.Y.; Özcan, M. Cytotoxicity of acrylic resins, particulate filler composite resin and thermoplastic material in artificial saliva with and without melatonin. Materials 2022, 115, 1457. [Google Scholar] [CrossRef] [PubMed]
Polymers | Mean Surface Roughness (Ra) ± SD in µm Ra Threshold of 0.2 µm | Surface-Free Energy (SFE) (N/m; mJ/m2) SFE Threshold of 40 mJ/ m2 | C. albicans Adherence | Bacterial Adherence |
---|---|---|---|---|
PMMA | CAD/CAM PMMA: Al-Dwairi ZN et al. 2019 [11]: 0.16 ± 0.03 μm (AvaDent PMMA billets; Global Dental Science, Scottsdale, AZ); Al-Dwairi ZN et al. 2019 [11]: 0.12 ± 0.02 μm (Tizian Blank PMMA; Schütz Dental, Rosbachvor der Höhe, Germany) Benli M et al. 2020 [12]: 0.19 ± 0.01 μm (Amann Girrbach AG, Koblach, Austria) Radford DR et al. 1998 [13]: 0.66 ± 0.34 μm (Trevalon Clear; Dentsply Ltd., De Trey Division, Weybridge, UK) Steinmassl et al. 2018 [14]: All CAD/CAM dentures had lower mean surface roughness values than conventional dentures. Steinmassl et al. 2018 [14]: −0.28 ± 0.16 µm AvaDent Digital Dentures (AD; Global Dental Science Europe BV, Tilburg, the Netherlands); Steinmassl et al. 2018 [14]: −0.44 ± 0.13 µm Baltic Denture System (BDS; Merz Dental GmbH, Lütjenburg, Germany); Steinmassl et al. 2018 [14]: −0.28 ± 0.01 µm Vita VIONIC (VV; Vita Zahnfabrik, Bad Säckingen, Germany); Steinmassl et al. 2018 [14]: −0.04 ± 0.01 µm Whole You Nexteeth (WN; Whole You Inc., San Jose, CA, USA) Steinmassl et al. 2018 [14]: −0.30 ± 0.10 µm Wieland Digital Dentures (WDD; Wieland Dental + Technik GmbH & Co. KG, Pforzheim, Germany/Ivoclar Vivadent AG, Schaan, Liechtenstein); Schubert et al. 2020 [15]: 0.07 ± 0.01 µm (Med 610 Stratasys, Eden Prairie, MN, USA); Schubert et al. 2020 [15]: 0.07 ± 0.01 µm (V-Print splint Voco, Cuxhaven, Germany); Schubert et al. 2020 [15]: 0.09 ± 0.01 µm FREEPRINT ortho 385 Detax, Ettlingen, G); Schubert et al. 2020 [15]: 0.06 ± 0.01 µm Dental LT Clear Formlabs, Somerville, MA, USA) Schubert et al. 2020 [15]: 0.06 ± 0.01 µm (M-PM crystal Merz Dental, Luetjenburg, Germany. 0.04 ± 0.01 Therapon Transpa Zirkonzahn, Gais, Italy) Conventional heat-polymerized PMMA: Al-Dwairi ZN et al. 2019 [11]: 0.22 ± 0.07 μm (Meliodent conventional PMMA, Heraeus Kulzer, Hanau Germany) Sultana N et al. 2023 [16]: 0.11 ± 0.04 μm (DPI Heat Cure; Dental Products of India, Mumbai, Maharashtra, India) Schubert et al. 2020 [15]: 0.04 ± 0.01 µm (Erkodur Erkodent, Pfalzgrafenweiler, Germany); Schubert et al. 2020 [15]: 0.05 ± 0.01 µm (PalaXpress ultra Kulzer, Hanau, Germany) Schubert et al. 2021 [15]: 0.04 ± 0.01 µm (Erkodur, Erkodent Pfalzgrafenweiler, Germany), Schubert et al. 2021 [15]: 0.05 ± 0.01 µm (PalaXpress ultra; Kulzer, Hanau, Germany) Steinmass et al. 2018 [14]: 0.55 ± 0.14 µm Candulor Aesthetic Red: Candulor AG, Glattpark, Germany) Injection-molded technique: Sultana N et al. 2023 [16]: 0.06 ± 0.02 µm (SR Ivocap High Impact; Ivoclar Vivadent AG, Schaan, Liechtenstein) Abuzar MA et al. 2010 [17]: 0.99 ± 0.12 μm before polishing (Vertex RS, Vertex-Dental BV, ZeiIthe Netherlands) which was reduced more than 20 times to 0.04 ± 0.007 μm after polishing. | CAD/CAM PMMA: Steinmassl et al. 2018 [14]: SFE mean values between 31.82 and 33.68 mJ/m2 for all the CAD/CAM dentures: AvaDent Digital Dentures (AD; Global Dental Science Europe BV, Tilburg, the Netherlands); Baltic Denture System (BDS; Merz Dental GmbH, Lütjenburg, Germany); Vita VIONIC (VV; Vita Zahnfabrik, Bad Säckingen, Germany); Whole You Nexteeth (WN; Whole You Inc., San Jose, USA); Wieland Digital Dentures (WDD; Wieland Dental + Technik GmbH & Co. KG, Pforzheim, Germany/Ivoclar Vivadent AG, Schaan, Liechtenstein) Steinmass et al. 2018 [14]: 66.62 ± 3.02 mJ/m2 WN with coating. Schubert et al. 2020 [15]: 68.44 ± 1.98 mN/m (V-Print splint Voco, Cuxhaven, Germany); Schubert et al. 2020 [15]: 69.81 ± 2.16 mN/m FREEPRINT ortho 385 Detax, Ettlingen, G); Schubert et al. 2020 [15]: 70.86 ± 0.31 mN/m Dental LT Clear Formlabs, Somerville, MA, USA); Schubert et al. 2020 [15]: 65.31 ± 0.88 mN/m (M-PM crystal Merz Dental, Luetjenburg, Germany. 63.66 ± 3.09 mN/m Therapon Transpa Zirkonzahn, Gais, Italy) Conventional heat-polymerized PMMA: Cabanillas B et al. 2021 [18]: −40.3 ± 0.3 N/m (PMMA; Vitacryl; A. Tarrillo Barba, Lima, Peru) Cabanillas B et al. 2021 [18]: −39.5 ± 0.3 N/m (PMMA; Triplex; Ivoclar Vivadent, Ellwangen, Germany) Steinmassl et al. 2018 [14): −33.00 ± 0.97 mJ/m2 conventional heat-polymerized resin (Candulor Aesthetic Red; Candulor AG, Glattpark, Germany) Schubert et al. 2021 [15]: −62.67 ± 3.43 mN/m Erkodur. Erkodent, Pfalzgrafenweiler, Germany) Schubert et al. 2021 [15]: −65.02 ± 2.41 mN/m PalaXpress ultra; Kulzer, Hanau, Germany) A decrease in SFE energy was observed for denture acrylic resins after storage in substances for the hygiene of dentures; calculated values of SFE (42.2–46.0 mJ/m2) showed the hydrophobic character of the surface and may increase bacterial adhesion (Rutterman 2011 [9]). Incubation conditions such as saline solution and substances for the hygiene of dentures had no significance impact on the SFE value. Liber-Kne’c, 2021 [10]. Gad MM et al. 2022 [19]: low SFE of denture base resin (hydrophobe) | CAD/CAM PMMA: Osman RB et al. 2023 [20] Schubert et al. 2018 [15]: in vitro CAD/CAM, 3D printing and milling increased the adherence of C. albicans compared to conventional manufacturing Conventional heat-polymerized PMMA: Cabanillas B et al. 2021 [18]: no difference between tow PMMA, the adhesion per cell/field of C. albicans, Vitacryl (A. Tarrillo Barba, Lima, Peru) presented 15.7 ± 1.1, N/m Triplex (Ivoclar Vivadent, Ellwangen, Germany) had 16.7 ± 2.3 N/m. | CAD/CAM PMMA: Steinmass et al. 2018 [14]: CAD/CAM dentures had smoother and more hydrophilic surfaces than conventional dentures; there was no difference in their free-surface energy except after coated dentures. Below the Ra threshold of 0.2 µm there was a slightl but insignificant correlation between Ra and microbial adhesion (C. albicans and S. mutans). Conventional heat-polymerized PMMA Moslehifard E et al. 2022 [21]: Injection vertex acrylic resin (Vertex Castaravia, Vertex Dental Zeist, the Netherlands) improved the decreased surface roughness of the denture base. Bacterial adherences decreased compared with the conventional method. (Vertex dental, Ist, the Netherlands) |
PA | Abuzar MA et al. 2010 [17]: 1.11 ± 0.17 μm (Flexiplast, Bredent GmbH & Co KG, Senden, Germany) Sultana N et al. 2023 [16]: 0.19 ± 0.01 (Macro Flexi Dental Resin; Macro Dental World Pvt. Ltd., Jalandhar, Punjab, India) | Takabayashi 2010 [22]: hydrophilic nature Lucitone FRS. | Freitas-Fernandes 2014 [23]: highest C. albicans adherence on polyamide (Flexite MP/PMMA (Acron MC). | Sultana et al. 2023 [16]: The highest microbial adhesion was observed in injection-molded polyamide/PMMA. |
PEEK | Benli M et al. 2020 [12]: 0.13 ± 0.01 µm (PEEK 100%; Amann Girrbach AG, Koblach, Austria) Batak B et al. 2021 [24]: Milled 100% PEEK were above 0.2 µm before and after polishing (Coprapeek; White Peaks Dental Systems GmbH & Co KG) Vulović S et al. 2022 [25]: Comparing PEEK (breCAM.BioHPP; Bredent group, Senden, Germany) and other CAD/CAM materials showed that samples of PEEK were slightly rougher than samples of PMMA. The reason for this could be related to the ceramic particles added to PEEK. | Hirasawa M et al. 2018 [26]: PEEK with lower SFE was hydrophobic and facilitated hydrophobic bacterial growth. | da Rocha LGDO et al. 2022 [27]: In vitro, hydrophobic C albicans facilite sessile yeast formation on the surface of PEEK/titanium alloy. | D’Ercole S et al. 2020 [28]: PEEK showed antiadhesive and antibacterial properties between 24 and 48 h against oral bacteria such as Streptococcus oralis. Ichikawa, T et al. 2019 [29]: Only one report showed clear plaque accumulation on the surface of claps PEEK after 2 years. Barkamo S et al. 2019 [30]: PEEK Ra of blasted surface > polished surface and facilited the adherence of bacteria, including Streptococcus sanguinis, Streptococcus oralis, and Streptococcus gordonii. |
Polymers | Different Brands of Resin | Mechanical Polishing (MP) | Chemical Manually Polishing (CP) | Findings and Results µm |
---|---|---|---|---|
PMMA | 1—Heat-cured (HC) PMMA (Vertex RS Dentimex, the Netherlands); 2—prepolymerized block of CAD/CAM (Polident d.o.o. Volčja Draga 42, Sl-5293 Volčja Draga, Slovenia) | Polishing wheels, felt cones with pumice slurry, rubber polishers with RHPL and universal polishing paste (loose abrasives (aluminumoxide-Al2O3) in paste, Ivoclar Vivadent, Schaan, Liechtenstein), K50 | Immersing them in a preheated jar at 75 ± 1 °C containing MMA monomer (Lang Dental Mfg. Co., Wheeling, IL, USA). | 1—Heat-cured PMMA denture base material in both methods showed the highest mean Ra value (2.44 ± 0.07 and 2.72 ± 0.09 for MP and CP, respectively); 2—CAD/CAM denture base material showed the lowest mean values (1.08 ± 0.23 and 1.39 ± 0.31 for MP and CP, respectively) [31]. |
1—Heat cured (Probase Hot, Ivoclar Vivadent Inc., Schaan, Lichtenstein); 2—Probase Cold (cold-curing denture base, Ivoclar Vivadent Inc., Lichtenstein); 3—Palapress (Heraeus Kulzer, Hanau, Germany); 4—SR Ivocap (heat/pressure-curing (Ivoclar Vivadent Inc., Lichtenstein) | Polished with a mechanical milling system. The working tool speed was 5000 rpm as it progressed in the horizontal direction. | Manually polished. The polishing steps were the steps of ISO 20795 standard [32] | The Ra for the manually polished samples was globally significantly higher than for the mechanically polished samples [33]. | |
1—heat-cured acrylic resin (Lucitone 199, Dentsply International, York, PA, USA); 2—auto-cured (AC) acrylic resin (Dentsply International Inc, York, PA, USA). | MP was performed with a felt-cone with pumice slurry and a wet felt-cone with caulk powder and water. | After finishing, the HC and AC specimens were immersed in MMA monomer heated approximately to 75 °C ± 1 °C for 10 secoIds. | The Ra in order of decreasing values were CP-HC: 1.41, CP-AC: 1.34, MP-AC: 0.73, and MP-HC: 0.63. MP was the most effective polishing technique for HC and AC resins [34]. | |
1—HC: (Lucitone, Dentsply International Inc., York, PA, USA); 2—LC (light cured) acrylic resin (Eclipse, Dentsply Interna, Inc.). Both HC and LC prealably polishing was carried out with 360-grit sandpaper mounted on a lathe. | Performed with an automatic polishing machine (The Wirtz, Jean Wirtz, Dusseldorf W, Germany) for 2 min, under 50 rpm and 500 g of load with RHPL. | Performed by immersing the HC and LC specimens in Jet Seal Liquid (MMA at 75 ± 1 °C; Lang Dental Mfg. Co., USA). | RHPL, UPP, and K50 agents produced superior surface smoothness for all acrylic resin specimens and a mean Ra significantly below the threshold Ra of 0.2 µm. MP was the most effective polishing technique [35]. | |
Three HC acrylic resin materials (1—DPI, 2—Meliodent, 3—Trevalon Hi) were grouped as Group A (unfinished), Group B (finished), Group C (polishing paste), Group D (polishing cake), and Group E (pumice and gold rouge). | Materials used: universal polishing paste (Ivoclar), polishing cake (Bego), pumice (micro-white, Asian chemicals), and gold rouge (Bego). Instruments used: felt cone, soft cloth wheels (which were prepared), polishing unit (Kavo), and a timer. | NR | Smoother surfaces were achieved with Trevalon HI, Meliodent, and DPI. The best results among the polishing materials came from the polishing paste, followed by the polishing cake, pumice, and gold rouge [36]. | |
CAD/CAM, HC, acrylic resin CAD/CAM dentures (1–5) and conventional dentures (6). 1—standardized denture resin specimens: AvaDent Digital Dentures (AD; Global Dental Science Europe BV, Tilburg, Pays-Basque); 2—BalticDenture System (BDS; Merz Dental GmbH, Lütjenburg, Germany); 3—Vita VIONIC (VV; Vita Zahnfabrik, Bad Säckingen, Germany); 4—Whole You Nexteeth (WN; Whole You Inc., San Jose, CA, USA); 5—Wieland Digital Dentures (WDD; Wieland Dental + Technik GmbH & Co. KG); 6—Pforzheim, Germany/Ivoclar Vivadent AG, Schaan, Liechtenstein, with conventionally manufactured denture surfaces (control group). | NR | All dentures were manually finished. The mucosal surfaces were left unfinished and were examined. | All CAD/CAM dentures exhibited smoother and more hydrophilic surfaces than conventional dentures. Significant differences were found for AD, VV, WN, and WDD compared to the control group [14]. | |
CAD/CAM, HC, acrylic resin 1—CAD/CAM 3D-printed resin (3D) (CediTEC DB; VOCO GmbH, Germany); 2—CAD/CAM-milled resin (M) (V—Print dentbase; VOCO GmbH, Cuxhaven, Germany); 3—heat-polymerized resin (HP) (Probase® Hot; Ivoclar Vivadent, Liechtenstein); 4—autopolymerized resin (AP) (Probase® Cold; Ivoclar Vivadent, Liechtenstein); 5—injected molded resin (IM) (iFlexTM; tcs®, Signal Hill, CA, USA) | Mechanical technique with the Jota® 1877 denture polish kit (Jota AG, Rüthi, Switzerland) protocol. | Manual technique with the Jota® 1877 denture polish kit (Jota AG, Rüthi, Switzerland) protocol. | The resins submitted to manual polishing showed significantly lower mean surface roughness values than the control resin. CAD/CAM-milled acrylic resins demonstrated lower values of Ra compared to the conventional PMMA [37]. | |
PA | 1—HC PA (Vertex RS Dentimex, the Netherlands); 2-(Breflex, Bredent, Gmbh. Co.K.G. Senden, Germany); 3-CAD/CAM. (prepolymerized block acrylic resin denture base material (Polydent d.o.o. Volčja Draga 42, Sl-5293 Volčja Draga, Slovenia) | MP for HC, PA, and CAD/CAM specimens was performed using polishing wheels, felt cones with pumice slurry, rubber polishers with RHPL and universal polishing paste, and Abraso-Star K50 (K50) with light pressure for 15 s. | CP for HC, PA, and CAD/CAM specimens was performed by immersing them in a preheated jar at 75 ± 1 °C for 10 s. | PA surface roughness values: 1.77 ± 0.06 (MP) and 2.18 ± 0.10 (CP). PA contact angles: 67.90 ± 2.56 (MP) and 71.40 ± 2.50 (CP) (hydrophilicity). PA surface roughness values > CAD/CAM, PMMA values [31]. |
Polyamide (Valplast, Valplast International Corp., Long Beach, NY, USA) | NR | The polyamide was polished with Tripoli-Paste and Val-Mirror-Shine polishing paste (Weithas Corp., Lütjenburg, Germany). | Ra (PA 0.20 μm) did not change significantly after thermocycling or storage. Neither Ra nor the elasticity of PA was altered by artificial aging [38]. | |
PEEK | High-purity (non-filler type) PEEK (JUVORA Dental Disc Invibio Biomaterial Solutions, Lancashire, UK) | NR | No additional polishing (NT), polishing using a Iber point (C), polishing using “silky shine” and a soft brush (S), polishing using “aqua blue paste” and a soft brush (A), protocol C followed by protocol S (CS), protocol C followed by protocol A (CA), protocol C followed by protocols S and A (CSA). | The PEEK polishing”chairside protocol produced clinically acceptable surface roughness, achieved using a brush and a mild polishing agent for more than 3 min [39]. |
PEEK (PEEK-IOF) BioHPP inorganic ceramics and metal oxides | NR | Polished with 1000-grit SiC paper. A high-gloss finish was added using a 1 μm diamond paste applied with a cotton buff. | PEEK displayed the greatest change (increase) in contact angle values after air-polishing treatment. However, this effect could be prevented by veneering PEEK-IOF with DMA-nano components [40]. | |
1—PEEK bioHPP (bredent Gmbh & Co. Press mode); 2—autopolymerizing denture PMMA (uniling PF 20, bredent Gmbh & Co. KG). All specimens were prepolished with a fine pumice stone (ERNST HINRICHIS Dental GmbH) and goat-hair brushes (bredent GmbH & Co. KG, Weissenhorner Str. 2, 89250 Senden, Germany). | Four laboratory polishing methods. 1—ABR: Abrasive polishing paste (bredent GmbH & Co. KG); 2—OPA: Opal L polishing paste (Renfert GmbH); 3—CER: Ceragum silicone polisher (bredent GmbH & Co. KG); 4—DIA: Diagen-Turbo, Ginder (bredent GmbH & Co. KG). | Three chairside methods: 1—SUP: Super-snap, polishing discs (Shofu dental GmbH); 2—PRI: prisma gloss, polishing paste (Dentsply De trey GmbH); 3—ENH: enhance, polishing system (Dentsply De trey GmbH). | Chairside polishing methods resulted in lower SR than laboratory-based methods. Both the SUP and PRI protocols led to PEEK surfaces with lower SR than ENH [41]. |
Polymer | Frequency of Use of Denture Cleansers (DC) against Candida spp. Adhesion | Denture Cleaning Treatment and Brushing Regimens (Night–Day) | Ultrasonic Denture Hygiene | Tablet Composition May Directly Affect C. albicans Biofilm | Other Disinfectant Against Inhibition of C. albicans (Oil, GSE, Ozone Neem) | Immersion of Denture in Chlorhexidine Digluconate (CHG) Sodium Hypochlorite (NaOCL) |
---|---|---|---|---|---|---|
PMMA | The daily use of a DC overnight significantly reduced the total bacterial count [42,43,44,45,46]. | The biofilm model on PMMA remained largely unaffected by brushing only [45]. Before overnight (8 h) storage conditions for limited colonization of C. albicans it is desirable to brush or use an alkaline peroxide-based tablet [47]. | No statistically significant difference in total bacterial level between ultrasonic cleaning and brushing was found [44]. The adjunctive use of cetylpyridinium chloride with ultrasonic cleaning did not yield additional benefits [46]. | Tow conventional heat-cured acrylic resins (1—QC-20 (Dentsply, Addlestone, UK), 2—Acron-hiTM (Kemdent, Swindon, UK) and one polyamide (DeflexTM) were tested with the following solutions: 1—Polident 3 min™, 2—Corega™, and 3—Fittydent™. Polident 3 minTM and CoregaTM tablets should be used for all denture resin types, whereas FittydentTM should only be proposed for those who use Deflex™ [48]. HC PMMA resin (Vertex-DentaIV., Zeist, the Netherlands) was subjected to a 4-week incubation with a daily change of 4 solutions (1—Clene® (Bitec global group, Japan), 2—Polident® (PTI Royston LLC, USA), 3—3% sodium bicarbonate (NaHCO3, Tianjin Lisheng Pharmaceutical Co. LTD, China), 4—phosphate-buffer Saline (PBS, Gi bco® Invitrogen™, Cambridge, MA, USA)). Clene®, and Polident® decreased fungal growth by approximately 98% and 100%, respectively [49]. | Disc of 3D-printable resin (NextI Denture 3 D+, Soesterberg, The Netherlands) mixed with phytochemical-filled microcapsules and immersed in an effervescent tablet (Polident Quick, GSK Ireland) seemed to be a more effective inhibition of fungal cell growth compared with sterile tap water storage [50]. The treatment with 1% grapefruit seed extract (GSE) for 5 min almost eliminated the biofilm that formed on the resin [51]. Denture base PMMA (ACRON, GC, and Tokyo, Japan) immersed in ozone ultrafine bubble water (OUFBW) inhibited the early formation of C. albicans biofilms [52]. | Specimens (acrylic resin Lucitone 550, Dentsply Ind. Com; Ltd.a., Petropolis, RJ, Brazil) were immersed for three cycles of 8 h in 2% CHG or 1% NaOCL. Residues of CHG were cytotoxic to gingival fibroblasts compare toIaOCL [53]. The in vitro effectiveness of five denture cleansers (Fittydent tablets, 2% CHG, 0.2% CHG, 0.5% and 1% NaOCL), was tested for microbial adhesion to the surface of base resins for conventional and CAD/CAM (milling and 3D printing) dentures: 1—conventional (Meliodent, Kulzer GmbH; Heraeus Kulzer Germany); 2—milling, Zintec CAD software (Wieland Digital Denture (Danbury, CT, USA)); and 3—3D-printed Denture I NextDent, Soesterberg, the Netherlands). The denture cleansers increased the roughness of all PMMAs. Concerning cleansers, the best result was obtained with 2% CHG and 0.5% and 1% NaOCL [54]. |
PA | After 20 days immersed in Corega Protefix, and Valclean, the highest surface roughness was observed in the Valplast polyamide resin. No difference was observed in PMMA resins (Paladent) [55]. | Among the three commonly used DCs with different pH (Valclean—acidic, Clinsodent—alkaline, and Polident—neutral), Valclean showed statistically significant greater stain removal efficiency than Polident or Clinsodent [56]. | Valplast was found to have a significantly lower gloss and a higher roughness than Paladon 65 before cleansing. After cleansing (control; Val-Clean, peroxide cleanser; Corega Extradent, peroxide cleanser), the gloss of both materials decreased and only the roughness of Paladon 65 increased [57,58]. | The tested cleanser tablets were more effective for PMMA resin than for thermoplastic polyamide resin [59]. For patients who have polyamide-based prosthesis, the use of citric acid-based cleansers may be more recommended than sodium perborate [59]. | Compared with Curaprox (eucalyptus oil, Curaprox, UK, Huntingdon, UK) the effervescent tablets (Corega, Protefix, Perlodent) significantly altered the surface hardness and roughness of the polyamide (Deflex-Nuxen SRL, Buenos Aires, Argentina) [60]. | Thermo-injected polyamide denture resin base colonized with C. albicans and disinfected with 0.12% chlorhexidine and Neem extract demonstrated the highest antimicrobial efficacy, with decreased surface roughness and no alteration in denture hardness [61]. |
PEEK | Daily DC recommended | Individual prophylaxis can be conducted with toothbrushes. For professional prophylaxis, air-abrasion devices using gentle powders are effective. Laboratory protocols should include gentle cleaning methods like ultrasonic bath [41]. | PEEK prophylaxis in laboratory protocol includes gentle cleaning methods like ultrasonic bath [41]. | Four dentures (1—SR Triplex Hot heat-polymerized PMMA (Ivoclar Vivadent AG., Schaan, Leichenstein); 2—SR Triplex cold auto-polymerized PMMA (Ivoclar Vivadent AG., Schaan, Leichenstein); 3—Deflex Injection molded polyamide, Nuxen —L, Buenos Aires, Argentina); 4—unfilled PEEK CAD/CAM Juvora Dental Disc (Juvora, London, UK) were tested. Three denture cleansers (DCs) after immersion for 120 days in a chemical solution applied to PEEK and other denture base materials (DBMs) on long-term water sorption and solubility were compared: Corega tablet (CT), Protefix tablet (PT) (Queisser Pharma, Flensburg, Germany), and 1% sodium hypochlorite (NaOCl) solution (SH) (Aklar Kimya, Ankara, Turkey), as well as a control (distilled water, DW). The PEEK group showed lower mean solubility values in DC than the other DBM groups. Auto-polymerized and injection-molded polyamide showed higher solubility [62]. | Higher numbers of Strep. oralis and C. albicans on PEEK specimens confirmed the impact of the higher surface roughness and contact angle values on the microbial adhesion and described PEEK as less desirable than CoCr from a microbiological perspective [63]. | PEEK seemed to be more stable against discolorations than other denture resin materials. Regarding the cleaning potential, individual prophylaxis can be conducted with toothbrushes. For professional prophylaxis, air-abrasion devices using gentle powders are effective. Laboratory protocols should include gentle cleaning methods like ultrasonic bath. Regarding the cleaning potential, individual prophylaxis can be conducted with toothbrushes. For professional prophylaxis, air-abrasion devices using gentle powders are effective [41,42]. |
Polymers | Relining Materials | Findings |
---|---|---|
Unique relining materials | Two heat-cured acrylic dentures (PMMA)—Lang (Lang Dental MFG Co., Wheeling, IL, USA) and VIx RS (Vertex Dental, Zeist, the Netherlands)—were prepared in the dental laboratory. Six silicone relining chairside self-cured materials were used: 1—Mucopren soft, (Kettenbach, es chenburg, Germany); 2—Mucosoft (Parkell, NY, USA); 3—Mollosil® plus (Detax Ettlinghen, Germany); 4—Sofreliner Touch (Tokuyama, Tokyo, Japan),; 5—GC Reline™ Ultrasoft (GC Dental Products Co, Tokyo, Japan); 6—Silagum automix comfort (DMG, Hamburg, Germany). One self-curing (PEMA) chairside reline resin (Rebase II, Tokuyama, Tokyo, Japan) was used. | The contact angle increased for the materials in the following order: PMMA, PEMA, and silicone. The wettability of the denture relining except RebaseII and Mollosil® plus was increased after water storage (24 h). The HC PMMA denture base showed the highest wettability. It can be suggested that heat-cured PMMA resin should provide superior denture retention and patient comfort than self-cured PEMA and silicone denture relining material [64]. |
Conventional heat-polymerized PMMA PMMA and PMMA MMA pretreatment | Soft liner type (silicone-based or PMMA-based) | The highest bond strength was observed in samples with silicone-based soft liners regardless of pretreatment. Silicone-based liners underwent adhesive failures, whereas PMMA-based liners underwent cohesives failures. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, suggesting that MMA pretreatment is recommended for relining procedures [65]. |
CAD/CAM PMMA Dimethacrylate-based additively manufactured PMMA-based conventionally fabricated denture-base resins | The tensile force applied to different materials was tested: 1—Heat-cured laboratory-side soft reliner; 2—Self-cured chairside soft reliner; 3—Self-cured chairside hard reliner. | The highest tensile bond strength was found between the conventional base and the self-cured chairside hard reliner (but no significant results were found with the laboratory-side reliner) [66]. |
CAD/CAM PMMA 3D-printed denture base by SLA method using DENTCA Denture Base II (DENTCA Inc., Torrance, CA, USA) | Six surface treatment were applied to chairside relining materials with Tokuyama Rebase II Normal (PEMA) (Tokuyama Dental Corp, Tokyo, Japan): 1—no surface treatment (control); 2—Tokuyama Rebase II Normal adhesive (A); 3—Rocatec pre–sandblasting (Al2O3-110 µm)) (P); 4—Rocatec Pre + Tokuyama rebase II Normal adhesive (PA); 5—Rocatec Pre + ESPE silane (PS); 6—Rocatec system (Rocatec Pre + Rocatec Plus (Silica Al2O3-110 µm) + ESPE Sil (PPS). | The best adhesive and cohesive strength was obtained with the Rocatec system applied to a 3D-printed denture [67]. |
CAD/CAM PMMA Conventional HC PMMA (ProBase Hot, Ivoclar Vivadent, Schaan, Liechtenstein) Milled Ivobase (Ivo-Base CAD for Zenotec, Wieland Dental, Pforzheim, Germany) Milled Ivotion (Ivotion A2/Pink V Denture Disc, Ivoclar Vivadent, Schaan, Liechtenstein) 3D-printed group (NextDent DentuID+, NextDent B.V., Soesterberg, the Netherlands) | Conventional relining PMMA resin (ProBase Cold, Ivoclar Vivadent, Schaan, Liechtenstein) monomer of the reliner (ProBase Cold Monomer, Ivoclar Vivadent, Schaan, Liechtenstein) | The shear bond strength of relined 3D-printed resins for a complete denture was lower than relined resins employed for CAD/CAM milling and conventional HC. When considering 3D-printing for CRDP fabrication, it is advisable to use it in clinical situations where frequent denture relining is not anticipated [68]. |
POLYAMIDE Thermoplastic polyamide resin (Biotone; BT), injection mold (High Dental, Osaka Japan) Conventional heat-polymerized PMMA (Paladent 20; PAL20. Heraeus Kulzer, Hanau, Germany). Thermoplastic acrylic resin (Acrytone; ACT) (High Dental, Osaka, Japan) | Tow chairside relining resins: Tokuyama Rebase II; TR II. PEMA (autopolymerizing polyethyl methacrylate) (Tokuyama Dental corp. Tokyo, Japan); Mild Rebaron LC, MRL, a light-activated PEMA (GC, Tokyo, Japan). | Among the three denture base resins, polyamide resin exhibited lower bond strength. However, no significant difference was observed for thermoplastic polyamide resin [69]. |
POLYAMIDE/PMMA/CAD/CAM One polyamide (Vertex Thermosens, the Netherlands) One conventional PMMA (Meliodent HC, Kulzer, Hanau, Germany) Three PMMAs, CAD/CAM denture base material/subtractive (Ivoclar Vivadent, Schaan Liechtenstein) Polident pink disc basic, subtractive (Volcja draga, Slovenia) Anaxdent pink blank (U. Anaxdent GmbH, Germany) Two PMMAs CAD/CAM denture base material/additive (Freeprint Denture, Imprimo, Germany) Imprimo LC Denture, Iserlhon, Germany | Two soft denture liners: Soft denture liner, acrylate-based, direct relining method (GC Europe, Leuven, Belgium); Reline II soft, silicone-based, direct relining method (GC Europe, Leuven, Belgium). | Relining polyamide denture base materials showed lower values of tensile bond strength with silicone-based soft liner than HC PMMA and subtractive denture base materials. The basic Polident pink CAD/CAM disc showed the highest tensile bond strength value in combination with the silicone-based soft liner [70]. |
PEEK | Surface treatment of PEEK begins with sulfuric acid etching, which promotes the highest bond strength, followed by air abrasion of the alumina particles. Then, the use of specific adhesives containing MMA, PETIA (pentaerythritol triacrylate), and dimethacrylates is recommended [71]. | Sulfuric acid and alumina-particle air abrasion were the most effective surface treatments for promoting adhesion to PEEK. For clinical use, air abrasion with alumina particles can be considered the preferred solution [71]. In vitro PEEK presented a mixed type of failure involving adhesion and cohesion [72]. |
Polymers | Microbial Adherence Treshold SFE: 40 mJ/m2 | Polishing Treshold RA: 0.2 µm | Antimicrobial Nanoparticules | Relining | Cytotoxicity | Hygiene | General Condition |
---|---|---|---|---|---|---|---|
PMMA | Lower | Ra. Conventional injection-molded PMMA technique [16]. Sultana N et al. 2023 [16]: 0.06 ± 0.02 µm (SR Ivocap High Impact; Ivoclar Vivadent AG, Schaan, Liechtenstein) CAD/CAM acrylic resins demonstrated lower values of Ra compared to conventional PMMA [37]. | The antifungal/antimicrobial effect of the material incorporated into the resin may have had a superior effect in preventing DS over simply coating the surface of the denture base [73]. | The highest tensile bond strength was between the conventional base and the self-cured chairside hard reliner [66]. The shear bond strength of the relined 3D-printed resins for a complete denture was lower than the relined resins employed for CAD/CAM milling and conventional HC [68]. | Lower level of cytotoxicity | PMMA is easy to maintain in the long term. CAD/CAM-milled prostheses are suggested in the presence of denture stomatitis due to reduced attachment of Candida albican [74]. | Suitable for the majority of clinical indications, and small amounts of MMA for hypoallergenics patients |
Polyamide | Higher | Clinicaly level > PMMA | Polyamide resin presented more viable cells of Candida albicans/PMMA [23]. | Lower bond strengh | Toxicity profile | Difficult in the long term while respecting the manufacturer’s constraints | Temporary removable prosthesis, Parkinson’s disease, microstoma |
PEEK | Intermediate | Chairside > laboratory method | Chitosan-based hybrid coatings on the PEEK surface contributed to the development of a biocompatible material (antibacterial, anti-inflammatory) [75]. | Still under investigation | No evidence of cell damage caused by PEEK [76,77]. | Efficacity decrease on the long term | Patients with low stress tolerance and sensitivity to metallic materials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Bars, P.; Kouadio, A.A.; Amouriq, Y.; Bodic, F.; Blery, P.; Bandiaky, O.N. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers 2024, 16, 40. https://doi.org/10.3390/polym16010040
Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers. 2024; 16(1):40. https://doi.org/10.3390/polym16010040
Chicago/Turabian StyleLe Bars, Pierre, Alain Ayepa Kouadio, Yves Amouriq, François Bodic, Pauline Blery, and Octave Nadile Bandiaky. 2024. "Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures" Polymers 16, no. 1: 40. https://doi.org/10.3390/polym16010040
APA StyleLe Bars, P., Kouadio, A. A., Amouriq, Y., Bodic, F., Blery, P., & Bandiaky, O. N. (2024). Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers, 16(1), 40. https://doi.org/10.3390/polym16010040