Assessment of Silicone Rubber/Lead Oxide Composites Enriched with Bi2O3, WO3, BaO, and SnO2 Nanoparticles for Radiation Shielding Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Silicone Rubber (SR)
2.1.2. Heavy Metal Oxides Nanoparticles (HMOs-NPs)
2.2. SR Mixture Preparation
2.3. SR Mixture Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fidan, M.; Acikgoz, A.; Demircan, G.; Yilmaz, D.; Aktas, B. Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses. J. Phys. Chem. Solids 2022, 163, 110543. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Zdorovets, M.V. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 2021, 263, 124444. [Google Scholar] [CrossRef]
- Zubair, M.; Ahmed, E.; Hartanto, D. Comparison of different glass materials to protect the operators from gamma-rays in the PET using MCNP code. Radiat. Phys. Chem. 2022, 190, 109818. [Google Scholar] [CrossRef]
- Demir, I.; Gümüş, M.; Gökçe, H.S. Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to elevated temperatures. Constr. Build. Mater. 2020, 257, 119596. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Tijani, S.A. The use of lead-free transparent 50BaO-(50-x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. J. Alloys Compd. 2019, 803, 625–630. [Google Scholar] [CrossRef]
- Kaewjaeng, S.; Chanthima, N.; Thongdang, J.; Reungsri, S.; Kothan, S.; Kaewkhao, J. Synthesis and radiation properties of Li2O-BaO-Bi2O3-P2O5 glasses. Mater. Today Proc. 2021, 43, 2544–2553. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Mahmoud, K.A. Simulation of the impact of Bi2O3 on the performance of gamma-ray protection for lithium zinc silicate glasses. Optik 2022, 257, 168810. [Google Scholar] [CrossRef]
- Mahmoud, I.S.; Issa, S.A.M.; Saddeek, Y.B.; Tekin, H.O.; Kilicoglu, O.; Alharbi, T.; Sayyed, M.I.; Erguzel, T.T.; Elsaman, R. Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Ceram. Int. 2019, 45, 14058–14072. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Kothan, S.; Kedkaew, C.; Kaewkhao, J. The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 2020, 172, 108791. [Google Scholar] [CrossRef]
- Şahin, N.; Bozkurt, M.; Karabul, Y.; Kılıç, M.; Ozdemir, Z.G. Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites. Prog. Nucl. Energy 2021, 135, 103703. [Google Scholar] [CrossRef]
- Li, R.; Gu, Y.; Zhang, G.; Yang, Z.; Li, M.; Zhang, Z. Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos. Sci. Technol. 2017, 143, 67–74. [Google Scholar] [CrossRef]
- Prasad, R.; Pai, A.R.; Oyadiji, S.O.; Thomas, S.; Parashar, S.K.S. Utilization of hazardous red mud in silicone rubber/MWCNT nanocomposites for high performance electromagnetic interference shielding. J. Clean. Prod. 2022, 377, 134290. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, Y.; Song, S.H.; Lee, D. Tungsten nanoparticle anchoring on boron nitride nanosheet-based polymer nanocomposites for complex radiation shielding. Compos. Sci. Technol. 2022, 221, 109353. [Google Scholar] [CrossRef]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Pasha, S.K. Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review. Compos. A Appl. Sci. Manuf. 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Bhosale, R.; More, C.; Gaikwad, D.; Pawar, P.; Rode, M. Radiation shielding and gamma ray attenuation properties of some polymers. Nucl. Technol. Radiat. Prot. 2017, 32, 288–293. [Google Scholar] [CrossRef][Green Version]
- Baltas, H.; Sirin, M.; Celik, A.; Ustabas, İ.; El-Khayatt, A.M. Radiation shielding properties of mortars with minerals and ores additives. Cem. Concr. Compos. 2019, 97, 268–278. [Google Scholar] [CrossRef]
- Kameesy, S.; Nashar, D.; Fiki, S. Development of silicone rubber/lead oxide composites as gamma ray shielding materials. Int. J. Adv. Res. 2015, 3, 1017–1023. [Google Scholar]
- Özdemir, S.; Yılmaz, S.N. Mixed radiation shielding via 3-layered polydimethylsiloxane rubber composite containing hexagonal boron nitride, boron (III) oxide, bismuth (III) oxide for each layer. Radiat. Phys. Chem. 2018, 152, 17–22. [Google Scholar] [CrossRef]
- Mohamed, H.; El-Gamal, A.A.; Khalil, M.H.; Hammed, H.H.; Rashad, A.M. Valorization of nano-PbO as an additive to modify the properties and radiation shielding of alkali-activated slag mortar. Mater. Chem. Phys. 2022, 287, 126277. [Google Scholar] [CrossRef]
- Kim, S.K.; Yang, H.J. Utilization of liquid crystal display (LCD) waste glass powder as cementitious binder in mortar for enhancing neutron shielding performance. Constr. Build. Mater. 2021, 270, 121859. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Al-Ghamdi, H.; Almuqrin, A.H.; Yasmin, S.; Elsafi, M. A Study on the gamma radiation protection effectiveness of nano/micro-MgO-reinforced novel silicon rubber for medical applications. Polymers 2022, 14, 2867. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, H.; Hemily, H.M.; Saleh, I.H.; Almuqrin, A.H.; Elsafi, M. Impact of WO3-nanoparticles on silicone rubber for radiation protection efficiency. Materials 2022, 15, 5706. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, M.I.; Yasmin, S.; Almousa, N.; Elsafi, M. The radiation shielding performance of polyester with TeO2 and B2O3. Processes 2022, 10, 1725. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Hashim, S.; Hannachi, E.; Slimani, Y.; Elsafi, M. Effect of WO3 nanoparticles on the radiative attenuation properties of SrTiO3 perovskite ceramic. Crystals 2022, 12, 1602. [Google Scholar] [CrossRef]
- Reddy, B.C.; Vidya, Y.S.; Manjunatha, H.C.; Sridhar, K.N.; Pasha, U.M.; Seenappa, L.; Sadashivamurthy, B.; Dhananjaya, N.; Sankarshan, B.M.; Krishnaveni, S.; et al. Synthesis and characterization of Barium ferrite nano-particles for X-ray/gamma radiation shielding and display applications. Prog. Nucl. Energy 2022, 147, 104187. [Google Scholar] [CrossRef]
- Azman, M.N.; Abualroos, N.J.; Yaacob, K.A.; Zainon, R. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding. Radiat. Phys. Chem. 2023, 202, 110492. [Google Scholar] [CrossRef]
- El-Sharkawy, R.M.; Shaaban, K.S.; Elsaman, R.; Allam, E.A.; El-Taher, A.; Mahmoud, M.E. Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nanometal oxides. J. Non-Cryst. Solids 2020, 528, 119754. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Eid, M.E.A.; Sharshar, T.; Ellabany, H.M.; Henaish, A.M.A. Synthesis of nanometer-sized PbZrxTi1-xO3 for gamma-ray attenuation. J. Phys. Chem. Solids 2021, 148, 109688. [Google Scholar] [CrossRef]
- Alavian, H.; Tavakoli-Anbaran, H. Study on gamma shielding polymer composites reinforced with different sizes and proportions of tungsten particles using MCNP code. Prog. Nucl. Energy 2019, 115, 91–98. [Google Scholar] [CrossRef]
- Sayyed, M.; Alrashedi, M.; Almuqrin, A.H.; Elsafi, M. Recycling and optimizing waste lab glass with Bi2O3 nanoparticles to use as a transparent shield for photons. J. Mater. Res. Technol. 2022, 17, 2073–2083. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.; Barasheed, A.Z.; Ahmed, M.; Elsafi, M. Preparation and radiation attenuation properties of ceramic ball clay enhanced with micro and nano ZnO particles. J. Mater. Res. Technol. 2022, 17, 223–233. [Google Scholar] [CrossRef]
- Hannachi, E.; Sayyed, M.; Slimani, Y.; Elsafi, M. Experimental investigation on the physical properties and radiation shielding efficiency of YBa2Cu3Oy/M@M3O4 (M= Co, Mn) ceramic composites. J. Alloys Compd. 2022, 904, 164056. [Google Scholar] [CrossRef]
- Hannachi, E.; Sayyed, M.; Slimani, Y.; Almessiere, M.; Baykal, A.; Elsafi, M. Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. J. Alloys Compd. 2022, 899, 163173. [Google Scholar] [CrossRef]
Property | Bi2O3-NPs | WO3-NPs | BaO-NPs | Zr2O3-NPs |
---|---|---|---|---|
Appearance (Color) | White to Yellow | Yellow | White | White |
Appearance (Form) | Powder | Powder | Powder | Powder |
Avg. Size (TEM) | 20 ± 5 nm | 35 ± 5 nm | 20 ± 5 nm | 21 ± 5 nm |
Shape (TEM) | Spherical Shapes | Spherical Shapes | Spherical Shapes | Mixture of Spherical and Quasi-Spherical Shapes |
Code | Composition (wt %) | Density (g·cm−3) | |||||
---|---|---|---|---|---|---|---|
Silicone Rubber (SR) | PbO | Bi2O3 NPs | WO3 NPs | BaO NPs | Zr2O3 NPs | ||
SR-1 | 100 | — | — | — | — | — | 1.250 |
SR-2 | 40 | 60 | — | — | — | — | 2.611 |
SR-3 | 40 | 40 | 5 | 5 | 5 | 5 | 2.555 |
SR-4 | 40 | 20 | 10 | 10 | 10 | 10 | 2.500 |
SR-5 | 40 | — | 15 | 15 | 15 | 15 | 2.448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alresheedi, M.T.; Elsafi, M.; Aladadi, Y.T.; Abas, A.F.; Ganam, A.B.; Sayyed, M.I.; Mahdi, M.A. Assessment of Silicone Rubber/Lead Oxide Composites Enriched with Bi2O3, WO3, BaO, and SnO2 Nanoparticles for Radiation Shielding Applications. Polymers 2023, 15, 2160. https://doi.org/10.3390/polym15092160
Alresheedi MT, Elsafi M, Aladadi YT, Abas AF, Ganam AB, Sayyed MI, Mahdi MA. Assessment of Silicone Rubber/Lead Oxide Composites Enriched with Bi2O3, WO3, BaO, and SnO2 Nanoparticles for Radiation Shielding Applications. Polymers. 2023; 15(9):2160. https://doi.org/10.3390/polym15092160
Chicago/Turabian StyleAlresheedi, Mohammed Thamer, Mohamed Elsafi, Yosef T. Aladadi, Ahmad Fauzi Abas, Abdullrahman Bin Ganam, M. I. Sayyed, and Mohd Adzir Mahdi. 2023. "Assessment of Silicone Rubber/Lead Oxide Composites Enriched with Bi2O3, WO3, BaO, and SnO2 Nanoparticles for Radiation Shielding Applications" Polymers 15, no. 9: 2160. https://doi.org/10.3390/polym15092160
APA StyleAlresheedi, M. T., Elsafi, M., Aladadi, Y. T., Abas, A. F., Ganam, A. B., Sayyed, M. I., & Mahdi, M. A. (2023). Assessment of Silicone Rubber/Lead Oxide Composites Enriched with Bi2O3, WO3, BaO, and SnO2 Nanoparticles for Radiation Shielding Applications. Polymers, 15(9), 2160. https://doi.org/10.3390/polym15092160