Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of P(DMAEMA-co-OEGMA) Random Copolymers
2.2. Chemical Modification of P(DMAEMA-co-OEGMA) Random Copolymers
2.3. Self-Assembly of P(DMAEMA-co-OEGMA) Random Copolymers
2.4. Ionic Strength Studies
2.5. Characterization Techniques
2.5.1. Size Exclusive Chromatography (SEC)
2.5.2. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR)
2.5.3. Light-Scattering
2.5.4. Fluorescence Spectroscopy (FS)
3. Results
3.1. Synthesis and Molecular Characterization of P(DMAEMA-co-OEGMA) Copolymers and Their Quaternized Derivatives
3.2. Internal Micropolarity Studies of Polyelectrolytes Using Pyrene Assay
3.3. Self-Assembly Studies as a Function of Different Stimuli by Light Scattering Techniques
3.3.1. pH-Responsiveness of Double Hydrophilic P(DMAEMA-co-OEGMA) Precursors
Sample | pH | Intensity a (kHz) | Rh a (nm) | PDI a | Zeta-Potential b (mV) |
---|---|---|---|---|---|
P(DMAEMA-co-OEGMA)_1 | 3 | 1500 | 94 | 0.12 | +38 ± 5.9 |
7 | 538 | 13/76 | 0.24 | +90 ± 8.8 | |
10 | 1187 | 12/83 | 0.33 | −36 ± 5.6 | |
P(DMAEMA-co-OEGMA)_2 | 3 | 67 | 77 | 0.46 | +32 ± 8.7 |
7 | 66 | 2/86 | 0.59 | +10 ± 3.8 | |
10 | 405 | 3/31/155 | 0.51 | −23 ± 7.3 |
3.3.2. pH-Responsiveness of Q(P(DMAEMA-co-OEGMA)) Polyelectrolytes Modified with Alkyl Chains
Sample | pH | Intensity a (kHz) | Rh a (nm) | PDI a | Zeta-Potential b (mV) |
---|---|---|---|---|---|
Q1(P(DMAEMA-co-OEGMA)_1)100 | 3 | 550 | 120 | 0.34 | +50 ± 2.5 |
7 | 389 | 88 | 0.27 | +51 ± 8.1 | |
10 | 564 | 108 | 0.26 | +42 ± 1.2 | |
Q6(P(DMAEMA-co-OEGMA)_1)39 | 3 | 2447 | 74 | 0.14 | +63 ± 8.5 |
7 | 2019 | 71 | 0.16 | +66 ± 7.6 | |
10 | 3710 | 80 | 0.19 | +34 ± 5.5 | |
Q12(P(DMAEMA-co-OEGMA)_1)50 | 3 | 401 | 8/258 | 0.47 | +20 ± 8.6 |
7 | 266 | 12 | 0.41 | +21 ± 10.8 | |
10 | 332 | 9/211 | 0.45 | +14 ± 7.3 | |
Q1(P(DMAEMA-co-OEGMA)_2)100 | 3 | 2045 | 71 | 0.17 | +21 ± 6.0 |
7 | 1037 | 63 | 0.18 | +22 ± 6.3 | |
10 | 1590 | 70 | 0.20 | +5 ± 1.34 | |
Q6(P(DMAEMA-co-OEGMA)_2)50 | 3 | 2123 | 70 | 0.12 | +17 ± 2.8 |
7 | 1132 | 66 | 0.23 | +21 ± 2.0 | |
10 | 1684 | 42/188 | 0.30 | +6 ± 1.61 |
3.3.3. Thermo-Responsiveness of Self-Assembled Random Copolymers
3.3.4. Salt-Induced Responsive Behavior of Random Copolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Purcell, M.; Steele, J.A.M.; Lee, K.-Y.; McCullen, S.; Shakesheff, K.M.; Bismarck, A.; Stevens, M.M.; Howdle, S.M.; Williams, C.K. Porous Copolymers of ε-Caprolactone as Scaffolds for Tissue Engineering. Macromolecules 2013, 46, 8136–8143. [Google Scholar] [CrossRef]
- Yang, H.; Wang, N.; Mo, L.; Wu, M.; Yang, R.; Xu, X.; Huang, Y.; Lin, J.; Zhang, L.-M.; Jiang, X. Reduction sensitive hyaluronan-SS-poly(ε-caprolactone) block copolymers as theranostic nanocarriers for tumor diagnosis and treatment. Mater. Sci. Eng. C 2019, 98, 9–18. [Google Scholar] [CrossRef]
- Zashikhina, N.; Levit, M.; Dobrodumov, A.; Gladnev, S.; Lavrentieva, A.; Tennikova, T.; Korzhikova-Vlakh, E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers 2022, 14, 1677. [Google Scholar] [CrossRef]
- Zheng, C.-X.; Zhao, Y.; Liu, Y. Recent Advances in Self-assembled Nano-therapeutics. Chin. J. Polym. Sci. 2018, 36, 322–346. [Google Scholar] [CrossRef]
- Hirai, Y.; Terashima, T.; Takenaka, M.; Sawamoto, M. Precision Self-Assembly of Amphiphilic Random Copolymers into Uniform and Self-Sorting Nanocompartments in Water. Macromolecules 2016, 49, 5084–5091. [Google Scholar] [CrossRef]
- Feng, H.; Lu, X.; Wang, W.; Kang, N.-G.; Mays, J.W. Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers 2017, 9, 494. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef]
- Ring, W.; Mita, I.; Jenkins, A.D.; Bikales, N.M. Source-based nomenclature for copolymers (Recommendations 1985). Pure Appl. Chem. 1985, 57, 1427–1440. [Google Scholar] [CrossRef]
- Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S. Self-assembly of random copolymers. Chem. Commun. 2014, 50, 13417–13432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neal, T.J.; Parnell, A.J.; King, S.M.; Beattie, D.L.; Murray, M.W.; Williams, N.S.J.; Emmett, S.N.; Armes, S.P.; Spain, S.G.; Mykhaylyk, O.O. Control of Particle Size in the Self-Assembly of Amphiphilic Statistical Copolymers. Macromolecules 2021, 54, 1425–1440. [Google Scholar] [CrossRef]
- Nesvadba, P. Radical Polymerization in Industry. In Encyclopedia of Radicals in Chemistry, Biology and Materials; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kimura, Y.; Terashima, T.; Sawamoto, M. Self-Assembly of Amphiphilic Random Copolyacrylamides into Uniform and Necklace Micelles in Water. Macromol. Chem. Phys. 2017, 218, 1700230. [Google Scholar] [CrossRef] [Green Version]
- Pham, D.T.; Chokamonsirikun, A.; Phattaravorakarn, V.; Tiyaboonchai, W. Polymeric micelles for pulmonary drug delivery: A comprehensive review. J. Mater. Sci. 2021, 56, 2016–2036. [Google Scholar] [CrossRef]
- Uddin, M.A.; Yu, H.; Wang, L.; Naveed, K.-u.-R.; Amin, B.U.; Mehmood, S.; Haq, F.; Nazir, A.; Lin, T.; Chen, X.; et al. Multiple-stimuli-responsiveness and conformational inversion of smart supramolecular nanoparticles assembled from spin labeled amphiphilic random copolymers. J. Colloid Interface Sci. 2021, 585, 237–249. [Google Scholar] [CrossRef]
- Wu, X.; Qiao, Y.; Yang, H.; Wang, J. Self-assembly of a series of random copolymers bearing amphiphilic side chains. J. Colloid Interface Sci. 2010, 349, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Guazzelli, E.; Martinelli, E.; Galli, G.; Cupellini, L.; Jurinovich, S.; Mennucci, B. Single-chain self-folding in an amphiphilic copolymer: An integrated experimental and computational study. Polymer 2019, 161, 33–40. [Google Scholar] [CrossRef]
- Imai, S.; Hirai, Y.; Nagao, C.; Sawamoto, M.; Terashima, T. Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and Thermoresponsive Micelles in Water. Macromolecules 2018, 51, 398–409. [Google Scholar] [CrossRef]
- Matsumoto, K.; Terashima, T.; Sugita, T.; Takenaka, M.; Sawamoto, M. Amphiphilic Random Copolymers with Hydrophobic/Hydrogen-Bonding Urea Pendants: Self-Folding Polymers in Aqueous and Organic Media. Macromolecules 2016, 49, 7917–7927. [Google Scholar] [CrossRef]
- Alarcón, C.d.l.H.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers 2020, 12, 1397. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Thirupathi, K.; Phan, T.T.V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S.-C. pH and Thermoresponsive PNIPAm-co-Polyacrylamide Hydrogel for Dual Stimuli-Responsive Controlled Drug Delivery. Polymers 2023, 15, 167. [Google Scholar] [CrossRef]
- Cinay, G.E.; Erkoc, P.; Alipour, M.; Hashimoto, Y.; Sasaki, Y.; Akiyoshi, K.; Kizilel, S. Nanogel-Integrated pH-Responsive Composite Hydrogels for Controlled Drug Delivery. ACS Biomater. Sci. Eng. 2017, 3, 370–380. [Google Scholar] [CrossRef]
- Mohammadi, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Golshan, M. Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly(2-(dimethylamino)ethyl methacrylate). Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 455–461. [Google Scholar] [CrossRef]
- Tang, J.; Lee, M.F.X.; Zhang, W.; Zhao, B.; Berry, R.M.; Tam, K.C. Dual Responsive Pickering Emulsion Stabilized by Poly [2-(dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules 2014, 15, 3052–3060. [Google Scholar] [CrossRef] [PubMed]
- Bütün, V.; Armes, S.P.; Billingham, N.C. Selective Quaternization of 2-(Dimethylamino)ethyl Methacrylate Residues in Tertiary Amine Methacrylate Diblock Copolymers. Macromolecules 2001, 34, 1148–1159. [Google Scholar] [CrossRef]
- Liu, X.; Ni, P.; He, J.; Zhang, M. Synthesis and Micellization of pH/Temperature-Responsive Double-Hydrophilic Diblock Copolymers Polyphosphoester-block-poly [2-(dimethylamino)ethyl methacrylate] Prepared via ROP and ATRP. Macromolecules 2010, 43, 4771–4781. [Google Scholar] [CrossRef]
- Manouras, T.; Koufakis, E.; Anastasiadis, S.H.; Vamvakaki, M. A facile route towards PDMAEMA homopolymer amphiphiles. Soft Matter 2017, 13, 3777–3782. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Zhang, Y.; Maji, S.; Greiner, A. PDMAEMA based gene delivery materials. Mater. Today 2012, 15, 388–393. [Google Scholar] [CrossRef]
- Hoang Thi, T.T.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassiliadou, O.; Chrysostomou, V.; Pispas, S.; Klonos, P.A.; Kyritsis, A. Molecular dynamics and crystallization in polymers based on ethylene glycol methacrylates (EGMAs) with melt memory characteristics: From linear oligomers to comb-like polymers. Soft Matter 2021, 17, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Schacher, F.H.; Rupar, P.A.; Manners, I. Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921. [Google Scholar] [CrossRef]
- Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem. 2017, 8, 177–219. [Google Scholar] [CrossRef]
- Vardaxi, A.; Pispas, S. Random cationic copolymers as nanocarriers for ovalbumin. J. Drug Deliv. Sci. Technol. 2023, 80, 104177. [Google Scholar] [CrossRef]
- Manouras, T.; Platania, V.; Georgopoulou, A.; Chatzinikolaidou, M.; Vamvakaki, M. Responsive Quaternized PDMAEMA Copolymers with Antimicrobial Action. Polymers 2021, 13, 3051. [Google Scholar] [CrossRef]
- Piñeiro, L.; Novo, M.; Al-Soufi, W. Fluorescence emission of pyrene in surfactant solutions. Adv. Colloid Interface Sci. 2015, 215, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Matsumoto, M.; Hirai, Y.; Takenaka, M.; Sawamoto, M.; Terashima, T. Intramolecular Folding or Intermolecular Self-Assembly of Amphiphilic Random Copolymers: On-Demand Control by Pendant Design. Macromolecules 2018, 51, 3738–3745. [Google Scholar] [CrossRef]
- Papagiannopoulos, A.; Meristoudi, A.; Pispas, S.; Keiderling, U. Thermal response of self-organization in an amphiphilic triblock polyelectrolyte and the influence of the globular protein lysozyme. Eur. Polym. J. 2018, 99, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zhang, X.; Zhu, H.; Yin, Q.; Liu, H.; Hu, Y. Effect of Composition of PDMAEMA-b-PAA Block Copolymers on Their pH- and Temperature-Responsive Behaviors. Langmuir 2013, 29, 1024–1034. [Google Scholar] [CrossRef]
- Kafetzi, M.; Pispas, S. Multifaceted pH and Temperature Induced Self-Assembly of P(DMAEMA-co-LMA)-b-POEGMA Terpolymers and Their Cationic Analogues in Aqueous Media. Macromol. Chem. Phys. 2021, 222, 2000358. [Google Scholar] [CrossRef]
- Rikuto Kanno, M.O. Takaya Terashima Self-assembly and salt-induced thermoresponsive properties of amphiphilic PEG/cation random terpolymers in water. Polym. Chem. 2023. [Google Scholar] [CrossRef]
- Zhang, Q.; Weber, C.; Schubert, U.S.; Hoogenboom, R. Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 2017, 4, 109–116. [Google Scholar] [CrossRef]
- Moghaddam, S.Z.; Thormann, E. The Hofmeister series: Specific ion effects in aqueous polymer solutions. J. Colloid Interface Sci. 2019, 555, 615–635. [Google Scholar] [CrossRef] [PubMed]
Sample | Mw a (g∙mol−1) (×104) | Mw/Mn a | % wt. DMAEMA b | % wt. QDMAEMA b | % wt. OEGMA b |
---|---|---|---|---|---|
P(DMAEMA-co-OEGMA)_1 | 1.10 | 1.22 | 42 | - | 58 |
Q1(P(DMAEMA-co-OEGMA)_1)100 | - | - | - | 59 c | 41 c |
Q6(P(DMAEMA-co-OEGMA)_1)39 | - | - | 25 | 12 | 63 |
Q12(P(DMAEMA-co-OEGMA)_1)50 | - | - | 15 c | 41 c | 44 c |
P(DMAEMA-co-OEGMA)_2 | 2.28 | 1.26 | 76 | - | 24 |
Q1(P(DMAEMA-co-OEGMA)_2)100 | - | - | - | 72 | 28 |
Q6(P(DMAEMA-co-OEGMA)_2)50 | - | - | 56 | 31 | 13 |
Sample | pH | I1/I3 |
---|---|---|
Q1(P(DMAEMA-co-OEGMA)_1)100 | 3 | 1.74 |
7 | 1.68 | |
10 | 1.71 | |
Q6(P(DMAEMA-co-OEGMA)_1)39 | 3 | 1.65 |
7 | 1.64 | |
10 | 1.60 | |
Q12(P(DMAEMA-co-OEGMA)_1)50 | 3 | 1.25 |
7 | 1.21 | |
10 | 1.22 | |
Q1(P(DMAEMA-co-OEGMA)_2)100 | 3 | 1.61 |
7 | 1.64 | |
10 | 1.54 | |
Q6(P(DMAEMA-co-OEGMA)_2)50 | 3 | 1.63 |
7 | 1.58 | |
10 | 1.60 |
Sample | Temperature (°C) | Intensity a (kHz) | Rh a (nm) | PDI a |
---|---|---|---|---|
P(DMAEMA-co-OEGMA)_1 | 25 | 604 | 13/76 | 0.24 |
55 | 732 | 66 | 0.31 | |
P(DMAEMA-co-OEGMA)_2 | 25 | 66 | 2/86 | 0.59 |
55 | 5320 | 692 | 0.13 |
Sample | Temperature (°C) | Intensity a (kHz) | Rh a (nm) | PDI a |
---|---|---|---|---|
Q6(P(DMAEMA-co-OEGMA)_1)39 | 25 | 2019 | 71 | 0.16 |
55 | 2039 | 54 | 0.03 | |
Q12(P(DMAEMA-co-OEGMA)_1)50 | 25 | 266 | 11 | 0.41 |
55 | 263 | 4 / 16 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardaxi, A.; Pispas, S. Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives. Polymers 2023, 15, 1519. https://doi.org/10.3390/polym15061519
Vardaxi A, Pispas S. Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives. Polymers. 2023; 15(6):1519. https://doi.org/10.3390/polym15061519
Chicago/Turabian StyleVardaxi, Antiopi, and Stergios Pispas. 2023. "Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives" Polymers 15, no. 6: 1519. https://doi.org/10.3390/polym15061519
APA StyleVardaxi, A., & Pispas, S. (2023). Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives. Polymers, 15(6), 1519. https://doi.org/10.3390/polym15061519