Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications
Abstract
:1. Introduction
2. Materials and Characterization
2.1. Details of Shape-Memory Polymer and Specifications of Reinforcements
2.2. Processing of Shape-Memory Polymer Nanocomposites and 4D Printing
2.3. Differential Scanning Calorimetry (DSC) Test
2.4. Tensile Test
2.5. Flexural Test
2.6. Flexural Tests for Multiple Cycles
2.7. Shape-Recovery Test
2.8. Impact Test
3. Results and Discussion
3.1. Differential Scanning Calorimetry Results
3.2. Results of the Uni-Axial Tensile Test
3.3. Flexural Test Results
3.4. Flexural Test Results for Repeated Cycles
3.5. Shape-Recovery Test Results
3.6. Impact Test Results
4. Conclusions
- The addition of reinforcements in the SMP matrix significantly affected the tensile strength and percentage of elongation. The HNT-reinforced specimens exhibited higher tensile than the MWCNT-reinforced specimens. At 1 wt%, the HNT-reinforced specimens showed 34% higher tensile strength than the MWCNT-reinforced specimens. At the same time, HNT-reinforced samples exhibited higher brittleness than that MWCNT-reinforced specimens.
- At all the weight percentages considered, HNT-reinforced specimens exhibited greater flexural strength when compared with MWCNT-reinforced specimens. The highest observed flexural strength was at 1 wt% of HNTs, which was about 57% higher than that of 1 wt% MWCNT-reinforced specimens.
- Flexural tests were repeated for three cycles for all the composites. A reduction in flexural strength can be observed after each cycle. Further, the % of this reduction was more in the case of MWCNT-reinforced specimens than that of HNT-reinforced specimens. This indicates better reusability with HNT-reinforced specimens even after a large bending deformation.
- Both reinforcements significantly reduced the shape-recovery time. For all the considered cases, 1 wt% MWCNT-reinforced specimens exhibited a quicker shape-recovery response, which was 38% faster than 1 wt% HNT-reinforced specimens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SMPU | Shape-memory polyurethane |
MWCNTs | Multiwalled carbon nanotubes |
HNTs | Halloysite nanotubes |
SMPs | Shape-memory polymers |
SMPPs | Shape-memory polymer pellets |
Angle of the sample in undeformed/permanent shape | |
Angle of the sample in deformed/temporary shape |
References
- Bi, H.; Ye, G.; Sun, H.; Ren, Z.; Gu, T.; Xu, M. Mechanically robust, shape memory, self-healing and 3D printable thermoreversible cross-linked polymer composites toward conductive and biomimetic skin devices applications. Addit. Manuf. 2022, 49, 102487. [Google Scholar] [CrossRef]
- Akbar, I.; Hadrouz, M.E.; Mansori, M.E.; Lagoudas, D. Continuum and subcontinuum simulation of FDM process for 4D printed shape memory polymers. J. Manuf. Process. 2022, 76, 335–348. [Google Scholar] [CrossRef]
- Tezerjani, S.M.D.; Yazdi, M.S.; Hosseinzadeh, M.H. The effect of 3D printing parameters on the shape memory properties of 4D printed polylactic acid circular disks: An experimental investigation and parameters optimization. Mater. Today Commun. 2022, 33, 104262. [Google Scholar] [CrossRef]
- Soleyman, E.; Aberoumand, M.; Soltanmohammadi, K.; Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 4D printing of PET-G via FDM including tailormade excess third shape. Manuf. Lett. 2022, 33, 1–4. [Google Scholar] [CrossRef]
- Song, M.; Liu, X.; Yue, H.; Li, S.; Guo, J. 4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase separation. Polymer 2022, 256, 125190. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y. Co-extrusion 4D printing of shape memory polymers with continuous metallic fibers for selective deformation. Compos. Sci. Technol. 2022, 227, 109603. [Google Scholar] [CrossRef]
- Hu, X.; Ge, Z.; Wang, X.; Jiao, N.; Tung, S.; Liu, L. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Compos. Part B 2022, 228, 109451. [Google Scholar] [CrossRef]
- Lin, C.; Liu, L.; Liu, Y.; Leng, J. 4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications. Compos. Struct. 2022, 279, 114729. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, F.; Wang, L.; Liu, Y.; Leng, J. 4D printing of electroactive shape-changing composite structures and their programmable behaviors. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106925. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Wu, W.; Dong, X.; Sang, L. 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures. Compos. B 2023, 248, 110382. [Google Scholar] [CrossRef]
- Wan, X.; He, Y.; Liu, Y.; Leng, J. 4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties. Addit. Manuf. 2022, 53, 102689. [Google Scholar] [CrossRef]
- Tang, Z.; Gong, J.; Cao, P.; Tao, L.; Pei, X.; Wang, T.; Zhang, Y.; Wang, Q.; Zhang, J. 3D printing of a versatile applicability shape memory polymer with high strength and high transition temperature. Chem. Eng. J. 2022, 431, 134211. [Google Scholar] [CrossRef]
- Yue, C.; Li, M.; Liu, Y.; Fang, Y.; Song, Y.; Xu, M.; Li, J. Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/ Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties. Addit. Manuf. 2021, 46, 102146. [Google Scholar] [CrossRef]
- Barletta, M.; Gisario, A.; Mehrpouya, M. 4D printing of shape memory polylactic acid (PLA) components: Investigating the role of the operational parameters in fused deposition modelling (FDM). J. Manuf. Process. 2021, 61, 473–480. [Google Scholar] [CrossRef]
- Cersoli, T.; Cresanto, A.; Herberger, C.; MacDonald, E.; Cortes, P. 3D Printed Shape Memory Polymers Produced via Direct Pellet Extrusion. Micromachines 2021, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, F.; Qi, B.; Ding, Z.; Rosen, D.W.; Ge, Q. 3D printing of multi-material composites with tunable shape memory behaviour. Mater. Design. 2020, 193, 108785. [Google Scholar] [CrossRef]
- Koualiarella, A.; Arvanitidis, A.; Argyros, A.; Kousiatza, C.; Karakalas, A.; Lagoudas, D.; Michailidis, N. Tuning of shape memory polymer properties by controlling 3D printing strategy. CIRP Ann.-Manuf. Technol. 2020, 1, 213–216. [Google Scholar] [CrossRef]
- Pandini, S.; Inverardi, N.; Scalet, G.; Battini, D.; Bignotti, F.; Marconi, S.; Auricchio, F. Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures. Mech. Res. Commun. 2020, 103, 103463. [Google Scholar] [CrossRef]
- Patel, K.K.; Purohit, R. Improved shape memory and mechanical properties of microwave-induced shape memory polymer/MWCNTs composites. Mater. Today Commun. 2019, 20, 100579. [Google Scholar] [CrossRef]
- Kang, M.; Pyo, Y.; Jang, J.; Park, Y.; Son, Y.; Choi, M.C.; Ha, J.; Chang, Y.; Lee, C.S. Design of a shape memory composite(SMC) using 4D printing technology. Sens. Actuators 2018, A283, 187–195. [Google Scholar] [CrossRef]
- Hu, G.F.; Damanpack, A.R.; Bodaghi, M.; Liao, W.H. Increasing Dimension of Structures by 4D Printing Shape Memory Polymers via Fused Deposition Modeling. Smart Mater. Struct. 2017, 26, 125023. [Google Scholar] [CrossRef]
- Ly, S.T.; Kim, J.Y. 4D printing—Fused deposition modeling printing with thermal-responsive shape memory polymers. Int. J. Precis. Eng. Manuf.-Green Tech. 2017, 4, 267–272. [Google Scholar] [CrossRef]
- Yang, H.; Leow, W.R.; Wang, T.; Wang, J.; Yu, J.; He, K.; Qi, D.; Wan, C.; Chen, X. 3D Printed Photoresponsive Devices Based on Shape Memory Composites. Adv. Mater. 2017, 29, 1701627. [Google Scholar] [CrossRef] [PubMed]
- Namathoti, S.; Vakkalagadda, M.R.K. Mechanical and Shape Recovery Characterization of MWCNTs/HNTs Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites. Polymers 2023, 15, 710. [Google Scholar] [CrossRef]
- Namathoti, S.; Ravindra Kumar, V.M.; Rama Sreekanth, P.S. A review on progress in magnetic, microwave, ultrasonic responsive Shape-memory polymer composites. Mater. Today Proc. 2022, 56, 1182–1191. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Zolfagharian, A.; Bodaghi, M.; Baghani, M. A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. Polymers 2022, 14, 5446. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D Printing-Encapsulated Polycaprolactone–ThermoplasticPolyurethane with High Shape Memory Performances. Adv. Eng. Mater. 2022, 2022, 2201309. [Google Scholar] [CrossRef]
- Soleyman, E.; Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Ghasemi, I.; Abrinia, K.; Baniassadi, M.; Wang, K.; Baghani, M. Shape memory performance of PETG 4D printed parts under compression in cold, warm, and hot programming. Smart Mater. Struct. 2022, 31, 085002. [Google Scholar] [CrossRef]
- Deka, H.; Karak, N.; Kalita, R.D.; Buragohain, A.K. Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 2010, 48, 2013–2022. [Google Scholar] [CrossRef]
- Sahakaro, K. Mechanism of reinforcement using nanofillers in rubber nanocomposites. In Progress in Rubber Nanocomposites; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2017; pp. 81–113. [Google Scholar]
- Rana, S.; Karak, N.; Cho, J.W.; Kim, Y.H. Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites. Nanotechnology 2008, 19, 495707. [Google Scholar] [CrossRef] [PubMed]
- Kalakonda, P.; Banne, S.; Kalakonda, P. Enhanced mechanical properties of multiwalled carbon nanotubes/thermoplastic polyurethane nanocomposites. Nanomater. Nanotechnol. 2019, 9, 1847980419840858. [Google Scholar] [CrossRef]
- Yetgin, S.H. Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Mater. Res. Technol. 2019, 8, 4725–4735. [Google Scholar] [CrossRef]
- Szczygielska, A.; Kijeñski, J. Studies of properties of polypropylene/halloysite composites. Pol. J. Chem. Technol. 2011, 13, 61–65. [Google Scholar] [CrossRef]
- Kumar, D.; Jindal, P. Effect of multi-walled carbon nanotubes on thermal stability of polyurethane nanocomposites. Mater. Res. Express 2019, 6, 105336. [Google Scholar] [CrossRef]
- Fonseca, M.A.; Abreu, B.; Gonçalves, F.A.M.M.; Ferreira, A.G.M.; Moreira, R.A.S.; Oliveira, M.S.A. Shape memory polyurethanes reinforced with carbon nanotubes. Compos. Struct. 2013, 99, 105–111. [Google Scholar] [CrossRef]
- Meng, Q.; Hu, J. Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning. Compos. Part A Appl. Sci. Manuf. 2008, 39, 314–321. [Google Scholar] [CrossRef]
- Arun, D.I.; Chakravarthy, P.; Arockiakumar, R.; Santhosh, B. Shape Memory Materials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
Reinforcement | MWCNTs | HNTs |
---|---|---|
Purity (%) | 99 | 99.9 |
Diameter (nm) | 5–20 | 15–50 |
Length (µm) | 10 | 1–15 |
Thermal conductivity (W/mK) | 0.35 | 0.092 |
Density (Kg/m3) | 2100 | 2540 |
Specific heat capacity (J/kgK) | 550 | 920 |
Thermal diffusivity (mm2/s) | 0.303 | 0.039 |
Printing Parameter | Value |
---|---|
Layer height (mm) | 0.2 |
Print speed | 30 mm/s |
Nozzle temperature | 220 °C |
Print-bed temperature | 60 °C |
Printing Pattern | 45° and 135° |
Type of Reinforcement | % of Reinforcement | Tg (°C) | Tm (°C) |
---|---|---|---|
Pure SMPU | 0 | 56.5 | 163 |
MWCNTs | 0.5 | 63 | 171 |
1 | 69 | 182 | |
HNTs | 0.5 | 62 | 168 |
1 | 66 | 177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namathoti, S.; Vakkalagadda, M.R.K. Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications. Polymers 2023, 15, 1371. https://doi.org/10.3390/polym15061371
Namathoti S, Vakkalagadda MRK. Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications. Polymers. 2023; 15(6):1371. https://doi.org/10.3390/polym15061371
Chicago/Turabian StyleNamathoti, Sivanagaraju, and Manikanta Ravindra Kumar Vakkalagadda. 2023. "Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications" Polymers 15, no. 6: 1371. https://doi.org/10.3390/polym15061371
APA StyleNamathoti, S., & Vakkalagadda, M. R. K. (2023). Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications. Polymers, 15(6), 1371. https://doi.org/10.3390/polym15061371