Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Procedure
2.3. Morphological Characterization
2.4. SWCNTs Functionalization
2.5. Electrospinning of Aligned and Doped Nanofibers Mats
2.6. Composites Manufacturing Process
3. Results and Discussion
3.1. RONFs Mats Strengthened Hybrid Composites
3.2. CANFs and f-SWCNTs Doped CANFs Mats Strengthened Hybrid Composites
Mechanical Properties
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Masuelli, M. Introduction of Fibre-Reinforced Polymers—Polymers and Composites: Concepts, Properties and Processes. In Fibre Reinforced Polymers—The Technology Applied for Concrete Repair; InTechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M.; Yoon, G.H.; Lee, H.C. Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery. J. Biomater. Sci. 2008, 26, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Santare, M.H.; Advani, S.G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multiwalled carbon nano-tubes. Compos. Part A Appl. Sci. Manuf. 2008, 39, 540–554. [Google Scholar] [CrossRef]
- Muthu, J.; Dendere, C. Functionalized multiwall carbon tubes strengthened GRP hybrid composites: Improved properties with optimum fiber content. Compos. Part B 2014, 67, 84–94. [Google Scholar] [CrossRef]
- Ren, Z.; Gao, P.X. A review of helical nanostructures: Growth theories, synthesis strategies and properties. Nanoscale 2014, 6, 9366–9400. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, S.; Thean, K.S.; Suraya, A.R.; Shazed, M.A.; Salleh, M.A.M.; Yusoff, H.M. Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Mater. Des. 2013, 43, 10–16. [Google Scholar] [CrossRef]
- Liao, H.; Wu, Y.; Wu, M.; Zhan, X.; Liu, H. Aligned electrospun cellulose fibersreinforced epoxy resin composite films with high visible light transmittance. Cellulose 2012, 19, 111–119. [Google Scholar] [CrossRef]
- Karimi, S.; Staiger, M.P.; Buunk, N.; Fessard, A.; Tucker, N. Uniaxially aligned electrospun fibers for advanced nanocomposites based on a modelPVOH-epoxy system. Compos. Part A Appl. Sci. Manuf. 2016, 81, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yu, D.; Kelkar, A.D.; Zhang, L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 2017, 75, 73–107. [Google Scholar] [CrossRef]
- Ud DinK, I.; Naresh, K.; Umer, R.; Khan, K.A.; Drzal, L.T.; Haq, M.; Cantwell, W.J. Processing and out-of-plane properties of composites with embedded graphene paper for EMI shielding applications. Compos. Part A 2020, 134, 105901–105913. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Zhang, Y.; Zhao, F.; Qiu, Z.; Zhou, L.; Chen, S.; Shi, M.; Huang, Z. Enhanced thermal and mechanical properties of carbon fiber/epoxy composites interleaved with graphene/SiCnw nanostructured films. Compos. Part A 2022, 162, 107129–107141. [Google Scholar] [CrossRef]
- Vajtai, R. Springer Handbook of Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–135. [Google Scholar]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Ramakrishna, S. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005; pp. 1–18. [Google Scholar]
- Su, Z.; Ding, J.; Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. R. Soc. Chem. 2014, 4, 52598–52610. [Google Scholar] [CrossRef] [Green Version]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning of polymeric and ceramic nanofbers as uniaxially aligned arrays. Nano Lett. 2003, 3, 1167–1171. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Xu, L. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method. Mater. Des. 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Wepasnick, K.A.; Smith, B.A.; Bitter, J.L.; Howard Fairbrother, D. Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 2010, 396, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Liu, P. Poly(vinyl chloride)-grafted multi-walled carbon nanotubes via Friedel-Crafts alkylation. Express Polym. Lett. 2010, 4, 723–728. [Google Scholar] [CrossRef]
- Muthu, S.D.J.; Bradley, P.; Jinasena, I.K.; Wegner, L.D. Electro spun nanomats strengthened glass fiber hybrid composites: Improved mechanical properties using continuous nanofibers. Polym. Compos. 2020, 41, 958–971. [Google Scholar] [CrossRef]
- Pilehrood, M.K.; Heikkilä, P.; Harlin, A. Preparation of carbon nanotubes embedded in polyacrylonitrile (PAN). Autex Res. J. 2012, 1, 1–6. [Google Scholar] [CrossRef]
Properties | Bisphenol-A Epoxy | Woven E-Glass Mats | SWCNTs |
---|---|---|---|
Tensile strength (MPa) | 72.7–81.3 | 148.6–152.5 | 80,000–105,000 |
Tensile modulus (GPa) | 3.3–4.3 | 7.2–8.3 | ∼1000 |
Elongation at break (%) | 1.12 | 2.4 | - |
Density at 23 °C (gm/cm) | 1.148 | 2.6 | 1.7 |
Average diameter (nm) | - | - | 0.83–1.3 |
Electrospinning Parameters | Range of Tested Values | Optimized Values |
---|---|---|
Concentration (%) | 8–8.8 | 8.1 |
Flow rate (mL/h) | 0.12–0.50 | 0.35 |
Applied voltage (DC-KV) | 0–30 | 20 |
Collector to spinneret distance (cm) | 5–35 | 25 |
Tensile Strength (MPa) | Elastic Modulus (GPa) | Flexural Strength (MPa) | Flexural Modulus (GPa) | Impact Resistance (KJ/m) | |
---|---|---|---|---|---|
32 vol% glass fiber | 156.52 | 11.77 | 242.2 | 9.58 | 160.18 |
Tensile Strength (MPa) | Elastic Modulus (GPa) | Flexural Strength (MPa) | Flexural Modulus (GPa) | Impact Resistance (KJ/m) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RONFs wt% | 0.1 | 0.2 | 0.5 | 1 | 0.1 | 0.2 | 0.5 | 1 | 0.1 | 0.2 | 0.5 | 1 | 0.1 | 0.2 | 0.5 | 1 | 0.1 | 0.2 | 0.5 | 1 |
No of samples | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Mean | 194.47 | 213.56 | 251.51 | 161.58 | 11.79 | 12.09 | 14.36 | 10.79 | 283.77 | 311.70 | 404.01 | 282.62 | 11.55 | 13.18 | 14.58 | 11.01 | 168.82 | 181.40 | 193.11 | 192.02 |
Median | 207.78 | 213.66 | 262.38 | 164.32 | 11.42 | 12.32 | 14.54 | 11.09 | 285.54 | 329.91 | 409.08 | 239.87 | 10.89 | 13.91 | 14.18 | 10.88 | 162.67 | 177.05 | 189.35 | 193.45 |
Properties | 0.5 wt% RONF Mats | 0.5 wt% CANF Mats | % Increase | 0.25wt% Doped with 0.5 wt% CANF Mats | % Increase |
---|---|---|---|---|---|
Tensile strength (MPa) | 251.51 | 262.01 | 4.71 | 327.83 | 30.34 |
Elastic modulus (GPa) | 14.36 | 15.63 | 8.84 | 27.72 | 93.04 |
Flexural strength (MPa) | 404.01 | 473.44 | 17.19 | 525.96 | 30.18 |
Flexural modulus (GPa) | 14.58 | 17.65 | 21.06 | 22.49 | 54.25 |
Impact resistance KJ/m | 193.11 | 232.75 | 20.53 | 448.58 | 132.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, A.; Ncube, M.; Aravinth, N.; Muthu, J. Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites. Polymers 2023, 15, 957. https://doi.org/10.3390/polym15040957
Muhammad A, Ncube M, Aravinth N, Muthu J. Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites. Polymers. 2023; 15(4):957. https://doi.org/10.3390/polym15040957
Chicago/Turabian StyleMuhammad, Arif, Mkhululi Ncube, Nithish Aravinth, and Jacob Muthu. 2023. "Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites" Polymers 15, no. 4: 957. https://doi.org/10.3390/polym15040957
APA StyleMuhammad, A., Ncube, M., Aravinth, N., & Muthu, J. (2023). Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites. Polymers, 15(4), 957. https://doi.org/10.3390/polym15040957