Effects of a Novel Lin Seed Polysaccharide on Beef Sausage Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Material and Reagents
2.2. Extraction of LWSP
2.3. Thin-Layer Chromatography (TLC)
2.4. NMR Spectroscopy
2.5. Physico-Chemical Analysis of LWSP
2.6. Functional Properties of LWSP
2.6.1. Water Holding Capacity
2.6.2. Oil Holding Capacity (OHC)
2.7. Beef Sausage Product Preparation
2.8. Analysis of Sausage Samples
2.8.1. Textural Profile Analysis
2.8.2. Color Measurement
2.8.3. Thiobarbituric Acid Reactive Substances (TBARS) Analysis
2.8.4. Oxymyoglobin (OxyMb) Analysis
2.8.5. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Analysis of LWSP
3.2. Composition of LWSP
3.2.1. TLC Analysis
3.2.2. NMR Analysis
3.3. Functional Properties of LWSP
3.4. Physico-Chemical Analysis of Sausages
3.4.1. TPA Analyses
3.4.2. Color Measurements
3.5. TBARS
3.6. Effect on OxyMb Oxidation
3.7. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kallel, F.; Driss, D.; Bouaziz, F.; Belghith, L.; Zouari-Ellouzi, S.; Chaari, F.; Haddar, H.; Ellouz-Chaabouni, S.; Ghorbel, R. Polysaccharide from garlic straw: Extraction, structural data, biological properties and application to beef meat preservation. RSC Adv. 2015, 5, 6728–6741. [Google Scholar] [CrossRef]
- Ben Slima, S.; Ktari, N.; Trabelsi, I.; Triki, M.; Feki-Tounsi, M.; Moussa, H.; Makni, I.; Herrero, A.; Jimenez-Colmenero, F.; Ruiz-Capillas, C.; et al. Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. LWT Food Sci. Technol. 2017, 86, 219–226. [Google Scholar] [CrossRef]
- Ben Slima, S.; Ktari, N.; Triki, M.; Trabelsi, I.; Moussa, H.; Makni, I.; Abdeslam, A.; Herrero, A.; Jimenez-Colmenero, F.; Ruiz-Capillas, C.; et al. Effects of two fibers used separately and in combination on physico-chemical, textural, nutritional and sensory properties of beef fresh sausage. Br. Food J. 2019, 121, 1428–1440. [Google Scholar] [CrossRef]
- Surendranath, P.S.; Poulson, J. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Ben Slima, S.; Ktari, N.; Trabelsi, I.; Moussa, H.; Makni, I.; Ben Salah, R. Purification, characterization and antioxidant properties of a novel polysaccharide extracted from Sorghum bicolor (L.) seeds in sausage. Int. J. Biol. Macromol. 2018, 106, 168–178. [Google Scholar] [CrossRef]
- Ktari, N.; Feki, A.; Trabelsi, I.; Triki, M.; Maalej, H.; Ben Slima, S.; Nasri, M.; Ben Amara, I.; Ben Salah, R. Structure, functional and antioxidant properties in Tunisian beef sausage of a novel polysaccharide from Trigonellafoenum-graecum seeds. Int. J. Biol. Macromol. 2017, 98, 169–181. [Google Scholar] [CrossRef]
- Andrade, D.; Gil, C.; Breitenfeld, L.; Domingues, F.; Duarte, A.P. Bioactive extracts from Cistusladanifer and Arbutus unedo L. Ind. Crops Prod. 2009, 30, 165–167. [Google Scholar] [CrossRef]
- Ktari, N.; Smaoui, S.; Trabelsi, I.; Nasri, M.; Ben Salah, R. Chemical composition, techno-functional and sensory properties and effects of three dietary fibers on the quality characteristics of Tunisian beef sausage. Meat Sci. 2014, 96, 521–525. [Google Scholar] [CrossRef]
- Feki, A.; Sellem, I.; Hamzaoui, A.; Ben Amar, W.; Mellouli, L.; Zariat, A.; Nasri, M.; Ben Amara, I. Effect of the incorporation of polysaccharide from Falkenbergiarufolanosa on beef sausages for quality and shelf life improvement. LWT 2021, 143, 111139. [Google Scholar] [CrossRef]
- Anwar, F.; Przybylski, R. Effect of solvent extraction on total phenolics. Acta Sci. Pol. Technol. Aliment. 2012, 11, 293–301. [Google Scholar]
- Oomah, B.D. Flax seed as a functional food source. J. Sci. Food Agric. 2001, 81, 889–894. [Google Scholar] [CrossRef]
- Lei, B.; Chen, E.C.Y.; Oomah, B.D.; Mazza, G. Distribution of cadmium-binding components in flax (Linum usitatissium L.) seed. J. Agric. Food Chem. 2003, 51, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Reggiani, R. Phenolics and antioxidant activity in flax varieties with different productive attitude. Int. Food Res. J. 2015, 22, 1736–1739. [Google Scholar]
- Muir, A.D.; Westcott, N.D. (Eds.) Flax seed constituents and human health. In Flax, the Genus Linum; Taylor &Francis Publishing: London, UK, 2003; pp. 243–251. [Google Scholar]
- Hemmings, S.J.; Westcott, N.D.; Muir, A.D.; Czechowicz, D. The effects of dietary flaxseed on the Fischer 344 rat: II. Liver gamma-glutamyl transpeptidase activity. Cell Biochem. Funct. 2004, 22, 225–231. [Google Scholar] [CrossRef]
- Choo, W.S.; Birch, J.; Dufour, J.P. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J. Food Compos. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Nazmara, Z.; Hassanzadeh, N.; Yarahmadi, A.; Ghaffari, N.; Hassani, F.; Liaghat, A.; Noori, L.; Hassanzadeh, G. Biomedical features of flaxseed against different pathologic situations: A narrative review. Iran. J. Basic Med. Sci. 2021, 24, 551–560. [Google Scholar]
- Oomah, B.D.; Kenaschuk, E.O.; Wuwei, C.S.; Mazza, G. Variation in the Composition of Water-Soluble Polysaccharides in Flaxseed. Agric. Food Chem. 1995, 43, 1484–1488. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Z.; Deng, Q.; Huang, Q.; Wang, X.; Huang, F. Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice. Food Res. Int. 2020, 131, 108994. [Google Scholar] [CrossRef]
- Lorenc, F.; Jarošová, M.; Bedrníček, J.; Smetana, P.; Bárta, J. Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods 2022, 11, 2304. [Google Scholar] [CrossRef]
- Trigui, I.; Yaich, H.; Sila, A.; Cheikh-Rouhou, S.; Bougatef, A.; Blecker, C.; Attia, H.; Ayadi, M.A. Physicochemical properties of water-soluble polysaccharides from black cumin seeds. Int. J. Biol. Macromol. 2018, 117, 937–946. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Kechaou, A.; Makni, I.; Attia, H. Influence of carrageenan addition on turkey meat sausages properties. J. Food Eng. 2009, 93, 278–283. [Google Scholar] [CrossRef]
- Ben Slima, S.; Trabelsi, I.; Ktari, N.; Bardaa, S.; Elkarwi, K.; Abdeslam, A.; Ben Salah, R. Novel Sorghum bicolor (L.) seed polysaccharide structure, hemolytic and antioxidant activities, and laser burn wound healing effect. Int. J. Biol. Macromol. 2019, 132, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Nep, E.I.; Conway, B.R. Physicochemical characterization of grewia polysaccharide gum: Effect of drying method. Carbohydr. Polym. 2011, 84, 446–453. [Google Scholar] [CrossRef]
- Wiater, A.; Janczarek, M.; Choma, A. Water-soluble (1→3),(1→4)-α-dglucan from mango as a novel inducer of cariogenic biofilm-degrading enzyme. Int. J. Biol. Macromol. 2013, 58, 199–205. [Google Scholar] [CrossRef]
- Zhu, J.; Liua, W.; Yu, J.; Zou, S.; Wang, J.; Yao, W.; Gao, X. Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lyciumbarbarum L. Carbohydr. Polym. 2013, 98, 8–16. [Google Scholar] [CrossRef]
- Ke, L.; Peihui, H.; Quansheng, C.; Xin, S.; Feng, Y. Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega 2019, 4, 10620–10628. [Google Scholar]
- Trabelsi, I.; Ben Slima, S.; Ktari, N.; Bouaziz, M.; Ben Salah, R. Structure Analysis and Antioxidant Activity of a Novel Polysaccharide from Katan Seeds. Biomed. Res. Int. 2021, 2021, 6349019. [Google Scholar] [CrossRef]
- Pateiro, M.; Bermúdez, R.; Lorenzo, J.M.; Franco, D. Effect of Addition of Natural Antioxidants on the Shelf-Life of “Chorizo”, a Spanish Dry-Cured Sausage. Antioxidants 2015, 4, 42–67. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M.; Ventanas, S.; Cava, R. Effect of natural and synthetic antioxidants on protein oxidation and color and texture changes in refrigerated stored porcine liver pâté. Meat Sci. 2006, 74, 396–403. [Google Scholar] [CrossRef]
- Roghayeh, A.S.; Hedayat, H.; Dolly, B.; Francisco, J.C.; Ramin, K. Optimization of prebiotic sausage formulation. Effect of using b-glucan and resistant starch by D-optimal mixture design approach. LWT Food Sci. Technol. 2015, 62, 704–710. [Google Scholar]
- Lorenzo, J.M.; Franco, D. Fat effect on physic-chemical, microbial and textural changes through the manufacturated of dry-cured foal sausage lipolysis, proteolysis and sensory properties. Meat Sci. 2012, 92, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Tee Siow, L.F. Effect of tapioca and potato starch on the physical properties of frozen Spanish mackerel (Scomberomoru guttatus) fish balls. Int. Food Res. J. 2017, 24, 182–190. [Google Scholar]
- Buriti, F.C.A.; Cardarelli, H.R.; Saad, S.M.I. Influence of Lactobacillus paracasei and inulin on instrumental texture and sensory evaluation of fresh cream cheese. Braz. J. Pharm. Sci. 2008, 44, 75–84. [Google Scholar]
- Paglarini, C.D.S.; Furtado, G.D.F.; Biachi, J.P.; Vidal, V.A.S.; Martini, S.; Forte, M.B.S.; Cunha, R.L.; Pollonio, M.A.R. Functional emulsion gels with potential application in meat products. J. Food Eng. 2018, 222, 29–37. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 64, 5692852. [Google Scholar]
- Rojas, M.C.; Brewer, M.S. Effect of natural antioxidants on oxidative stability of frozen vacuum packaged beef and pork. J. Food Qual. 2008, 31, 173–185. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, Z.; Zhou, G.; Lin, Y.; Zheng, C. Effects of dietary isoflavone supplementation on meat quality and oxidative stability during storage in lingnan yellow broilers. J. Integr. Agric. 2014, 13, 387–393. [Google Scholar] [CrossRef]
- Trabelsi, I.; Ktari, N.; Triki, M.; Bkhairia, I.; Ben Slima, S.; Sassi-Aydi, S.; Aydi, S.; Abdeslam, A.; Ben Salah, R. Physicochemical, techno functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int. J. Biol. Macromol. 2018, 111, 11–18. [Google Scholar] [CrossRef]
- Albertini, R.; Passi, A.; Abuja, P.M.; De Luca, G. The effect of glycosaminoglycans and proteoglycans on lipid peroxidation. Int. J. Mol. Med. 2000, 6, 129–136. [Google Scholar] [CrossRef]
- Bozkurt, H. Utilization of natural antioxidants: Green tea extract and Thymbraspicata oil in Turkish dry-fermented sausage. Meat Sci. 2006, 73, 442–450. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid, protein oxidative deterioration in meat and meat products. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Ennouri, K.; Chakchouk-Mtibaa, A.; Karray-Rebai, I.; Hmidi, M.; Bouchaala, K.; Mellouli, L. Relationships between textural modifications, lipid and protein oxidation and sensory attributes of refrigerated turkey meat sausage treated with bacteriocin BacTN635. Food Bioprocess. Technol. 2017, 10, 1655–1667. [Google Scholar] [CrossRef]
- Chan, W.K.M.; Faustmaqa, C.; Yid, M.; Deckerc, E.A. Lipid Oxidation Induced by Oxymyoglobin and Metmyoglobin with Involvement of H2O2 and Superoxide Anion. Meat Sci. 1997, 46, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Zakrys, P.I.; Hogan, S.A.; O’Sullivan, M.G.; Allen, P.; Kerry, J.P. Effects of oxygen concentration on the sensory evaluation and quality indicators of beef muscle packed under modified atmosphere. Meat Sci. 2008, 79, 648–655. [Google Scholar] [CrossRef]
- Valsta, M.; Tapanainen, H.; Männistö, S. Meat fats in nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef]
- Gorelik, S.; Kanner, J. Oxymyoglobin oxidation and membranal lipid peroxidation of initiated by iron redox cycle. J. Agric. Food Chem. 2001, 49, 5939–5944. [Google Scholar] [CrossRef]
- Bao, Y.; Puolanne, E.; Ertbjerg, P. Effect of oxygen concentration in modified atmosphere packaging on color and texture of beef patties cooked to different temperatures. Meat Sci. 2016, 121, 189–195. [Google Scholar] [CrossRef]
Texture Parameters | Days | T1 (Control) | T2 (0.125% of Ascorbic Acid) | T3 (0.125% of LWSP) | T4 (0.062% of Ascorbic Acid and 0.062% of LWSP) |
---|---|---|---|---|---|
Cohesiveness | 1 | 0.45 ± 0.02 ab1 | 0.45 ± 0.01 ab2 | 0.43 ± 0.01 a1 | 0.45 ± 0.01 b1 |
15 | 0.48 ± 0.02 b2 | 0.43 ± 0.03 a1,2 | 0.44 ± 0.02 a1 | 0.46 ± 0.01 ab1 | |
Springiness (mm) | 1 | 3.52 ± 0.16 a1 | 3.68 ± 0.25 a1 | 3.51 ± 0.58 a1,2 | 3.62 ± 0.20 a2 |
15 | 3.60 ± 0.06 a1,2 | 3.42 ± 0.22 a2 | 3.47 ± 0.13 a1 | 3.57 ± 0.05 a1,2 | |
Hardness (N) | 1 | 9.20 ± 0.30 b2,1 | 7.59 ± 0.36 a2,1 | 7.44 ± 0.22 a2,1 | 7.39 ± 0.02 a2,1 |
15 | 7.88 ± 0.44 b2,1 | 5.23 ± 0.37 a2,1 | 5.39 ± 0.13 a2,1 | 5.60 ± 0.43 a2,1 | |
Chewiness (Nmm) | 1 | 14.10 ± 0.11 c2,1 | 13.20 ± 0.12 b2,1 | 12.50 ± 0.13 a2,1 | 13.10 ± 0.13 b2,1 |
15 | 12.20 ± 0.05 c2,1 | 7.69 ± 0.22 a2,1 | 7.80 ± 0.07 a2,1 | 8.78 ± 0.16 b2,1 |
Color Parameters | Days | T1 (Control) | T2 (0.125% of Ascorbic Acid) | T3 (0.125% of LWSP) | T4 (0.062% of Ascorbic Acid and 0.062% of LWSP) |
---|---|---|---|---|---|
L* | 1 | 41.71 ± 1.72 a1 | 43.23 ± 0.13 ab1 | 43.46 ± 1.20 ab1,2 | 44.23 ± 0.38 b1,2 |
15 | 43.00 ± 0.99 a2 | 46.94 ± 0.79 c2 | 44.77 ± 0.49 b1,2 | 45.36 ± 0.60 bc1,2 | |
a* | 1 | 15.14 ± 0.13 a2 | 16.47 ± 0.50 b1 | 16.08 ± 0.87 ab1 | 16.07 ± 0.49 ab1 |
15 | 13.08 ± 0.44 a1 | 17.06 ± 0.11 c1,2 | 17.33 ± 0.28 c1,2 | 16.07 ± 0.49 b1 | |
b* | 1 | 13.96 ± 0.03 b1 | 13.19 ± 1.08 ab1 | 12.58 ± 0.30 a1 | 12.54 ± 0.21 a1 |
15 | 15.64 ± 0.61 b2 | 13.55 ± 0.53 a1 | 13.69 ± 0.32 a1,2 | 13.18 ± 0.11 a2 | |
ΔE | 1 | - | 2.16 ± 0.01 b1 | 0.76 ± 0.04 a1 | 0.77 ± 0.05 a1 |
15 | - | 5.98 ± 0.03 c2 | 2.19 ± 0.02 b2 | 1.48 ± 0.08 a2 |
Sensory Analysis | Days | T1 (Control) | T2 (0.125% of Ascorbic Acid) | T3 (0.125% of LWSP) | T4 (0.062% of Ascorbic Acid and 0.062% of LWSP) |
---|---|---|---|---|---|
Odor | 1 | 7.86 ± 0.52 a2 | 8.02 ± 0.36 a3 | 7.94 ± 0.59 a2 | 8.00 ± 0.99 a2 |
5 | 7.42 ± 0.71 a2 | 7.63 ± 0.70 a2,3 | 7.28 ± 0.71 a2 | 7.58 ± 1.09 a1,2 | |
10 | 7.00 ± 0.79 a1,2 | 6.80 ± 0.57 a2 | 7.00 ± 0.51 a2 | 7.09 ± 0.7 a1,2 | |
15 | 5.80 ± 0.63 a1 | 5.90 ± 0.07 a1 | 6.00 ± 0.29 a1 | 6.14 ± 0.45 a1 | |
Color | 1 | 6.50 ± 0.33 a2 | 8.87 ± 0.29 b2 | 9.27 ± 0.51 b3 | 7.26 ± 0.59 a1 |
5 | 6.60 ± 0.71 a2 | 8.72 ± 0.54 bc2 | 8.88 ± 0.35 c2,3 | 7.90 ± 0.21 b1 | |
10 | 6.20 ± 0.63 a1,2 | 8.68 ± 0.47 b1 | 8.40 ± 0.33 b2 | 7.80 ± 0.63 b1 | |
15 | 5.36 ± 0.69 a1 | 8.14 ± 0.39 b2 | 8.25 ± 0.72 b1 | 7.45 ± 1.32 b1 | |
Texture | 1 | 7.38 ± 0.54 a1,2 | 8.00 ± 0.75 a2 | 8.24 ± 0.59 a1 | 8.31 ± 0.70 a1 |
5 | 7.40 ± 0.41 a2 | 7.77 ± 0.49 ab2 | 8.00 ± 0.32 ab1 | 8.51 ± 0.40 b1 | |
10 | 6.90 ± 0.86 a1,2 | 7.04 ± 0.39 ab1,2 | 7.99 ± 0.32 bc1 | 8.50 ± 0.39 c1 | |
15 | 6.20 ± 0.65 a1 | 6.60 ± 0.63 a1 | 8.10 ± 0.63 b1 | 8.40 ± 0.28 b1 | |
General acceptability | 1 | 7.50 ± 0.51 a2 | 9.00 ± 0.62 b2 | 9.30 ± 0.23 b2,3 | 9.02 ± 0.17 b1 |
5 | 7.00 ± 0.64 a2 | 8.42 ± 0.35 b2 | 9.00 ± 0.71 b2 | 8.70 ± 0.63 b1 | |
10 | 6.20 ± 0.39 a1,2 | 7.60 ± 0.60 b1 | 8.00 ± 0.14 b1 | 7.80 ± 0.39 b1 | |
15 | 6.02 ± 0.63 a1 | 7.00 ± 0.70 a2 | 8.50 ± 0.51 b | 8.20 ± 0.63 b1 | |
Dependent Variables | Independent Variables | Β | p Value | ||
TBARS | samples | −0.124 | <0.0001 | ||
R2 = 0.999 | OxyMb | 0.047 | <0.0001 | ||
R2 adjusted = 0.997 | Cohesiveness | 0.355 | <0.0001 | ||
a* | −0.049 | <0.0001 | |||
b* | −0.066 | 0.083 | |||
L* | 0.026 | 0.121 | |||
Springiness | 0.005 | 0.693 | |||
Chewiness | 0.1 | 0.204 | |||
Hardness | 0.084 | <0.001 | |||
Odor | 0.022 | 0.146 | |||
Texture | −0.116 | <0.0001 | |||
Color | −0.075 | 0.063 | |||
GA | −0.113 | <0.0001 | |||
OxyMb | Samples | 2.670 | <0.0001 | ||
R2 = 0.821 | a* | 0.495 | <0.0001 | ||
R2 adjusted = 0.812 | L* | 0.369 | <0.0001 | ||
b* | −0.414 | 0.005 | |||
Cohesiveness | −0.247 | 0.010 | |||
Springiness | −0.157 | 0.117 | |||
Hardness | −0.403 | 0.006 | |||
Chewiness | −0.494 | <0.001 | |||
Odor | 0.091 | 0.404 | |||
Texture | −0.013 | 0.947 | |||
Color | 0.470 | <0.001 | |||
GA | 0.328 | 0.041 | |||
TBARS | −0.403 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouikhi, A.; Ktari, N.; Slima, S.B.; Trabelsi, I.; Bendali, F.; Ben Salah, R. Effects of a Novel Lin Seed Polysaccharide on Beef Sausage Properties. Polymers 2023, 15, 1014. https://doi.org/10.3390/polym15041014
Chouikhi A, Ktari N, Slima SB, Trabelsi I, Bendali F, Ben Salah R. Effects of a Novel Lin Seed Polysaccharide on Beef Sausage Properties. Polymers. 2023; 15(4):1014. https://doi.org/10.3390/polym15041014
Chicago/Turabian StyleChouikhi, Aicha, Naourez Ktari, Sirine Ben Slima, Imen Trabelsi, Farida Bendali, and Riadh Ben Salah. 2023. "Effects of a Novel Lin Seed Polysaccharide on Beef Sausage Properties" Polymers 15, no. 4: 1014. https://doi.org/10.3390/polym15041014
APA StyleChouikhi, A., Ktari, N., Slima, S. B., Trabelsi, I., Bendali, F., & Ben Salah, R. (2023). Effects of a Novel Lin Seed Polysaccharide on Beef Sausage Properties. Polymers, 15(4), 1014. https://doi.org/10.3390/polym15041014