Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Recycled PET Supports Preparation and Evaluation
2.2.1. Synthesis Procedure
2.2.2. Water Uptake Capacity of PET-Based Substrates
2.2.3. PET-Based Substrate Surface Morphology
2.3. Collagen Artificial Contamination of PET-Composite Pellets
2.3.1. ATR-IR Spectra before and after Collagen Deposition
2.3.2. Contact Angle Measurements
3. Results and Discussions
3.1. Composite Materials Based on Recycled PET and Their Properties
- -
- composite materials containing Al or Fe nano-powders;
- -
- composite materials containing PP or HDPE components;
- -
- composite materials containing PP or HDPE components and Al or Fe nano-powders.
3.2. Surface Potential of Recycled PET Composite Supports on the Collagen Contamination Level
3.3. FTIR-ATR Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koshti, R.; Mehta, L.B.; Samarth, N. Biological Recycling of Polyethylene Terephthalate: A Mini-Review. J. Polym. Environ. 2018, 26, 3520–3529. [Google Scholar] [CrossRef]
- Tiseo, I. Global Plastic Market Size Value 2021–2030. 2022. Available online: https://www.statista.com/statistics/1060583/global-market-value-of-plastic/ (accessed on 10 December 2022).
- Gebre, S.H.; Sendeku, M.G.; Bahri, M. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics. Chemistryopen 2021, 10, 1202–1226. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bedi, R.; Kaith, B.S. Composite materials based on recycled polyethylene terephthalate and their properties–A comprehensive review. Compos. Part B Eng. 2021, 219, 108928. [Google Scholar] [CrossRef]
- Saddem, M.; Koubaa, A.; Riedl, B. Properties of High-Density Polyethylene-Polypropylene Wood Composites. In Biocomposites; Kumar, B., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Rabbi, M.S.; Islam, T.; Islam, G.M.S. Injection-molded natural fiber-reinforced polymer composites—A review. Int. J. Mech. Mater. Eng. 2021, 16, 15. [Google Scholar] [CrossRef]
- Lin, T.A.; Lin, J.H.; Bao, L. Polypropylene/thermoplastic polyurethane blends: Mechanical characterizations, recyclability and sustainable development of thermoplastic materials. J. Mater. Res. Technol. 2020, 9, 5304–5312. [Google Scholar] [CrossRef]
- Schneiderman, D.K.; Hillmyer, M.A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733–3749. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [PubMed]
- Grigore, M.E. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling 2017, 2, 24. [Google Scholar] [CrossRef]
- Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477. [Google Scholar] [CrossRef]
- Maurya, A.; Bhattacharya, A.; Khare, S.K. Enzymatic Remediation of Polyethylene Terephthalate (PET)-Based Polymers for Effective Management of Plastic Wastes: An Overview. Front. Bioeng. Biotechnol. 2020, 8, 602325. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Christiansen, J.D.; Daugaard, A.E.; Astrup, T.F. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Dodi, G.; Popescu, D.; Cojocaru, F.D.; Aradoaei, M.; Ciobanu, R.C.; Mihai, C.T. Use of Fourier-Transform Infrared Spectroscopy for DNA Identification on Recycled PET Composite Substrate. Appl. Sci. 2022, 12, 4371. [Google Scholar] [CrossRef]
- ISO—International Organization for Standardization. Available online: https://www.iso.org/standard/55483.html (accessed on 11 March 2022).
- Anis, A.; Elnour, A.Y.; Alam, M.A.; Al-Zahrani, S.M.; AlFayez, F.; Bashir, Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers 2020, 12, 2038. [Google Scholar] [CrossRef]
- Taşdemır, M.; Gülsoy, H. Mechanical Properties of Polymers Filled with Iron Powder. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 258–265. [Google Scholar] [CrossRef]
- Gomiero, A.; Strafella, P.; Fabi, G. From Macroplastic to Microplastic Litter: Occurrence, Composition, Source Identification and Interaction with Aquatic Organisms. Experiences from the Adriatic Sea. In Plastics in the Environment; Gomiero, A., Ed.; IntechOpen: London, UK, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Rahman, K.S.; Islam, M.N.; Rahman, M.M.; Hannan, M.O.; Dungani, R.; Khalil, H.A. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): Physical and mechanical properties. SpringerPlus 2013, 2, 629 . [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, M.S.; Ahn, D.; Yeo, S.Y.; Lee, S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep. 2019, 9, 6338. [Google Scholar] [CrossRef]
- Ziąbka, M.; Dziadek, M. Thermoplastic Polymers with Nanosilver Addition-Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period. Materials 2021, 14, 361. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, P.; Wang, J.; Bao, X.; Chu, H. Direct Numerical Simulation of Capillary Rise in Microtubes with Different Cross-Sections. Acta Phys. Pol. A 2019, 135, 532–538. [Google Scholar] [CrossRef]
- Arahman, N.; Fahrina, A.; Amalia, S.; Sunarya, R.; Mulyuti, S. Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal. F1000Research 2017, 6, 668. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.S.; Brand, D.D.; Czernuszka, J.T. Influence of telopeptides, fibrils and crosslinking on physicochemical properties of Type I collagen films. J. Mater. Sci. Mater. Med. 2009, 21, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Romero-Castillo, I.; López-Ruiz, E.; Fernández-Sánchez, J.F.; Marchal, J.A.; Gómez-Morales, J. Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol. Biosci. 2020, 21, e2000319. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, M.A.; Belderbos, S.; Yañez-Vilar, S.; Piñeiro, Y.; Cleeren, F.; Bormans, G.; Deroose, C.M.; Gsell, W.; Himmelreich, U.; Rivas, J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. Nanomaterials 2019, 9, 1626. [Google Scholar] [CrossRef] [PubMed]
Sample Codification | Recycled PET (%) | PP (%) | HDPE (%) | Al Nano-Powder (%) | Fe Nano-Powder (%) | HD (g/cm3) |
---|---|---|---|---|---|---|
M1 | 100 | 0 | 0 | 0 | 0 | 1.318 ± 0.0004 |
M2 | 95 | 5 | 1.347 ± 0.0009 | |||
M3 | 92 | 8 | 1.382 ± 0.0011 | |||
M4 | 95 | 0 | 5 | 1.317 ± 0.0018 | ||
M5 | 92 | 8 | 1.381 ± 0.0004 | |||
M6 | 70 | 30 | 0 | 1.186 ± 0.0016 | ||
M7 | 66.5 | 28.5 | 5 | 1.395 ± 0.2833 | ||
M8 | 64.5 | 27.5 | 8 | 1.207 ± 0.0013 | ||
M9 | 66.5 | 28.5 | 0 | 5 | 1.306 ± 0.0000 | |
M10 | 64.5 | 27.5 | 8 | 1.827 ± 0.6088 | ||
M11 | 70 | 0 | 30 | 0 | 1.180 ± 0.0004 | |
M12 | 66.6 | 28.5 | 5 | 1.210 ± 0.0000 | ||
M13 | 64.5 | 27.5 | 8 | 1.219 ± 0.0004 | ||
M14 | 66.5 | 28.5 | 0 | 5 | 1.228 ± 0.0004 | |
M15 | 64.5 | 27.5 | 8 | 1.318 ± 0.0004 |
Sample Codification | Temperatures on Heating Zones (°C) | ||||
---|---|---|---|---|---|
M1 | 300 | 295 | 290 | 285 | 280 |
M2–M3 | 260 | 255 | 250 | 245 | 240 |
M4–M5 | 270 | 265 | 260 | 255 | 250 |
M6–M10 | 260 | 255 | 250 | 245 | 240 |
M11 | |||||
M12–M15 | 250 | 245 | 240 | 235 | 230 |
Sample Codification | Q7, % | Q17, % | Q21, % | Q25, % | Q50, % |
---|---|---|---|---|---|
M1 | 0.22 | 0.32 | 0.43 | 0.58 | 0.65 |
M2 | 0.32 | 0.54 | 0.76 | 0.65 | 0.68 |
M3 | 0.38 | 0.57 | 0.54 | 0.75 | 0.78 |
M4 | 0.24 | 0.48 | 0.61 | 0.73 | 0.73 |
M5 | 0.31 | 0.52 | 0.72 | 0.72 | 0.72 |
M6 | 0.24 | 0.59 | 1.06 | 1.42 | 1.53 |
M7 | 0.39 | 1.04 | 1.68 | 2.07 | 2.07 |
M8 | 0.74 | 1.89 | 2.03 | 2.16 | 2.30 |
M9 | 0.52 | 1.42 | 1.94 | 2.10 | 2.22 |
M10 | 0.69 | 0.69 | 1.15 | 1.61 | 1.72 |
M11 | 0.25 | 0.88 | 1.01 | 1.01 | 1.01 |
M12 | 0.41 | 2.04 | 2.99 | 3.66 | 3.80 |
M13 | 0.50 | 0.74 | 0.99 | 1.12 | 1.24 |
M14 | 3.61 | 4.48 | 4.61 | 6.10 | 6.10 |
M15 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Sample Codification | Contact Angle, ° ± SD | |
---|---|---|
T0 | T50 | |
M1 | 95 ± 9 | 97.5 ± 7.7 |
M2 | 99.9 ± 12.6 | 114 ± 7.1 |
M3 | 96.4 ± 5.5 | 109.3 ±0.42 |
M4 | 97.5 ± 3.3 | 104.5 ± 6.3 |
M5 | 94.3 ± 6.6 | 102 ± 5.6 |
M6 | 114 ± 0.1 | 93.5 ± 3.5 |
M7 | 103.9 ± 3.1 | 100.5 ± 3.5 |
M8 | 108.3 ± 0.9 | 107 ± 15.5 |
M9 | 105.5 ± 2.3 | 97.5 ± 2.12 |
M10 | 107.4 ± 14.2 | 89.5 ± 0.7 |
M11 | 114.9 ± 8.6 | 106 ± 2.7 |
M12 | 102.9 ± 1.9 | 109 ± 5.6 |
M13 | 118.1 ± 4.8 | 107.5 ± 0.7 |
M14 | 103. 7 ± 3.7 | 116 ± 11.3 |
M15 | 101.1 ± 6.3 | 106.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epure, E.-L.; Cojocaru, F.D.; Aradoaei, M.; Ciobanu, R.C.; Dodi, G. Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level. Polymers 2023, 15, 776. https://doi.org/10.3390/polym15030776
Epure E-L, Cojocaru FD, Aradoaei M, Ciobanu RC, Dodi G. Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level. Polymers. 2023; 15(3):776. https://doi.org/10.3390/polym15030776
Chicago/Turabian StyleEpure, Elena-Luiza, Florina Daniela Cojocaru, Mihaela Aradoaei, Romeo Cristian Ciobanu, and Gianina Dodi. 2023. "Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level" Polymers 15, no. 3: 776. https://doi.org/10.3390/polym15030776
APA StyleEpure, E.-L., Cojocaru, F. D., Aradoaei, M., Ciobanu, R. C., & Dodi, G. (2023). Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level. Polymers, 15(3), 776. https://doi.org/10.3390/polym15030776