Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey
Abstract
1. General Introduction to Polymerization Reactions in Confinement and Scope
2. Anodized Aluminum Oxide (AAO) Templates Geometry
3. Polymerization Reactions within AAO Templates
3.1. Electrochemical Polymerization
3.2. Radical Polymerization
3.3. Step-Growth Polymerization
3.4. ATRP Polymerization
3.5. Other Polymerization Reactions
3.5.1. Coordination Polymerization
3.5.2. Ring-Opening Polymerization of Caprolactone
3.5.3. Other Non-Classified Polymerizations
4. Properties and Applications of Synthesized Polymers with AAO Templates
4.1. Energy, Sensing and Electronic Applications
4.2. Surface Properties: Wetting and Adhesion
5. General Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Espenscheid, M.W.; Chen, W.J.; Martin, C.R. Electrochemical synthesis of ultrathin-film composite membranes. J. Am. Chem. Soc. 1990, 112, 2458–2459. [Google Scholar] [CrossRef]
- Penner, R.M.; Martin, C.R. Electronically Conductive Composite Polymer Membranes. J. Electrochem. Soc. 1986, 133, 310–315. [Google Scholar] [CrossRef]
- Wu, C.-G.; Bein, T. Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science 1994, 264, 1757–1759. [Google Scholar] [CrossRef] [PubMed]
- Enzel, P.; Bein, T. Poly(acrylonitrile) chains in zeolite channels: Polymerization and pyrolysis. Chem. Mater. 1992, 4, 819–824. [Google Scholar] [CrossRef]
- Kageyama, K.; Tamazawa, J.-I.; Aida, T. Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica. Science 1999, 285, 2113–2115. [Google Scholar] [CrossRef]
- Tajima, K.; Aida, T. Controlled polymerizations with constrained geometries. Chem. Commun. 2000, 24, 2399–2412. [Google Scholar] [CrossRef]
- Johnson, S.A.; Ollivier, P.J.; Mallouk, T.E. Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates. Science 1999, 283, 963–965. [Google Scholar] [CrossRef]
- Jani, A.M.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Mijangos, C.; Hernández, R.; Martín, J. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Prog. Polym. Sci. 2016, 54–55, 148–182. [Google Scholar] [CrossRef]
- Enke, D.; Janowski, F.; Schwieger, W. Porous glasses in the 21st century––A short review. Microporous Mesoporous Mater. 2003, 60, 19–30. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, D.; Wang, T. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering. Small 2016, 12, 4611–4632. [Google Scholar] [CrossRef] [PubMed]
- Wegst, U.G.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Rath, A.; Theato, P. Advanced AAO Templating of Nanostructured Stimuli-Responsive Polymers: Hype or Hope? Adv. Funct. Mater. 2020, 30, 1902959. [Google Scholar] [CrossRef]
- Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34, 581–604. [Google Scholar] [CrossRef]
- Alexandris, S.; Papadopoulos, P.; Sakellariou, G.; Steinhart, M.; Butt, H.-J.; Floudas, G. Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules 2016, 49, 7400–7414. [Google Scholar] [CrossRef]
- Michell, R.M.; Mueller, A.J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54, 183–213. [Google Scholar] [CrossRef]
- Reddy, C.S.; Arinstein, A.; Zussman, E. Polymerization kinetics under confinement. Polym. Chem. 2011, 2, 835–839. [Google Scholar] [CrossRef]
- Campos, J.M.; Lourenço, J.P.; Cramail, H.; Ribeiro, M.R. Nanostructured silica materials in olefin polymerisation: From catalytic behaviour to polymer characteristics. Prog. Polym. Sci. 2012, 37, 1764–1804. [Google Scholar] [CrossRef]
- Xu, Q.; Meng, G.; Han, F. Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures. Prog. Mater. Sci. 2018, 95, 243–285. [Google Scholar] [CrossRef]
- Meng, G.; Jung, Y.J.; Cao, A.; Vajtai, R.; Ajayan, P.M. Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proc. Natl. Acad. Sci. USA 2005, 102, 7074–7078. [Google Scholar] [CrossRef]
- Jo, H.; Haberkorn, N.; Pan, J.-A.; Vakili, M.; Nielsch, K.; Theato, P. Fabrication of Chemically Tunable, Hierarchically Branched Polymeric Nanostructures by Multi-branched Anodic Aluminum Oxide Templates. Langmuir 2016, 32, 6437–6444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, L.; Wang, X.; Xue, G. Stabilization of Poly (methyl methacrylate) Nanofibers with Core–Shell Structures Confined in AAO Templates by the Balance between Geometric Curvature, Interfacial Interactions, and Cooling Rate. Macromolecules 2017, 50, 1599–1609. [Google Scholar] [CrossRef]
- Sanz, B.; Blaszczyk-Lezak, I.; Mijangos, C.; Palacios, J.K.; Müller, A.J. New Double-Infiltration Methodology to Prepare PCL–PS Core–Shell Nanocylinders Inside Anodic Aluminum Oxide Templates. Langmuir 2016, 32, 7860–7865. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-T.; Wei, T.-H.; Chang, C.-W.; Ko, H.-W.; Chu, C.-W.; Chi, M.-H.; Tsai, C.-C. Fabrication of Polymer Nanopeapods in the Nanopores of Anodic Aluminum Oxide Templates Using a Double-Solution Wetting Method. Macromolecules 2014, 47, 5227–5235. [Google Scholar] [CrossRef]
- Ko, H.-W.; Chi, M.-H.; Chang, C.-W.; Chu, C.-W.; Luo, K.-H.; Chen, J.-T. Fabrication of Core–Shell Polymer Nanospheres in the Nanopores of Anodic Aluminum Oxide Templates Using Polymer Blend Solutions. ACS Macro Lett. 2015, 4, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk-Lezak, I.; Juanes, D.; Martín, J.; Mijangos, C. Gecko-like Branched Polymeric Nanostructures from Nanoporous Templates. Langmuir 2018, 34, 11449–11453. [Google Scholar] [CrossRef]
- Martin, C.R.; Van Dyke, L.S.; Cai, Z.; Liang, W. Template synthesis of organic microtubules. J. Am. Chem. Soc. 1990, 112, 8976–8977. [Google Scholar] [CrossRef]
- Ikegame, M.; Tajima, K.; Aida, T. Template Synthesis of Polypyrrole Nanofibers Insulated within One-Dimensional Silicate Channels: Hexagonal versus Lamellar for Recombination of Polarons into Bipolarons. Angew. Chem. Int. Ed. 2003, 42, 2154–2157. [Google Scholar] [CrossRef]
- Tarnacka, M.; Chrobok, A.; Matuszek, K.; Golba, S.; Maksym, P.; Kaminski, K.; Paluch, M. Polymerization of Monomeric Ionic Liquid Confined within Uniaxial Alumina Pores as a New Way of Obtaining Materials with Enhanced Conductivity. ACS Appl. Mater. Interfaces 2016, 8, 29779–29790. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, N.; Schroers, J. Nanofabrication through molding. Prog. Mater. Sci. 2021, 125, 100891. [Google Scholar] [CrossRef]
- Liu, K.; Du, J.; Wu, J.; Jiang, L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 2011, 4, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Dumanli, A.; Savin, T. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 2016, 45, 6698–6724. [Google Scholar] [CrossRef]
- Chen, S.; Kang, E.S.H.; Chaharsoughi, M.S.; Stanishev, V.; Kühne, P.; Sun, H.; Wang, C.; Fahlman, M.; Fabiano, S.; Darakchieva, V.; et al. Conductive polymer nanoantennas for dynamic organic plasmonics. Nat. Nanotechnol. 2019, 15, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Scaraggi, M.; Wang, D.; Wang, X.; Liang, Y.; Liu, W.; Dini, D.; Zhou, F. Nanoporous Substrate-Infiltrated Hydrogels: A Bioinspired Regenerable Surface for High Load Bearing and Tunable Friction. Adv. Funct. Mater. 2015, 25, 7366–7374. [Google Scholar] [CrossRef]
- Giussi, J.M.; von Bilderling, C.; Alarcón, E.; Pietrasanta, L.I.; Hernandez, R.; del Real, R.P.; Vázquez, M.; Mijangos, C.; Cortez, M.L.; Azzaroni, O. Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles. Nanoscale 2017, 10, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-y.; Hyun, S.; Jeon, G.; Kim, E.Y.; Kim, J.; Kim, W.J. Bioinspired dual stimuli-responsive membranous system with multiple on–off gates. ACS Appl. Mater. Interfaces 2016, 8, 11758–11764. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liao, J.; Zhao, Y.; Sotto, A.; Zhu, J.; van der Bruggen, B.; Gao, C.; Shen, J. Bioinspired dual stimuli-responsive membranes with enhanced gating ratios and reversible performances for water gating. J. Membr. Sci. 2018, 564, 53–61. [Google Scholar] [CrossRef]
- Shang, J.; Theato, P. Smart composite hydrogel with pH-, ionic strength-and temperature-induced actuation. Soft Matter. 2018, 14, 8401–8407. [Google Scholar] [CrossRef]
- Chiu, H.-Y.; Leonhardt, H.; Bein, T. Synthesis and Functionalization of Ordered Large-Pore Mesoporous Silica Nanoparticles for Biomedical Applications. Chem. Ing. Tech. 2017, 89, 876–886. [Google Scholar] [CrossRef]
- Gómez-Cerezo, N.; Casarrubios, L.; Saiz-Pardo, M.; Ortega, L.; de Pablo, D.; Díaz-Güemes, I. Mesoporous bioactive glass/ɛ-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep. Acta Biomater. 2019, 90, 393–402. [Google Scholar] [CrossRef]
- Wu, H.; Higaki, Y.; Takahara, A. Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog. Polym. Sci. 2018, 77, 95–117. [Google Scholar] [CrossRef]
- Duran, H.; Steinhart, M.; Butt, H.-J.; Floudas, G. From Heterogeneous to Homogeneous Nucleation of Isotactic Poly(propylene) Confined to Nanoporous Alumina. Nano Lett. 2011, 11, 1671–1675. [Google Scholar] [CrossRef] [PubMed]
- Politidis, C.; Alexandris, S.; Sakellariou, G.; Steinhart, M.; Floudas, G. Dynamics of Entangled cis-1, 4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules 2019, 52, 4185–4195. [Google Scholar] [CrossRef]
- Schlegel, I.; Muñoz-Espí, R.; Renz, P.; Lieberwirth, I.; Floudas, G.; Suzuki, Y.; Crespy, D.; Landfester, K. Crystallinity Tunes Permeability of Polymer Nanocapsules. Macromolecules 2017, 50, 4725–4732. [Google Scholar] [CrossRef]
- Li, L.; Zhou, D.; Huang, D.; Xue, G. Double Glass Transition Temperatures of Poly(methyl methacrylate) Confined in Alumina Nanotube Templates. Macromolecules 2013, 47, 297–303. [Google Scholar] [CrossRef]
- Jiang, Q.; Ward, M.D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2013, 43, 2066–2079. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, S.; Glynos, E.; Tito, N.B. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 2017, 80, 036602. [Google Scholar] [CrossRef]
- Krutyeva, M.; Wischnewski, A.; Monkenbusch, M.; Willner, L.; Maiz, J.; Mijangos, C. Effect of nanoconfinement on polymer dynamics: Surface layers and interphases. Phys. Rev. Lett. 2013, 110, 108303. [Google Scholar] [CrossRef]
- Tsui, O.K.C.; Russell, T.P.; Hawker, C.J. Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films. Macromolecules 2001, 34, 5535–5539. [Google Scholar] [CrossRef]
- Su, C.; Shi, G.; Li, X.; Zhang, X.; Müller, A.J.; Wang, D.; Liu, G. Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis. Macromolecules 2018, 51, 9484–9493. [Google Scholar] [CrossRef]
- Shi, G.; Liu, G.; Su, C.; Chen, H.; Chen, Y.; Su, Y.; Müller, A.J.; Wang, D. Reexamining the Crystallization of Poly(ε-caprolactone) and Isotactic Polypropylene under Hard Confinement: Nucleation and Orientation. Macromolecules 2017, 50, 9015–9023. [Google Scholar] [CrossRef]
- Li, Q.; Tang, L.; Xia, Y.; Li, B. Direct Transformation of N, N′-Methylene Bisacrylamide Self-Assembled Fibers into Polymer Microtubes via RAFT Polymerization. Macromol. Rapid Commun. 2013, 34, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tang, L. One-step synthesis of polymer micro-tubes tethered by polymer nanowire networks via RAFT polymerization of N, N′-methylene bisacrylamide xerogel fibers in toluene and ethanol mixed solution. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1862–1868. [Google Scholar] [CrossRef]
- Marquez, M.; Kim, S.; Jung, J.; Truong, N.; Teeters, D.; Grady, B.P. Factors Affecting the Synthesis of Polymeric Nanostructures from Template Assisted Admicellar Polymerization. Langmuir 2007, 23, 10008–10019. [Google Scholar] [CrossRef]
- Jo, H.; Kitao, T.; Kimura, A.; Itoh, Y.; Aida, T.; Okuro, K. Bio-Adhesive Nanoporous Module: Toward Autonomous Gating. Angew. Chem. 2021, 133, 8641. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, Z.; Begum, F.; Hedden, R.C.; Simon, S.L. The effect of nanoconfinement on methyl methacrylate polymerization: Tg, molecular weight, and tacticity. Polymer 2014, 55, 4959–4965. [Google Scholar] [CrossRef]
- Pallikari-Viras, F.; Li, X.; King, T.A. Thermal analysis of PMMA/gel silica glass composites. J. Sol-Gel Sci. Technol. 1996, 7, 203–209. [Google Scholar] [CrossRef]
- Penner, R.; Martin, C.R. Controlling the Morphology of Electronically Conductive Polymers. J. Electrochem. Soc. 1986, 133, 2206–2207. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Funktionale poröse Koordinationspolymere. Angew. Chem. 2004, 116, 2388–2430. [Google Scholar] [CrossRef]
- Gorman, C.B.; Petrie, R.J.; Genzer, J. Effect of Substrate Geometry on Polymer Molecular Weight and Polydispersity during Surface-Initiated Polymerization. Macromolecules 2008, 41, 4856–4865. [Google Scholar] [CrossRef]
- Martin, C.R. Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Bein, T. Mesoporosity–A new dimension for zeolites. Chem. Soc. Rev. 2013, 42, 3689–3707. [Google Scholar] [CrossRef] [PubMed]
- Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chem. Mater. 2013, 26, 435–451. [Google Scholar] [CrossRef]
- Kondo, A.; Hall, A.S.; Mallouk, T.E.; Maeda, K. A New Synthetic Route to Microporous Silica with Well-Defined Pores by Replication of a Metal-Organic Framework. Chem. A Eur. J. 2015, 21, 12148–12152. [Google Scholar] [CrossRef] [PubMed]
- Okabe, A.; Fukushima, T.; Ariga, K.; Niki, M.; Aida, T. Tetrafluoroborate Salts as Site-Selective Promoters for Sol−Gel Synthesis of Mesoporous Silica. J. Am. Chem. Soc. 2004, 126, 9013–9016. [Google Scholar] [CrossRef]
- Zhao, H.; Simon, S.L. Methyl methacrylate polymerization in nanoporous confinement. Polymer 2011, 52, 4093–4098. [Google Scholar] [CrossRef]
- Uemura, T.; Nakanishi, R.; Mochizuki, S.; Kitagawa, S.; Mizuno, M. Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angew. Chem. Int. Ed. 2016, 55, 6443–6447. [Google Scholar] [CrossRef]
- Mochizuki, S.; Ogiwara, N.; Takayanagi, M.; Nagaoka, M.; Kitagawa, S.; Uemura, T. Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels. Nat. Commun. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Kitao, T.; Uemura, T. Polymers in Metal–Organic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. Chem. Lett. 2020, 49, 624–632. [Google Scholar] [CrossRef]
- Begum, F.; Simon, S.L. Modeling methyl methacrylate free radical polymerization in nanoporous confinement. Polymer 2011, 52, 1539–1545. [Google Scholar] [CrossRef]
- El Hankari, S.; Bousmina, M.; El Kadib, A. Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Prog. Mater. Sci. 2019, 106, 100579. [Google Scholar] [CrossRef]
- Distefano, G.; Suzuki, H.; Tsujimoto, M.; Isoda, S.; Bracco, S.; Comotti, A.; Sozzani, P.; Uemura, T.; Kitagawa, S. Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nat. Chem. 2013, 5, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Sanz, B.; Luo, A.; Turner, K.T.; Wang, X.; Tan, D.; Zhang, R.; Du, H.; Steinhart, M.; Mijangos, C.; et al. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog. ACS Nano 2017, 11, 9711–9719. [Google Scholar] [CrossRef] [PubMed]
- Sanz, B.; von Bilderling, C.; Tuninetti, J.S.; Pietrasanta, L.; Mijangos, C.; Longo, G.S.; Azzaroni, O.; Giussi, J.M. Thermally-induced softening of PNIPAm-based nanopillar arrays. Soft Matter 2017, 13, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Naredi, P.; Kim, S.H. Formation of High-Stress Phase and Extrusion of Polyethylene due to Nanoconfinements during Ziegler−Natta Polymerization Inside Nanochannels. J. Phys. Chem. B 2005, 109, 12491–12497. [Google Scholar] [CrossRef]
- Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Li, A.P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 1998, 84, 6023–6026. [Google Scholar] [CrossRef]
- Shingubara, S.; Morimoto, K.; Sakaue, H.; Takahagi, T. Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte. Electrochem. Solid-State Lett. 2004, 7, E15–E17. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry; Wiley-VCH: Weinheim, Germany, 2008; Volume 1, pp. 1–116. [Google Scholar]
- Lee, W.; Kim, J.-C.; Gasele, U. Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions. Adv. Funct. Mater. 2009, 20, 21–27. [Google Scholar] [CrossRef]
- Li, J.; Papadopoulos, C.; Xu, J. Nanoelectronics: Growing Y-junction carbon nanotubes. Nature 1999, 402, 253. [Google Scholar] [CrossRef]
- Macias, G.; Hernández-Eguía, L.P.; Ferré-Borrull, J.; Pallares, J.; Marsal, L.F. Gold-Coated Ordered Nanoporous Anodic Alumina Bilayers for Future Label-Free Interferometric Biosensors. ACS Appl. Mater. Interfaces 2013, 5, 8093–8098. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Martín-González, M.; Fernández, J.F.; Caballero-Calero, O. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, J.-S.; Xia, X.-H. Porous Anodic Alumina with Continuously Manipulated Pore/Cell Size. ACS Nano 2008, 2, 959–965. [Google Scholar] [CrossRef]
- Chen, J.-T.; Chen, D.; Russell, T.P. Fabrication of Hierarchical Structures by Wetting Porous Templates with Polymer Microspheres. Langmuir 2009, 25, 4331–4335. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Chen, J.-T. Rayleigh Instability in Polymer Thin Films Coated in the Nanopores of Anodic Aluminum Oxide Templates. Langmuir 2013, 30, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Mijangos, C. Tailored Polymer-Based Nanofibers and Nanotubes by Means of Different Infiltration Methods into Alumina Nanopores. Langmuir 2008, 25, 1181–1187. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Fontanille, M.; Guyot, A. Recent Advances in Mechanistic and Synthetic Aspects of Polymerization; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Vivaldo-Lima, E.; Saldívar-Guerra, E. Handbook of Polymer Synthesis, Characterization, and Processing; Wiley Online Library: New York, NY, USA, 2013. [Google Scholar]
- Buback, M.; van Herk, A.M. Radical Polymerization: Kinetics and Mechanism; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Uemura, T.; Ono, Y.; Kitagawa, K.; Kitagawa, S. Radical Polymerization of Vinyl Monomers in Porous Coordination Polymers: Nanochannel Size Effects on Reactivity, Molecular Weight, and Stereostructure. Macromolecules 2008, 41, 87–94. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, D. Polymerization within Confined Nanochannels of Porous Metal-Organic Frameworks. J. Mol. Eng. Mater. 2013, 1, 1330001. [Google Scholar] [CrossRef]
- Moller, K.; Bein, T.; Fischer, R.X. Entrapment of PMMA Polymer Strands in Micro- and Mesoporous Materials. Chem. Mater. 1998, 10, 1841–1852. [Google Scholar] [CrossRef]
- Moller, K.; Bein, T. Inclusion Chemistry in Periodic Mesoporous Hosts. Chem. Mater. 1998, 10, 2950–2963. [Google Scholar] [CrossRef]
- Shin, K.; Obukhov, S.P.; Chen, J.-T.; Huh, J.; Hwang, Y.; Mok, S.; Dobriyal, P.; Thiyagarajan, P.; Russell, T.P. Enhanced mobility of confined polymers. Nat. Mater. 2007, 6, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Butt, H.-J.; Floudas, G.; Zhou, J.; Doi, M. Theory on Capillary Filling of Polymer Melts in Nanopores. Macromol. Rapid Commun. 2018, 39, e1800087. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Mijangos, C.; Sanz, A.; Ezquerra, T.A.; Nogales, A. Segmental Dynamics of Semicrystalline Poly(vinylidene fluoride) Nanorods. Macromolecules 2009, 42, 5395–5401. [Google Scholar] [CrossRef]
- Uemura, T.; Horike, S.; Kitagawa, K.; Mizuno, M.; Endo, K.; Bracco, S.; Comotti, A.; Sozzani, P.; Nagaoka, M.; Kitagawa, S. Conformation and Molecular Dynamics of Single Polystyrene Chain Confined in Coordination Nanospace. J. Am. Chem. Soc. 2008, 130, 6781–6788. [Google Scholar] [CrossRef]
- Stickler, M.; Panke, D.; Hamielec, A.E. Polymerization of methyl methacrylate up to high degrees of conversion: Experimental investigation of the diffusion-controlled polymerization. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2243–2253. [Google Scholar] [CrossRef]
- Tarnacka, M.; Dulski, M.; Starzonek, S.; Adrjanowicz, K.; Mapesa, E.U.; Kaminski, K.; Paluch, M. Following kinetics and dynamics of DGEBA-aniline polymerization in nanoporous native alumina oxide membranes–FTIR and dielectric studies. Polymer 2015, 68, 253–261. [Google Scholar] [CrossRef]
- Takashi, U.; Yukari, O.; Susumu, K. Radical Copolymerizations of Vinyl Monomers in a Porous Coordination Polymer. Chem. Lett. 2008, 37, 616–617. [Google Scholar]
- Skotheim, T. Handbook of Conducting Polymers; Routledge: London, UK, 1986; Volume 1–2. [Google Scholar]
- Reynolds, J.R.; Thompson, B.C.; Skotheim, T.A. Conjugated Polymers: Properties, Processing, and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075–1087. [Google Scholar] [CrossRef]
- Cai, Z.; Lei, J.; Liang, W.; Menon, V.; Martin, C.R. Molecular and supermolecular origins of enhanced electric conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects. Chem. Mater. 1991, 3, 960–967. [Google Scholar] [CrossRef]
- Martin, C.R. Membrane-Based Synthesis of Nanomaterials. Chem. Mater. 1996, 8, 1739–1746. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, C.; Zhao, Y.; Jia, N.; Zhou, Q.; Yan, M.; Jiang, Z. Characteristics of polypyrrole (PPy) nano-tubules made by templated ac electropolymerization. Eur. Polym. J. 2005, 41, 2117–2121. [Google Scholar] [CrossRef]
- Esman, N.; Lellouche, J.-P. Fabrication of functional polypyrrole (PolyPyr)-nanotubes using anodized aluminium oxide (AAO) template membranes. Compromising between effectiveness and mildness of template dissolution conditions for a safe release of PolyPyr-nanotubes. Polym. Chem. 2010, 1, 158–160. [Google Scholar] [CrossRef]
- Liu, R.; Cho, S.I.; Lee, S.B. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 2008, 19, 215710. [Google Scholar] [CrossRef] [PubMed]
- Back, J.-W.; Lee, S.; Hwang, C.-R.; Chi, C.-S.; Kim, J.-Y. Fabrication of conducting PEDOT nanotubes using vapor deposition polymerization. Macromol. Res. 2011, 19, 33–37. [Google Scholar] [CrossRef]
- Parthasarathy, R.V.; Martin, C.R. Template-Synthesized Polyaniline Microtubules. Chem. Mater. 1994, 6, 1627–1632. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Li, H. Preparation and characterization of pyrrole/aniline copolymer nanofibrils using the template-synthesis method. J. Appl. Polym. Sci. 2001, 81, 3002–3007. [Google Scholar] [CrossRef]
- Xiong, S.; Wang, Q.; Xia, H. Preparation of polyaniline nanotubes array based on anodic aluminum oxide template. Mater. Res. Bull. 2004, 39, 1569–1580. [Google Scholar] [CrossRef]
- Blaszczyk-Lezak, I.; Desmaret, V.; Mijangos, C. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO). Express Polym. Lett. 2016, 10, 259–272. [Google Scholar] [CrossRef]
- Kim, K.; Jin, J.-I. Preparation of PPV Nanotubes and Nanorods and Carbonized Products Derived Therefrom. Nano Lett. 2001, 1, 631–636. [Google Scholar] [CrossRef]
- Schäfer, O.; Greiner, A.; Pommerehne, J.; Guss, W.; Vestweber, H.; Tak, H. Poly (p-phenylenevinylene) by chemical vapor deposition: Synthesis, structural evaluation, glass transition, electroluminescence, and photoluminescence. Synth. Met. 1996, 82, 1–9. [Google Scholar] [CrossRef]
- Grimm, S.; Giesa, R.; Sklarek, K.; Langner, A.; Gösele, U.; Schmidt, H.-W.; Steinhart, M. Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes via Cross-Linked Polyacrylate Nanofiber Arrays. Nano Lett. 2008, 8, 1954–1959. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.H.A.; Duran, H.; Knoll, W. In situ Characterization of N-Carboxy Anhydride Polymerization in Nanoporous Anodic Alumina. J. Phys. Chem. B 2009, 113, 3179–3189. [Google Scholar] [CrossRef] [PubMed]
- Duran, H.; Gitsas, A.; Floudas, G.; Mondeshki, M.; Steinhart, M.; Knoll, W. Poly(γ-benzyl-l-glutamate) Peptides Confined to Nanoporous Alumina: Pore Diameter Dependence of Self-Assembly and Segmental Dynamics. Macromolecules 2009, 42, 2881–2885. [Google Scholar] [CrossRef]
- Gitsas, A.; Floudas, G.; Mondeshki, M.; Lieberwirth, I.; Spiess, H.W.; Iatrou, H.; Hadjichristidis, N.; Hirao, A. Hierarchical self-assembly and dynamics of a miktoarm star chimera composed of poly (γ-benzyl-L-glutamate), polystyrene, and polyisoprene. Macromolecules 2010, 43, 1874–1881. [Google Scholar] [CrossRef]
- Lee, L.-C.; Han, H.; Tsai, Y.-T.; Fan, G.-L.; Liu, H.-F.; Wu, C.-C.; Shyue, J.-J.; Sun, S.-S.; Liu, C.-L.; Chou, P.-T.; et al. Template-assisted in situ polymerization for forming blue organic light-emitting nanotubes. Chem. Commun. 2014, 50, 8208–8210. [Google Scholar] [CrossRef]
- Giussi, J.M.; Blaszczyk-Lezak, I.; Cortizo, M.S.; Mijangos, C. In-situ polymerization of styrene in AAO nanocavities. Polymer 2013, 54, 6886–6893. [Google Scholar] [CrossRef]
- Salsamendi, M.; Ballard, N.; Sanz, B.; Asua, J.M.; Mijangos, C. Polymerization kinetics of a fluorinated monomer under confinement in AAO nanocavities. RSC Adv. 2015, 5, 19220–19228. [Google Scholar] [CrossRef]
- Sanz, B.; Ballard, N.; Asua, J.M.; Mijangos, C. Effect of confinement on the synthesis of PMMA in AAO templates and modeling of free radical polymerization. Macromolecules 2017, 50, 811–821. [Google Scholar] [CrossRef]
- Tarnacka, M.; Maksym, P.; Zięba, A.; Mielańczyk, A.; Geppert-Rybczyńska, M.; Leon-Boigues, L.; Mijangos, C.; Kamiński, K.; Paluch, M. The application of spatially restricted geometries as a unique route to produce well-defined poly(vinyl pyrrolidones) via free radical polymerisation. Chem. Commun. 2019, 55, 6441–6444. [Google Scholar] [CrossRef]
- Tarnacka, M.; Chrobok, A.; Matuszek, K.; Neugebauer, D.; Bielas, R.; Golba, S.; Wolnica, K.; Dulski, M.; Kaminski, K.; Paluch, M. Studies on the radical polymerization of monomeric ionic liquids: Nanostructure ordering as a key factor controlling the reaction and properties of nascent polymers. Polym. Chem. 2016, 7, 6363–6374. [Google Scholar] [CrossRef]
- Maksym, P.; Tarnacka, M.; Dzienia, A.; Wolnica, K.; Dulski, M.; Erfurt, K.; Chrobok, A.; Zięba, A.; Brzózka, A.; Sulka, G.; et al. Efficient metal-free strategies for polymerization of a sterically hindered ionic monomer through the application of hard confinement and high pressure. RSC Adv. 2019, 9, 6396–6408. [Google Scholar] [CrossRef] [PubMed]
- León-Boigues, L.; von Bilderling, C.; Pietrasanta, L.I.; Azzaroni, O.; Giussi, J.M.; Mijangos, C. A Patterned Butyl Methacrylate-co-2-Hydroxyethyl Acrylate Copolymer with Softening Surface and Swelling Capacity. Polymers 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- León-Boigues, L.; Navarro, R.; Mijangos, C. Free radical nanocopolymerization in AAO porous materials: Kinetic, copolymer composition and monomer reactivity ratios. Polymer 2021, 229, 123989. [Google Scholar] [CrossRef]
- Choi, M.K.; Yoon, H.; Lee, K.; Shin, K. Simple Fabrication of Asymmetric High-Aspect-Ratio Polymer Nanopillars by Reusable AAO Templates. Langmuir 2011, 27, 2132–2137. [Google Scholar] [CrossRef]
- Malvaldi, M.; Bruzzone, S.; Picchioni, F. Confinement Effect in Diffusion-Controlled Stepwise Polymerization by Monte Carlo Simulation. J. Phys. Chem. B 2006, 110, 12281–12288. [Google Scholar] [CrossRef]
- Tarnacka, M.; Madejczyk, O.; Dulski, M.; Wikarek, M.; Pawlus, S.; Adrjanowicz, K.; Kaminski, K.; Paluch, M. Kinetics and Dynamics of the Curing System. High Pressure Studies. Macromolecules 2014, 47, 4288–4297. [Google Scholar] [CrossRef]
- Maksym, P.; Tarnacka, M.; Dzienia, A.; Matuszek, K.; Chrobok, A.; Kaminski, K.; Paluch, M. Enhanced Polymerization Rate and Conductivity of Ionic Liquid-Based Epoxy Resin. Macromolecules 2017, 50, 3262–3272. [Google Scholar] [CrossRef]
- Sanz, B.; Ballard, N.; Marcos-Fernández, A.; Asua, J.M.; Mijangos, C. Confinement effects in the step-growth polymerization within AAO templates and modeling. Polymer 2018, 140, 131–139. [Google Scholar] [CrossRef]
- Cui, Y.; Tao, C.; Zheng, S.; He, Q.; Ai, S.; Li, J. Synthesis of Thermosensitive PNIPAM-co-MBAA Nanotubes by Atom Transfer Radical Polymerization within a Porous Membrane. Macromol. Rapid Commun. 2005, 26, 1552–1556. [Google Scholar] [CrossRef]
- Cui, Y.; Tao, C.; Tian, Y.; He, Q.; Li, J. Synthesis of PNIPAM-co-MBAA Copolymer Nanotubes with Composite Control. Langmuir 2006, 22, 8205–8208. [Google Scholar] [CrossRef] [PubMed]
- Vasani, R.B.; McInnes, S.J.P.; Cole, M.A.; Jani, A.M.; Ellis, A.V.; Voelcker, N.H. Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(N-isopropylacrylamide). Langmuir 2011, 27, 7843–7853. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-F.; Xie, R.; Jiang, J.-C.; Meng, T.; Yang, M.; Ju, X.-J.; Yang, L.; Chu, L.-Y. Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J. Membr. Sci. 2009, 337, 310–317. [Google Scholar] [CrossRef]
- Wang, W.-C.; Wang, J.; Liao, Y.; Zhang, L.; Cao, B.; Song, G.; She, X. Surface initiated ATRP of acrylic acid on dopamine-functionalized AAO membranes. J. Appl. Polym. Sci. 2010, 117, 534–541. [Google Scholar] [CrossRef]
- Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H.-A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009, 109, 5437–5527. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.N.; Wakabayashi, R.H.; Stacy, A.M. A Modified Sol–Gel Technique for Pore Size Control in Porous Aluminum Oxide Nanowire Templates. ACS Appl. Mater. Interfaces 2014, 6, 20122–20129. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Han, J.J.; He, B.; Lee, S.B. Syndiotactic Polystyrene Nanofibrils in Silica Nanotube Reactors: Understanding of Synthesis with Ultrahigh Molecular Weight. J. Am. Chem. Soc. 2008, 130, 3920–3926. [Google Scholar] [CrossRef]
- Tarnacka, M.; Dzienia, A.; Maksym, P.; Talik, A.; Zięba, A.; Bielas, R.; Kaminski, K.; Paluch, M. Highly Efficient ROP Polymerization of ε-Caprolactone Catalyzed by Nanoporous Alumina Membranes. How the Confinement Affects the Progress and Product of ROP Reaction. Macromolecules 2018, 51, 4588–4597. [Google Scholar] [CrossRef]
- Al-Kaysi, R.O.; Dillon, R.J.; Kaiser, J.M.; Mueller, L.J.; Guirado, G.; Bardeen, C.J. Photopolymerization of Organic Molecular Crystal Nanorods. Macromolecules 2007, 40, 9040–9044. [Google Scholar] [CrossRef]
- Perry, J.L.; Martin, C.R.; Stewart, J.D. Drug-Delivery Strategies by Using Template-Synthesized Nanotubes. Chemistry–A European Journal. 2011, 17, 6296–6302. [Google Scholar] [CrossRef]
- Sapp, S.A.; Mitchell, D.T.; Martin, C.R. Using Template-Synthesized Micro- and Nanowires as Building Blocks for Self-Assembly of Supramolecular Architectures. Chem. Mater. 1999, 11, 1183–1185. [Google Scholar] [CrossRef]
- Cao, Y.; Mallouk, T.E. Morphology of Template-Grown Polyaniline Nanowires and Its Effect on the Electrochemical Capacitance of Nanowire Arrays. Chem. Mater. 2008, 20, 5260–5265. [Google Scholar] [CrossRef]
- Duay, J.; Gillette, E.; Liu, R.; Lee, S.B. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Phys. Chem. Chem. Phys. 2012, 14, 3329–3337. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Chang, M.; Jang, J. Sensing Behaviors of Polypyrrole Nanotubes Prepared in Reverse Microemulsions: Effects of Transducer Size and Transduction Mechanism. J. Phys. Chem. B 2006, 110, 14074–14077. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Liu, Y.; Thangamuthu, R. Investigation of the relationship between surface thermodynamics of the chemically synthesized polypyrrole films and their gas-sensing responses to BTEX compounds. Sens. Actuators B: Chem. 2003, 94, 36–45. [Google Scholar] [CrossRef]
- Bhat, N.V.; Gadre, A.P.; Bambole, V.A. Investigation of electropolymerized polypyrrole composite film: Characterization and application to gas sensors. J. Appl. Polym. Sci. 2003, 88, 22–29. [Google Scholar] [CrossRef]
- Sulka, G.D.; Hnida, K.; Brzózka, A. pH sensors based on polypyrrole nanowire arrays. Electrochim. Acta 2013, 104, 536–541. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, F.; Chen, Y.; Liu, J.; Sun, Y.; Luo, T.; Li, M.; Liu, J. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sens. Actuators B Chem. 2009, 142, 204–209. [Google Scholar] [CrossRef]
- Dan, Y.; Cao, Y.; Mallouk, T.; Johnson, A.T.; Evoy, S. Dielectrophoretically assembled polymer nanowires for gas sensing. Sens. Actuators B Chem. 2007, 125, 55–59. [Google Scholar] [CrossRef]
- Martin, C.R. Template Synthesis of Electronically Conductive Polymer Nanostructures. Acc. Chem. Res. 1995, 28, 61–68. [Google Scholar] [CrossRef]
- Martin, C.; Parthasarathy, R.; Menon, V. Template synthesis of electronically conductive polymers-A new route for achieving higher electronic conductivities. Synth. Met. 1993, 55, 1165–1170. [Google Scholar] [CrossRef]
- Shirai, Y.; Takami, S.; Lasmono, S.; Iwai, H.; Chikyow, T.; Wakayama, Y. Improvement in carrier mobility of poly(3,4-ethylenedioxythiophene) nanowires synthesized in porous alumina templates. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1762–1768. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Li, M.; Li, H. Well-aligned polyaniline nano-fibril array membrane and its field emission property. Chem. Phys. Lett. 2001, 341, 431–434. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Bok, H.-M.; Shin, T.-Y.; Park, S. Designer Binary Nanostructures toward Water Slipping Superhydrophobic Surfaces. Chem. Mater. 2008, 20, 2247–2251. [Google Scholar] [CrossRef]
- Qu, M.; Zhao, G.; Cao, X.; Zhang, J. Biomimetic Fabrication of Lotus-Leaf-like Structured Polyaniline Film with Stable Superhydrophobic and Conductive Properties. Langmuir 2008, 24, 4185–4189. [Google Scholar] [CrossRef] [PubMed]
- Bessonov, A.; Kim, J.-G.; Seo, J.-W.; Lee, J.-W.; Lee, S. Design of Patterned Surfaces with Selective Wetting Using Nanoimprint Lithography. Macromol. Chem. Phys. 2010, 211, 2636–2641. [Google Scholar] [CrossRef]
- Guilak, F.; Cohen, D.M.; Estes, B.T.; Gimble, J.M.; Liedtke, W.; Chen, C.S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5, 17–26. [Google Scholar] [CrossRef]
- Martin, P. Wound Healing-Aiming for Perfect Skin Regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef]
- Fox, C.B.; Kim, J.; Schlesinger, E.B.; Chirra, H.D.; Desai, T.A. Fabrication of Micropatterned Polymeric Nanowire Arrays for High-Resolution Reagent Localization and Topographical Cellular Control. Nano Lett. 2015, 15, 1540–1546. [Google Scholar] [CrossRef]
- Lastra, M.L.; Molinuevo, M.S.; Giussi, J.M.; Allegretti, P.E.; Blaszczyk-Lezak, I.; Mijangos, C.; Cortizo, M.S. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity. Mater. Sci. Eng. C 2015, 51, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.Y.; Jeon, S.H.; Lee, E.S.; Cho, Y. An integrated multifunctional platform based on biotin-doped conducting polymer nanowires for cell capture, release, and electrochemical sensing. Biomaterials 2014, 35, 9573–9580. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mijangos, C.; Martin, J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers 2023, 15, 525. https://doi.org/10.3390/polym15030525
Mijangos C, Martin J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers. 2023; 15(3):525. https://doi.org/10.3390/polym15030525
Chicago/Turabian StyleMijangos, Carmen, and Jaime Martin. 2023. "Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey" Polymers 15, no. 3: 525. https://doi.org/10.3390/polym15030525
APA StyleMijangos, C., & Martin, J. (2023). Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers, 15(3), 525. https://doi.org/10.3390/polym15030525