Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Pasting Properties
2.4. Leaching Amylose and Swelling Power
2.5. DSC
2.6. Rheological Measurements
2.6.1. Dynamic Rheological Properties
2.6.2. Steady Rheological Properties
2.7. ATR-FTIR
2.8. TGA
2.9. SEM
2.10. Paper Mechanical Properties
2.11. Statistical Analysis
3. Results and Discussion
3.1. Pasting Properties
3.2. Leaching Amylose and Swelling Power
3.3. Thermal Properties
3.4. Rheological Measurements
3.4.1. Dynamic Rheological Properties
3.4.2. Steady Rheological Properties
3.5. ATR-FTIR
3.6. TGA
3.7. SEM
3.8. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2016, 52, 38–58. [Google Scholar] [CrossRef]
- Li, H.; Qi, Y.; Zhao, Y.; Chi, J.; Cheng, S. Starch and its derivatives for paper coatings: A review. Prog. Org. Coat. 2019, 135, 213–227. [Google Scholar] [CrossRef]
- Wang, T.; Wang, F.; Ma, R.; Tian, Y. Enzymatically modified starch for paper surface sizing: Enzymes with different action modes and sites. Carbohydr. Polym. 2022, 291, 119636. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wang, H.; Kang, S.; Xia, L.; Jiang, S.; Chen, M.; Jiang, S. An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocoll. 2019, 96, 546–554. [Google Scholar] [CrossRef]
- Koski, C.; Bose, S. Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Addit. Manuf. 2019, 30, 100817. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Hong, Y.; Li, Z.; Cheng, L. Pasting and rheologic properties of potato starch and maize starch mixtures. Starch-Stärke 2010, 63, 11–16. [Google Scholar] [CrossRef]
- Cao, F.; Liu, S.; Zheng, L.; Yu, J. Application of starch adhesive in mounting process of traditional Chinese painting and calligraphy. Adhesion 2008, 5, 47–50. [Google Scholar]
- Tang, M.; Hong, Y.; Gu, Z.; Zhang, Y.; Cai, X. The effect of xanthan on short and long-term retrogradation of rice starch. Starch-Stärke 2013, 65, 702–708. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Impact of different structural types of amylopectin on retrogradation. Food Hydrocoll. 2018, 80, 88–96. [Google Scholar] [CrossRef]
- Lian, C. Study on the Viscose for the Archives Decoration and Mount. J. Fujian Norm. Univ. 1999, 3, 63–67. [Google Scholar]
- Kong, L.; Yu, L.; Feng, T.; Yin, X.; Liu, T.; Dong, L. Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydr. Polym. 2015, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zeng, R.; Hu, L.; Maffucci, K.G.; Qu, Y. Polysaccharides from tubers of Bletilla striata: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer. Int. J. Biol. Macromol. 2019, 122, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Li, M.; Xue, F.; Liu, H. Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydr. Polym. 2014, 107, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cheng, L.; He, Y.; Wei, X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int. J. Biol. Macromol. 2018, 120, 2076–2085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, Y.; Chen, Z.; Shi, J.; Qu, Y.; Zhang, J. Effect of Polysaccharides from Bletilla striata on the Healing of Dermal Wounds in Mice. Evid.-Based Complement. Altern. Med. 2019, 2019, 9212314. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Jiang, L.; Wang, W.; Xiao, Y.; Liu, S.; Luo, Y.; Shen, M.; Xie, J. Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocoll. 2020, 99, 105371. [Google Scholar] [CrossRef]
- Kong, X.-R.; Zhu, Z.-Y.; Zhang, X.-J.; Zhu, Y.-M. Effects of Cordyceps polysaccharides on pasting properties and in vitro starch digestibility of wheat starch. Food Hydrocoll. 2020, 102, 105604. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Zhang, M.; Yang, X.; Yue, P.; Tang, D.; Wei, X. Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohydr. Polym. 2020, 227, 115362. [Google Scholar] [CrossRef]
- Chrastil, J. Improved colorimetric determination of amylose in starches or flours. Carbohydr. Res. 1987, 159, 154–158. [Google Scholar] [CrossRef]
- Chen, L.; Tong, Q.; Ren, F.; Zhu, G. Pasting and rheological properties of rice starch as affected by pullulan. Int. J. Biol. Macromol. 2014, 66, 325–331. [Google Scholar] [CrossRef]
- Chen, L.; Ren, F.; Zhang, Z.; Tong, Q.; Rashed, M.M. Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr. Polym. 2015, 115, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Gałkowska, D.; Pycia, K.; Juszczak, L.; Pająk, P. Influence of cassia gum on rheological and textural properties of native potato and corn starch. Starch-Stärke 2014, 66, 1060–1070. [Google Scholar] [CrossRef]
- Dangi, N.; Yadav, B.S.; Yadav, R.B. Pasting, rheological, thermal and gel textural properties of pearl millet starch as modified by guar gum and its acid hydrolysate. Int. J. Biol. Macromol. 2019, 139, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Mechanisms of starch gelatinization during heating of wheat flour and its effect on in vitro starch digestibility. Food Hydrocoll. 2018, 82, 370–378. [Google Scholar] [CrossRef]
- Ali, A.; Xie, F.; Yu, L.; Liu, H.; Meng, L.; Khalid, S.; Chen, L. Preparation and characterization of starch-based composite films reinfoced by polysaccharide-based crystals. Compos. Part B Eng. 2018, 133, 122–128. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, Z.; Shen, M.; Rong, L.; Liu, W.; Xiao, W.; Xie, J. Improve properties of sweet potato starch film using dual effects: Combination Mesona chinensis Benth polysaccharide and sodium carbonate. LWT 2021, 140, 110679. [Google Scholar] [CrossRef]
- Krstonosic, V.; Dokic, L.; Nikolic, I.; Milanovic, M. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll. 2015, 45, 9–17. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Shen, G.; Zhan, Y. Paper conservation with an aqueous NaOH/urea cellulose solution. Cellulose 2019, 26, 4589–4599. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Xu, Q.; Zhang, H.; Yang, Y. Thermal, Rheological, Structural and Adhesive Properties of Wheat Starch Gels with Different Potassium Alum Contents. Molecules 2023, 28, 6670. [Google Scholar] [CrossRef]
- Funami, T.; Kataoka, Y.; Omoto, T.; Goto, Y.; Asai, I.; Nishinari, K. Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch. Food Hydrocoll. 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Satrapai, S.; Suphantharika, M. Influence of spent brewer’s yeast beta-glucan on gelatinization and retrogradation of rice starch. Carbohydr. Polym. 2007, 67, 500–510. [Google Scholar] [CrossRef]
- Kim, C.; Lee, S.P.; Yoo, B. Dynamic rheology of rice starch-galactomannan mixtures in the aging process. Starch-Starke 2006, 58, 35–43. [Google Scholar] [CrossRef]
- Symons, L.J.; Brennan, C.S. The effect of barley beta-glucan fiber fractions on starch gelatinization and pasting characteristics. J. Food Sci. 2004, 69, C257–C261. [Google Scholar] [CrossRef]
- Chaisawang, M.; Suphantharika, M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocoll. 2006, 20, 641–649. [Google Scholar] [CrossRef]
- Kruger, A.; Ferrero, C.; Zaritzky, N.E. Modelling corn starch swelling in batch systems: Effect of sucrose and hydrocolloids. J. Food Eng. 2003, 58, 125–133. [Google Scholar] [CrossRef]
- Banchathanakij, R.; Suphantharika, M. Effect of different beta-glucans on the gelatinisation and retrogradation of rice starch. Food Chem. 2009, 114, 5–14. [Google Scholar] [CrossRef]
- Achayuthakan, P.; Suphantharika, M. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydr. Polym. 2008, 71, 9–17. [Google Scholar] [CrossRef]
- Huang, M.; Kennedy, J.F.; Li, B.; Xu, X.; Xie, B.J. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: A texture profile analysis study. Carbohydr. Polym. 2007, 69, 411–418. [Google Scholar] [CrossRef]
- Zhao, D.; Deng, Y.; Han, D.; Tan, L.; Ding, Y.; Zhou, Z.; Xu, H.; Guo, Y. Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydr. Polym. 2019, 204, 247–254. [Google Scholar] [CrossRef]
- Ren, Y.; Rong, L.; Shen, M.; Liu, W.; Xiao, W.; Luo, Y.; Xie, J. Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. Carbohydr. Polym. 2020, 240, 116316. [Google Scholar] [CrossRef]
- Wang, S.; Luo, H.; Zhang, J.; Zhang, Y.; He, Z.; Wang, S. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. J. Agric. Food Chem. 2014, 62, 3636–3643. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.L.; Song, K.B. Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll. 2019, 97, 105198. [Google Scholar] [CrossRef]
- Dang, K.M.; Yoksan, R. Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr. Polym. 2015, 115, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shen, M.; Li, E.; Xiao, Y.; Wen, H.; Ren, Y.; Xie, J. Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydr. Polym. 2020, 230, 115713. [Google Scholar] [CrossRef]
BSP Conc. | PV (cP) | TV (cP) | BD (cP) | FV (cP) | SB (cP) |
---|---|---|---|---|---|
0% | 899 ± 18 a | 720 ± 14 a | 179 ± 4 a | 1093 ± 21 a | 373 ± 7 a |
0.05% | 921 ± 20 a | 737 ± 15 ab | 184 ± 5 a | 1132 ± 20 ab | 395 ± 5 a |
0.1% | 955 ± 27 ab | 740 ± 17 ab | 215 ± 10 b | 1180 ± 23 b | 440 ± 6 b |
0.2% | 1181 ± 49 c | 750 ± 20 b | 431 ± 29 d | 1448 ± 36 d | 698 ± 16 d |
0.3% | 1004 ± 30 b | 732 ± 14 ab | 272 ± 16 c | 1308 ± 28 c | 576 ± 14 c |
BSP Conc. | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) |
---|---|---|---|---|
0% | 55.69 ± 0.17 a | 61.13 ± 0.21 a | 65.69 ± 0.33 a | 1.566 ± 0.025 a |
0.05% | 55.70 ± 0.07 a | 61.17 ± 0.09 a | 65.65 ± 0.24 a | 1.557 ± 0.012 a |
0.1% | 55.77 ± 0.05 a | 61.13 ± 0.10 a | 65.54 ± 0.19 a | 1.533 ± 0.024 a |
0.2% | 55.89 ± 0.12 ab | 61.29 ± 0.13 a | 65.81 ± 0.20 a | 1.510 ± 0.073 a |
0.3% | 55.98 ± 0.10 b | 61.29 ± 0.07 a | 65.57 ± 0.12 a | 1.500 ± 0.009 a |
BSP Conc. | Up | Down | Hysteresis Loop | ||||||
---|---|---|---|---|---|---|---|---|---|
τ0 (Pa) | K (Pa·sn) | n (-) | R2 | τ0 (Pa) | K (Pa·sn) | n (-) | R2 | ||
0% | 1.55 ± 0.17 a | 0.97 ± 0.07 a | 0.44 ± 0.05 a | 0.995 | 1.07 ± 0.12 a | 0.45 ± 0.02 a | 0.55 ± 0.03 a | 0.997 | 1342 ± 101 a |
0.05% | 2.94 ± 0.21 b | 0.87 ± 0.09 a | 0.49 ± 0.01 ab | 0.995 | 1.48 ± 0.16 b | 0.50 ± 0.08 ab | 0.57 ± 0.06 a | 0.997 | 2042 ± 127 b |
0.1% | 4.07 ± 0.29 c | 1.38 ± 0.13 b | 0.48 ± 0.04 ab | 0.996 | 3.51 ± 0.23 c | 0.57 ± 0.04 b | 0.60 ± 0.02 a | 0.990 | 2960 ± 204 d |
0.2% | 5.66 ± 0.13 d | 1.69 ± 0.05 c | 0.50 ± 0.07 ab | 0.995 | 3.76 ± 0.27 cd | 1.11 ± 0.06 d | 0.56 ± 0.07 a | 0.996 | 3113 ± 237 d |
0.3% | 6.26 ± 0.38 e | 1.26 ± 0.07 b | 0.57 ± 0.05 b | 0.997 | 3.97 ± 0.11 d | 1.00 ± 0.03 c | 0.60 ± 0.03 a | 0.997 | 2490 ± 173 c |
BSP Conc. | Tearing Strength (mN·m2/S) | Folding Endurance | Tensile Strength (kN/m) | Breaking Elongation (%) |
---|---|---|---|---|
0% | 3.47 ± 0.30 a | 1.89 ± 0.05 a | 1.17 ± 0.08 a | 0.92 ± 0.16 a |
0.05% | 3.63 ± 0.43 a | 2.05 ± 0.04 ab | 1.25 ± 0.11 ab | 1.07 ± 0.07 ab |
0.1% | 4.25 ± 0.28 b | 2.14 ± 0.14 bc | 1.31 ± 0.05 ab | 1.10 ± 0.11 ab |
0.2% | 4.69 ± 0.25 b | 2.28 ± 0.08 c | 1.32 ± 0.12 ab | 1.13 ± 0.10 ab |
0.3% | 4.75 ± 0.26 b | 2.47 ± 0.13 d | 1.43 ± 0.13 b | 1.17 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Xu, Q.; Yan, T.; Zhang, H.; Yang, Y. Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch. Polymers 2023, 15, 4721. https://doi.org/10.3390/polym15244721
Zhao H, Xu Q, Yan T, Zhang H, Yang Y. Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch. Polymers. 2023; 15(24):4721. https://doi.org/10.3390/polym15244721
Chicago/Turabian StyleZhao, Haibo, Qiang Xu, Tianlan Yan, Hongdong Zhang, and Yuliang Yang. 2023. "Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch" Polymers 15, no. 24: 4721. https://doi.org/10.3390/polym15244721
APA StyleZhao, H., Xu, Q., Yan, T., Zhang, H., & Yang, Y. (2023). Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch. Polymers, 15(24), 4721. https://doi.org/10.3390/polym15244721