Siloxane-Modified UV-Curable Castor-Oil-Based Waterborne Polyurethane Superhydrophobic Coatings
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Synthesis of Silicone-Modified Castor-Oil-Based UV-Curable Waterborne Polyurethane (SCWPU)
2.3. Preparation of FAS−17—Modified Silica Nanoparticles
2.4. Preparation of Films and Coatings
2.5. Tests and Characterization
3. Results and Discussion
3.1. Structural Characterization and Elemental Composition of OH−PDMS—Modified Castor-Oil-Based Waterborne Polyurethane
3.2. Stability of OH−PDMS—Modified Castor-Oil-Based Waterborne Polyurethane Emulsions
3.3. Preferred Formulations for SCWPU Coating Film with Hydrophobic Properties
3.3.1. Water Contact Angle and Surface Morphology of SCWPU Coating
3.3.2. Mechanical and Thermodynamic Properties of SCWPU-Coated Film
3.3.3. Performance of SCWPU Coatings
3.4. Characterization and Analysis of Superhydrophobic Coatings
3.4.1. FTIR and EDS Analysis
3.4.2. Water Contact Angle and Microstructure Analyses
3.4.3. Two- and Three-Dimensional Characterization of AFM
3.4.4. Characterization of Coating Self-Cleaning Properties
3.4.5. Characterization and Analysis of Coating Film Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhang, S.G.; Mu, P.; Wang, X.; Li, S.; Qiao, L.; Mu, H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int. J. Mol. Sci. 2023, 24, 9675. [Google Scholar] [CrossRef]
- Uttam, M.; Lynn, D.M. Restoration of Superhydrophobicity in Crushed Polymer Films by Treatment with Water: Self-Healing and Recovery of Damaged Topographic Features Aided by an Unlikely Source. Adv. Mater. 2013, 25, 5104–5108. [Google Scholar] [CrossRef]
- Si, Y.; Dong, Z.; Jiang, L. Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials. ACS Cent. Sci. 2018, 4, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, J.; Yue, B.; Wu, J.; Yu, Y.; Hu, J.; Qu, J.; Tian, D. Robust, Anti-Icing, and Anti-Fouling Superhydrophobic Coatings Enabled by Water-Based Coating Solution. Prog. Org. Coat. 2023, 182, 107700. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, Q.; Zhang, W.; Liu, L.; Liang, H.; Quirino, R.L.; Chen, J.; Liu, M.; Lu, Q.; Zhang, C. Tunable Thermo-Physical Performance of Castor Oil-Based Polyurethanes with Tailored Release of Coated Fertilizers. J. Clean. Prod. 2019, 210, 1207–1215. [Google Scholar] [CrossRef]
- Dong, B.; Yuan, Y.; Luo, J.; Dong, L.; Liu, R.; Liu, X. Acryloyl-Group Functionalized Graphene for Enhancing Thermal and Mechanical Properties of Acrylated Epoxidized Soybean Oil UV-Curable Based Coatings. Prog. Org. Coat. 2018, 118, 57–65. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, S.; Wang, D.; Li, Y.; Zheng, P.; Gao, L.; Huo, D.; Cheng, L.; Wei, S. Study on Antibacterial Wood Coatings with Soybean Protein Isolate Nano-Silver Hydrosol. Prog. Org. Coat. 2022, 165, 106766. [Google Scholar] [CrossRef] [PubMed]
- Venkateswara Rao, A.; Kulkarni, M.M.; Bhagat, S.D. Transport of Liquids Using Superhydrophobic Aerogels. J. Colloid Interface Sci. 2005, 285, 413–418. [Google Scholar] [CrossRef]
- Jisr, R.M.; Rmaile, H.H.; Rmaile, J.B. Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes. Angew. Chem. Int. Ed Engl. 2005, 44, 782–785. [Google Scholar] [CrossRef]
- Kako, T.; Nakajima, A.; Irie, H.; Kato, Z.; Uematsu, K.; Watanabe, T.; Hashimoto, K. Adhesion and Sliding of Wet Snow on a Super-Hydrophobic Surface with Hydrophilic Channels. J. Mater. Sci. 2004, 39, 547–555. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, Z.; Wang, W.; Liu, W. Effect of Polytetrafluoroethylene Gradient-Distribution on the Hydrophobic and Tribological Properties of Polyphenylene Sulfide Composite Coating. Surf. Coat. Technol. 2009, 203, 1516–1522. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, G.; Tong, Q.; Yang, W.; Hao, W. Fluorine-Free Superhydrophobic Coatings from Polydimethylsiloxane for Sustainable Chemical Engineering: Preparation Methods and Applications. Chem. Eng. J. 2021, 426, 130829. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, H.; Feng, B.; Gao, Z.; Wang, D.; Wei, S. Embedded Polyhedral SiO2/Castor Oil-Based WPU Shell-Core Hybrid Coating via Self-Assembly Sol-Gel Process. Prog. Org. Coat. 2020, 141, 105540. [Google Scholar] [CrossRef]
- Kim, K.-D.; Seo, H.O.; Sim, C.W.; Jeong, M.-G.; Kim, Y.D.; Lim, D.C. Preparation of Highly Stable Superhydrophobic TiO2 Surfaces with Completely Suppressed Photocatalytic Activity. Prog. Org. Coat. 2013, 76, 596–600. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Du, W.; Sun, S.; Zhao, B.; Cheng, Y. Preparation and Properties of Hydrophobic Polyurethane Based on Silane Modification. Polymers 2023, 15, 1759. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Xu, K.; Zhang, N.; Lu, C.; Zhang, Q.; Yu, L.; Feng, F.; Li, X. In Situ Incorporation of Diamino Silane Group into Waterborne Polyurethane for Enhancing Surface Hydrophobicity of Coating. Molecules 2019, 24, 1667. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Lu, M.; Rui, X. The Effect of Polyether Functional Polydimethylsiloxane on Surface and Thermal Properties of Waterborne Polyurethane. Appl. Surf. Sci. 2017, 399, 272–281. [Google Scholar] [CrossRef]
- Stefanović, I.S.; Džunuzović, J.V.; Džunuzović, E.S.; Brzić, S.J.; Jasiukaitytė-Grojzdek, E.; Basagni, A.; Marega, C. Tailoring the Properties of Waterborne Polyurethanes by Incorporating Different Content of Poly(Dimethylsiloxane). Prog. Org. Coat. 2021, 161, 106474. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, J.; Li, Z.; Luo, J.; Wang, S.; Tang, J.; Wang, P.; Wang, D.; Wang, X.; Hu, X.; et al. Preparation of Functional ZNO Nanoparticles and Their Application as UV Photosensitizer and Reinforcing Agent for Waterborne Polyurethane Acrylate Composite Coating. J. Appl. Polym. Sci. 2023, 140, e53528. [Google Scholar] [CrossRef]
- Khandan Barani, A.; Roudini, G.; Barahuie, F.; Binti Masuri, S.U. Design of Hydrophobic Polyurethane–Magnetite Iron Oxide-Titanium Dioxide Nanocomposites for Oil-Water Separation. Heliyon 2023, 9, e15580. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, W.-C.; Li, Q.; Khan, M.R.; Hu, G.-H.; Liu, Y.; Wu, W.; Huang, C.-X.; Li, R.K.Y. Recent Advances in Superhydrophobic Polyurethane: Preparations and Applications. Adv. Colloid Interface Sci. 2022, 303, 102644. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Chen, Q.; Wang, S.; Zhao, J.; Ai, L.; Chen, Q.; Lin, X.; Hu, C. Fabrication of a Superhydrophobic SiO2 Coating with Anticorrosive Protection. ChemistrySelect 2023, 8, e202300172. [Google Scholar] [CrossRef]
- Yue, D.; Lin, S.; Cao, M.; Lin, W.; Zhang, X. Fabrication of Transparent and Durable Superhydrophobic Polysiloxane/SiO2 Coating on the Wood Surface. Cellulose 2021, 28, 3745–3758. [Google Scholar] [CrossRef]
- Wei, X.; Niu, X. Recent Advances in Superhydrophobic Surfaces and Applications on Wood. Polymers 2023, 15, 1682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Deng, H.; Xia, L.; Shen, L.; Zhang, C.; Lu, Q.; Sun, S. Semi-Interpenetrating Polymer Networks Prepared from Castor Oil-Based Waterborne Polyurethanes and Carboxymethyl Chitosan. Carbohydr. Polym. 2021, 256, 117507. [Google Scholar] [CrossRef] [PubMed]
- Paraskar, P.M.; Prabhudesai, M.S.; Hatkar, V.M.; Kulkarni, R.D. Vegetable Oil Based Polyurethane Coatings—A Sustainable Approach: A Review. Prog. Org. Coat. 2021, 156, 106267. [Google Scholar] [CrossRef]
- Feng, B.; Wang, D.; Li, Y.; Qian, J.; Yu, C.; Wang, M.; Luo, D.; Wei, S. Mechanical Properties of a Soy Protein Isolate-Grafted-Acrylate (SGA) Copolymer Used for Wood Coatings. Polymers 2020, 12, 1137. [Google Scholar] [CrossRef]
- Kumar, S.; Tewatia, P.; Samota, S.; Rattan, G.; Kaushik, A. Ameliorating Properties of Castor Oil Based Polyurethane Hybrid Nanocomposites via Synergistic Addition of Graphene and Cellulose Nanofibers. J. Ind. Eng. Chem. 2022, 109, 492–509. [Google Scholar] [CrossRef]
- Gong, R.; Cao, H.; Zhang, H.; Qiao, L.; Wang, X. UV-Curable Cationic Waterborne Polyurethane from CO2-Polyol with Excellent Water Resistance. Polymer 2021, 218, 123536. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Zhao, L.; Hou, X.; Liu, L.; Feng, B.; Li, M.; Zheng, P.; Zhao, X.; Wei, S. UV LED Curable Epoxy Soybean-Oil-Based Waterborne PUA Resin for Wood Coatings. Prog. Org. Coat. 2021, 151, 105942. [Google Scholar] [CrossRef]
- Eduok, U.; Faye, O.; Szpunar, J. Recent Developments and Applications of Protective Silicone Coatings: A Review of PDMS Functional Materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Wang, C.-S.; Zhang, J.; Wang, H.; He, M.; Ding, L.; Zhao, W.-W. Simultaneously Improving the Fracture Toughness and Flame Retardancy of Soybean Oil-Based Waterborne Polyurethane Coatings by Phosphorus-Nitrogen Chain Extender. Ind. Crops Prod. 2021, 163, 113328. [Google Scholar] [CrossRef]
- Su, J.; Cai, M.; Zhu, H.; Li, W.; Kang, P.; Xue, J.; Hu, W.; Li, D.; Wei, S.; Gao, Z. Self-Initiated UV-Curable Polyacrylate Using Soybean Isolate as Hydrogen Donor. Prog. Org. Coat. 2023, 174, 107238. [Google Scholar] [CrossRef]
- Meng, L.; Qiu, H.; Wang, D.; Feng, B.; Di, M.; Shi, J.; Wei, S. Castor-Oil-Based Waterborne Acrylate/SiO2 Hybrid Coatings Prepared via Sol–Gel and Thiol-Ene Reactions. Prog. Org. Coat. 2020, 140, 105492. [Google Scholar] [CrossRef]
- Liang, H.; Liu, L.; Lu, J.; Chen, M.; Zhang, C. Castor Oil-Based Cationic Waterborne Polyurethane Dispersions: Storage Stability, Thermo-Physical Properties and Antibacterial Properties. Ind. Crops Prod. 2018, 117, 169–178. [Google Scholar] [CrossRef]
- Cai, M.; Duan, Y.; Shi, T.; Su, J.; Chen, K.; Ma, D.; Wang, F.; Qin, J.; Wei, S.; Gao, Z. Multiple Effects Achieved with a Single Agent of O-Carboxymethyl Chitosan Exhibiting Cross-Linking and Antibacterial Properties. Prog. Org. Coat. 2023, 175, 107345. [Google Scholar] [CrossRef]
- Oprea, S. Properties of Polymer Networks Prepared by Blending Polyester Urethane Acrylate with Acrylated Epoxidized Soybean Oil. J. Mater. Sci. 2010, 45, 1315–1320. [Google Scholar] [CrossRef]
- Man, L.; Feng, Y.; Hu, Y.; Yuan, T.; Yang, Z. A Renewable and Multifunctional Eco-Friendly Coating from Novel Tung Oil-Based Cationic Waterborne Polyurethane Dispersions. J. Clean. Prod. 2019, 241, 118341. [Google Scholar] [CrossRef]
- Jia, Y.; Meng, F.; Yang, J.; Liu, Z. Enhanced Thermal Conductivity of Epoxy Polymer Alloys Blend with Fluorine-Contained Hybrid Silicon Dioxide. J. Polym. Res. 2022, 29, 331. [Google Scholar] [CrossRef]
- Li, K.; Shen, Y.; Fei, G.; Wang, H.; Li, J. Preparation and Properties of Castor Oil/Pentaerythritol Triacrylate-Based UV Curable Waterborne Polyurethane Acrylate. Prog. Org. Coat. 2015, 78, 146–154. [Google Scholar] [CrossRef]
- Zhang, W.; Guan, X.; Qiu, X.; Gao, T.; Yu, W.; Zhang, M.; Song, L.; Liu, D.; Dong, J.; Jiang, Z.; et al. Bioactive Composite Janus Nanofibrous Membranes Loading Ciprofloxacin and Astaxanthin for Enhanced Healing of Full-Thickness Skin Defect Wounds. Appl. Surf. Sci. 2023, 610, 155290. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Kumar Sadasivuni, K.; Xing, R.; Liu, S. Self—Cleaning Superhydrophobic Coatings: Potential Industrial Applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
Emulsion Properties | SCWPU-7 | SCWPU-8 | SCWPU-9 | SCWPU-10 | SCWPU-11 |
---|---|---|---|---|---|
Stability | unstratified | unstratified | unstratified | unstratified | unstratified |
Color | light yellow | milky white | milky white | milky white | milky white |
Bluish light phenomenon | ++ | ++ | + | + | + |
Solid content/% | 29.32 | 28.64 | 27.81 | 28.93 | 27.15 |
Storage Stability | >6 months | >6 months | >6 months | >6 months | >6 months |
Transparency | transparent | semitransparent | semitransparent | non-transparent | non-transparent |
Average particle size/nm | 51.24 | 82.42 | 76.66 | 154.50 | 186.27 |
Polydispersity index | 0.069 | 0.078 | 0.109 | 0.175 | 0.191 |
Samples | Tensile Strength/MPa | Elongation at Break/% | Modulus of Elasticity/MPa |
---|---|---|---|
SCWPU-7 | 4.49 ± 0.25 | 665.78 ± 28.87 | 0.55 ± 0.02 |
SCWPU-8 | 6.31 ± 0.41 | 324.66 ± 16.80 | 11.94 ± 0.09 |
SCWPU-9 | 9.53 ± 0.35 | 169.70 ± 12.37 | 82.57 ± 1.36 |
SCWPU-10 | 9.95 ± 0.44 | 17.54 ± 0.21 | 147.99 ± 2.06 |
SCWPU-11 | 10.65 ± 0.61 | 15.26 ± 0.16 | 167.92 ± 2.93 |
Samples | TGA | DMA | |||||||
---|---|---|---|---|---|---|---|---|---|
Td5% | Td10% | Td50% | Tdmax | Char Yield | E | Tg | E’ | υe | |
(%) | (%) | (%) | (%) | (%) | (at 25 °C, MPa) | (°C) | (at Tg + 20 °C, MPa) | (mol/m3) | |
SCWPU-7 | 197.86 | 255.62 | 323.97 | 309.14 | 0.002 | 515.96 | 51.74 | 0.85 | 99.16 |
SCWPU-8 | 205.67 | 253.41 | 325.43 | 311.92 | 2.849 | 1259.21 | 67.83 | 1.66 | 183.91 |
SCWPU-9 | 206.97 | 253.22 | 317.80 | 309.84 | 3.964 | 886.42 | 73.09 | 1.47 | 160.49 |
SCWPU-10 | 198.50 | 249.60 | 317.60 | 307.38 | 4.218 | 436.45 | 64.13 | 0.80 | 89.44 |
SCWPU-11 | 193.10 | 249.05 | 320.20 | 311.95 | 6.440 | 258.57 | 46.33 | 1.63 | 192.50 |
Glossiness (60 °C) | Adhesion | Pencil Hardness | Roughness (µm) Ra | |
---|---|---|---|---|
SCWPU-7 | 81.67 | 0 | 4H | 0.20 |
SCWPU-8 | 68.30 | 0 | 4H | 0.21 |
SCWPU-9 | 68.93 | 0 | 4H | 0.29 |
SCWPU-10 | 65.67 | 0 | 4H | 0.33 |
SCWPU-11 | 50.93 | 0 | 4H | 0.35 |
Samples | Glossiness (60 °C) | Adhesion | Pencil Hardness |
---|---|---|---|
SCWPU/FAS−SiO2—10% | 35.33 | 0 | 4H |
SCWPU/FAS−SiO2—20% | 23.75 | 0 | 4H |
SCWPU/FAS−SiO2—30% | 10.49 | 0 | 4H |
SCWPU/FAS−SiO2—40% | 5.90 | 1 | 5H |
SCWPU/FAS−SiO2—50% | 2.61 | 2 | 5H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Zhang, Z.; Tan, P.; Zhou, J.; Ma, X.; Shao, Y.; Wei, S.; Gao, Z. Siloxane-Modified UV-Curable Castor-Oil-Based Waterborne Polyurethane Superhydrophobic Coatings. Polymers 2023, 15, 4588. https://doi.org/10.3390/polym15234588
Yu Q, Zhang Z, Tan P, Zhou J, Ma X, Shao Y, Wei S, Gao Z. Siloxane-Modified UV-Curable Castor-Oil-Based Waterborne Polyurethane Superhydrophobic Coatings. Polymers. 2023; 15(23):4588. https://doi.org/10.3390/polym15234588
Chicago/Turabian StyleYu, Qianhui, Zengshuai Zhang, Pengyun Tan, Jiahao Zhou, Xiaojing Ma, Yingqing Shao, Shuangying Wei, and Zhenhua Gao. 2023. "Siloxane-Modified UV-Curable Castor-Oil-Based Waterborne Polyurethane Superhydrophobic Coatings" Polymers 15, no. 23: 4588. https://doi.org/10.3390/polym15234588
APA StyleYu, Q., Zhang, Z., Tan, P., Zhou, J., Ma, X., Shao, Y., Wei, S., & Gao, Z. (2023). Siloxane-Modified UV-Curable Castor-Oil-Based Waterborne Polyurethane Superhydrophobic Coatings. Polymers, 15(23), 4588. https://doi.org/10.3390/polym15234588