External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks
Abstract
:1. Introduction
2. Dynamic Bonds Used for Welding
2.1. Supramolecular Interactions
2.2. Dynamic Covalent Bonds
3. DCN Material Systems Capable of Welding
3.1. Epoxy DCNs: Typical Class of Thermo-Polymerization
3.2. Acrylate-Based DCNs: Typical Class of Photo-Polymerization
4. Chemical Welding of DCNs
4.1. Thermal-Induced Welding
4.2. Photo-Induced Welding
4.3. Solvent-Assisted Welding
4.4. Electrical/Magnetic-Induced Welding
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-MI | 2-Methylimidezale |
4-AFD | 4-aminophenyl disulfide |
6FDA | 4,4’-hexafluoroisopropylidene diphthalic anhydride |
AA | acrylic acid |
AAAB | acrylamidoazobenzene |
AB | 3-amino-benzylamine |
ACAT | amino-capped aniline trimer |
AET | 2-aminoethanethiol |
AFM-NM | atomic force microscopy nanomechanical mapping |
AM | acrylamide |
AMF | alternating magnetic field |
APD | 4,4′-dithiodiphenylamine |
BADA | bisphenol A epoxy diacrylate |
b-CNTs | branched multi-walled carbon nanotubes |
BGPDS | bis (4-glycidyloxyphenyl) disulfide |
[Bmim]DPPOO | synthesized by 1-butyl-3-methylimidazolium bromide and diphenyl hydrogen phosphate |
BMI | 1,1′-(methylenedi-4,1-phenylene)bismaleimide |
BPA.GDA | bisphenol A glycerolate (1 glycerol/phenol) diacrylate |
BQDO | 1,4-Benzoquinone dioxime |
CANs | covalent adaptable networks |
CD | carbon nanodot |
CNTs | carbon nanotubes |
CQ | camphorquinone |
D400 | poly(propylene glycol) bis(2-aminopropyl ether) |
DABo | diallyl boronate |
DAP | diallyl phthalate |
DBTBL | dibutyltin dilaurate |
DCBs | dynamic covalent bonds |
DDM | 4,4′-diaminodiphenylmethane |
DETA | diethylenetriamine |
DG2A | glycerol 1,3-diglycerolate diacrylate |
DGEBA | diglycidyl ether of bisphenol A |
DGEBF | diglycidyl ether of bisphenol F |
DIDG | diimine-diglycidyl |
DIPEA | N,N-diisopropylethylamine |
DLP | digital light processing |
DMAP | 4-(dimethylamino)pyridine |
DMF | N,N-dimethylformamide |
DMPA | 2,2-dimethoxy-2-phenylacetophenone |
DPD | 2,5-dimethyl-1, 4-phenylenediamineDCNs: dynamic cross-linked networks |
DSEP | N,N′-(disulfanediylbis(4,1-phenylene))bis(1-(4-(oxiran-2-ylmethoxy)phenyl)methanimine) |
DTDA | 4,4′-dithiodibutyric acid |
EDA | ethylenediamine |
EDDET | 2,2′-(ethylenedioxy)-diethanethiol |
EDMAB | ethyl 4-dimethylaminobenzoate |
EGMA | bis-mercaptoacetate |
ESO | epoxidized soybean oil |
FA | furfurylamine |
GA | glutaric anhydride |
GL | glycyrrhizic acid |
GLY | glycerine |
GO | graphene oxide |
HEA | 2-hydroxyethyl acrylate |
HEDS | 2,2′-dithiodiethanol |
HHMPA | hexahydro-4-methylphthalic anhydride |
HPPA | 2-hydroxy-3-phenoxypropyl acrylate |
IBOA | isobornyl acrylate |
IEM | 2-isocy-anatoethyl methacrylate |
IPDI | isophorone diisocyanate |
LTI | Lysine triisocyanate |
MD simulation | molecular dynamics simulation |
Miramer A99 | methacrylate phosphate |
MMA | methyl methacrylate |
MWCNTs | multi-walled carbon nanotubes |
NGDE | neopentyl glycol diglycidyl ether |
MXDA | m-xylylene diamine |
NIR | near-infrared |
ODA | 4,4′-diaminodiphenyl ether |
ODPA | 4,4′-oxydiphthalic anhydride |
PB | polybutadiene |
PC | polycarbonate |
PCL | polycaprolactone |
PDA | polydopamine |
PDMS | polydimethylsiloxane |
PEA | 2-phenoxyethyl acrylate |
PEG | polyethylene glycol |
PEGDGE | poly(ethylene glycol) diglycidyl ether |
PEO | polyethylene oxide |
PETMP | pentaerithrytol tetrakis(3-mercaptopropionate) |
PI | polyimine |
PIP | 1,3-bis (4-piperidyl) propane |
PMMA | poly(methylmethacrylate) |
Poly(BPA-co-EPI) | poly-bisphenol A-co-epichlorohydrin glycidyl end-capped |
PPIA | diacrylate cross-linker containing crystallizable PCL and dynamic hindered urea linkages |
PTU | polythiourethane |
PU | polyurethane |
RERs | reversible exchange reactions |
SA | suberic acid |
SCHO | 2,2′-dithiodibenzaldehyde |
SLA | stereolithography |
Tg | glass transition temperature |
Tv | topology freezing transition temperature |
TA | terephthalaldehyde |
TAD | terephthalaldehyde |
TBD | triazobicyclodecene |
TDS | thiuram disulfide |
TEA | triethanolamine |
TENG | triboelectric nanogenerator |
TGIC | triglycidyl isocyanurate |
TGMDA | tetraglycidyl methylene dianiline |
THDI | hexamethylene diisocyanate trimer |
THFA | tetrahydro-furfuryl acrylate |
TMPMP | trimethylolpropane tri(3-mercaptopropionate) |
TMPTE | trimethylolpropane triglycidyl ether |
TPA | terephthaldehyde |
TREN | tris(2-aminoethyl)amine |
TTC | trithiocarbonate |
TUEG | poly(ether-thiourea) |
UDETA | aminoethylimidazolidone |
UMA | urethane monoacrylate |
UV | ultraviolet |
(UVR) solution | UV-curable recycling solution |
W-L-F equation | Williams-Landel-Ferry equation |
xLCEs | liquid-crystal elastomers with exchangeable links |
ZDMA | zinc dimethacrylate |
References
- Amancio-Filho, S.T.; dos Santos, J.F. Joining of polymers and polymer–metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Vashchuk, A.; Kobzar, Y. Chemical welding of polymer networks. Mater. Today Chem. 2022, 24, 100803. [Google Scholar] [CrossRef]
- Yussuf, A.A.; Sbarski, I.; Hayes, J.P.; Solomon, M.; Tran, N. Microwave welding of polymeric-microfluidic devices. J. Micromech. Microeng. 2005, 15, 1692. [Google Scholar] [CrossRef]
- Lee, H.; Ryu, J.; Kim, J.R.; Kim, M.; Kim, I.S.; Sohn, D. Reattachment of crosslinked poly(ethylene oxide) via chain interpenetration and reentanglement induced by a simple wetting process. Polymer 2017, 129, 221–227. [Google Scholar] [CrossRef]
- Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.-M. From Supramolecular Chemistry Towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev. 2007, 36, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, J.; Kushner, A.M.; Ziller, J.; Guan, Z. Self-Healing Supramolecular Block Copolymers. Angew. Chem. Int. Ed. 2012, 51, 10561–10565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Urban, M.W. Facile UV-healable polyethylenimine–copper (C2H5N–Cu) supramolecular polymer networks. Polym. Chem. 2013, 4, 4897–4901. [Google Scholar] [CrossRef]
- Sun, T.L.; Kurokawa, T.; Kuroda, S.; Ihsan, A.B.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937. [Google Scholar] [CrossRef]
- Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H.J.; Zhang, W. Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks. Adv. Mater. 2016, 28, 2904–2909. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Yang, Y.; Li, Z.; Wei, Y.; Ji, Y. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci. Adv. 2022, 8, eabo6021. [Google Scholar] [CrossRef]
- Liu, W.-X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z.-X.; Xu, J. Oxime-Based and Catalyst-Free Dynamic Covalent Polyurethanes. J. Am. Chem. Soc. 2017, 139, 8678–8684. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, X.; Yu, R.; Zhao, X.-J.; Zhang, Y.; Huang, W. A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration. J. Mater. Chem. A 2018, 6, 10184–10188. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, L.; Zhao, Y.; Wang, Y.; Lei, J. Reprocessable and Shape Memory Thermosetting Epoxy Resins Based on Silyl Ether Equilibration. Macromol. Chem. Phys. 2019, 220, 1900149. [Google Scholar] [CrossRef]
- Putnam-Neeb, A.A.; Kaiser, J.M.; Hubbard, A.M.; Street, D.P.; Dickerson, M.B.; Nepal, D.; Baldwin, L.A. Self-healing and polymer welding of soft and stiff epoxy thermosets via silanolates. Adv. Compos. Hybrid Mater. 2022, 5, 3068–3080. [Google Scholar] [CrossRef]
- Adzima, B.J.; Kloxin, C.J.; Bowman, C.N. Externally Triggered Healing of a Thermoreversible Covalent Network via Self-Limited Hysteresis Heating. Adv. Mater. 2010, 22, 2784–2787. [Google Scholar] [CrossRef]
- Bowman, C.N.; Kloxin, C.J. Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks. Angew. Chem. Int. Ed. 2012, 51, 4272–4274. [Google Scholar] [CrossRef] [PubMed]
- Kloxin, C.J.; Bowman, C.N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42, 7161–7173. [Google Scholar] [CrossRef]
- Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34, 581–604. [Google Scholar] [CrossRef]
- Podgórski, M.; Fairbanks, B.D.; Kirkpatrick, B.E.; McBride, M.; Martinez, A.; Dobson, A.; Bongiardina, N.J.; Bowman, C.N. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). Adv. Mater. 2020, 32, 1906876. [Google Scholar] [CrossRef]
- Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667. [Google Scholar] [CrossRef]
- Zhu, G.; Hou, Y.; Xiang, J.; Xu, J.; Zhao, N. Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties. ACS Appl. Mater. Interfaces 2021, 13, 34954–34961. [Google Scholar] [CrossRef]
- Xie, D.-M.; Zhang, Y.-X.; Li, Y.-D.; Weng, Y.; Zeng, J.-B. Castor oil-derived sustainable poly(urethane urea) covalent adaptable networks with tunable mechanical properties and multiple recyclability based on reversible piperidine-urea bond. Chem. Eng. J. 2022, 446, 137071. [Google Scholar] [CrossRef]
- Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Adv. Mater. 2012, 24, 3975–3980. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55, 11421–11425. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, L.; Wu, R.; Niu, Z.; Fan, W.; Dai, Q.; Cui, L.; He, J.; Bai, C. Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units. ACS Appl. Mater. Interfaces 2022, 14, 3344–3355. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xia, Z.; Huang, L.; Wu, R.; Niu, Z.; Fan, W.; Dai, Q.; He, J.; Bai, C. Renewable Vanillin-Based Thermoplastic Polybutadiene Rubber: High Strength, Recyclability, Self-Welding, Shape Memory, and Antibacterial Properties. ACS Appl. Mater. Interfaces 2022, 14, 47025–47035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kowsari, K.; Serjouei, A.; Dunn, M.L.; Ge, Q. Reprocessable thermosets for sustainable three-dimensional printing. Nat. Commun. 2018, 9, 1831. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, B.; Wang, R.; Yang, X.; He, X.; Ye, H.; Cheng, J.; Yuan, C.; Zhang, Y.-F.; Ge, Q. Solvent-Free Upcycling Vitrimers through Digital Light Processing-Based 3D Printing and Bond Exchange Reaction. Adv. Funct. Mater. 2022, 32, 2111030. [Google Scholar] [CrossRef]
- Roig, A.; Hidalgo, P.; Ramis, X.; De la Flor, S.; Serra, À. Vitrimeric Epoxy-Amine Polyimine Networks Based on a Renewable Vanillin Derivative. ACS Appl. Polym. Mater. 2022, 4, 9341–9350. [Google Scholar] [CrossRef]
- Lei, X.; Jin, Y.; Sun, H.; Zhang, W. Rehealable imide–imine hybrid polymers with full recyclability. J. Mater. Chem. A 2017, 5, 21140–21145. [Google Scholar] [CrossRef]
- Shen, X.; Ma, Y.; Luo, S.; Tao, R.; An, D.; Wei, X.; Jin, Y.; Qiu, L.; Zhang, W. Malleable and recyclable imide–imine hybrid thermosets: Influence of imide structure on material property. Mater. Adv. 2021, 2, 4333–4338. [Google Scholar] [CrossRef]
- Taynton, P.; Yu, K.; Shoemaker, R.K.; Jin, Y.; Qi, H.J.; Zhang, W. Heat- or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer. Adv. Mater. 2014, 26, 3938–3942. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, Y.; Wang, Z.; Zhang, X.; Chen, Q.; Qian, X.; Liu, N.; Wei, Y.; Ji, Y. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. J. Mater. Chem. A 2017, 5, 6740–6746. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, J.; Zuo, H.; Ning, N.; Zhang, L.; Yu, B.; Tian, M. Photothermal-Induced Self-Healable and Reconfigurable Shape Memory Bio-Based Elastomer with Recyclable Ability. ACS Appl. Mater. Interfaces 2019, 11, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Y.; Wu, Y.; Yang, Y.; Chen, Q.; Liang, H.; Wei, Y.; Ji, Y. A magnetic solder for assembling bulk covalent adaptable network blocks. Chem. Sci. 2020, 11, 7694–7700. [Google Scholar] [CrossRef]
- Kuang, X.; Wu, S.; Ze, Q.; Yue, L.; Jin, Y.; Montgomery, S.M.; Yang, F.; Qi, H.J.; Zhao, R. Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Adv. Mater. 2021, 33, 2102113. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, L.; Chen, Z.; Zhang, Y.; Xiao, P.; Yu, S.; Wu, Y.; Zhao, X. Multi-functional epoxy vitrimers: Controllable dynamic properties, multiple-stimuli response, crack-healing and fracture-welding. Compos. Sci. Technol. 2022, 221, 109364. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Wu, H.-M.; Lin, H.-C.; Chang, C.-L.; Chou, H.-H.; Hsiao, Y.-C.; Wu, Y.-C. Entirely, Intrinsically, and Autonomously Self-Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Self-Powered Electronic Skins. Adv. Funct. Mater. 2019, 29, 1904626. [Google Scholar] [CrossRef]
- Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 2018, 4, eaaq0508. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Terentjev, E.M.; Zhang, Y.; Chen, Q.; Zhao, Y.; Wei, Y.; Ji, Y. Reprocessable Thermoset Soft Actuators. Angew. Chem. Int. Ed. 2019, 58, 17474–17479. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, H.; Chen, Z.; McDowell, M.T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Wu, M.; Sun, J. Polyelectrolyte Multilayers Impart Healability to Highly Electrically Conductive Films. Adv. Mater. 2012, 24, 4578–4582. [Google Scholar] [CrossRef]
- Whiteley, J.M.; Taynton, P.; Zhang, W.; Lee, S.-H. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix. Adv. Mater. 2015, 27, 6922–6927. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, C.; Ojha, U. Stress-Induced Shape-Shifting Materials Possessing Autonomous Self-Healing and Scratch-Resistant Ability. Chem.—Asian J. 2023, 18, e202201082. [Google Scholar] [CrossRef]
- Fang, Z.; Song, H.; Zhang, Y.; Jin, B.; Wu, J.; Zhao, Q.; Xie, T. Modular 4D Printing via Interfacial Welding of Digital Light-Controllable Dynamic Covalent Polymer Networks. Matter 2020, 2, 1187–1197. [Google Scholar] [CrossRef]
- Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J.M.; Du Prez, F.E. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25, 2451–2457. [Google Scholar] [CrossRef]
- Liu, T.; Hao, C.; Zhang, S.; Yang, X.; Wang, L.; Han, J.; Li, Y.; Xin, J.; Zhang, J. A Self-Healable High Glass Transition Temperature Bioepoxy Material Based on Vitrimer Chemistry. Macromolecules 2018, 51, 5577–5585. [Google Scholar] [CrossRef]
- Xiang, S.; Zhou, L.; Chen, R.; Zhang, K.; Chen, M. Interlocked Covalent Adaptable Networks and Composites Relying on Parallel Connection of Aromatic Disulfide and Aromatic Imine Cross-Links in Epoxy. Macromolecules 2022, 55, 10276–10284. [Google Scholar] [CrossRef]
- Yan, M.; Tang, J.; Xie, H.-L.; Ni, B.; Zhang, H.-L.; Chen, E.-Q. Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J. Mater. Chem. C 2015, 3, 8526–8534. [Google Scholar] [CrossRef]
- Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.N.; Xiong, X.M.; Wang, J.; Rong, M.Z.; Zhang, M.Q. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chem. Sci. 2016, 7, 2736–2742. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, D.; Lu, F.; Yuan, W.; Xu, X.; Zhang, Q.; Liu, H.; Shao, Q.; Guo, Z.; Huang, Y. Multistimuli-Responsive Intrinsic Self-Healing Epoxy Resin Constructed by Host–Guest Interactions. Macromolecules 2018, 51, 5294–5303. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Xu, X.; Yuan, W.; Yang, L.; Shao, Q.; Guo, Z.; Ding, T.; Huang, Y. Efficient intrinsic self-healing epoxy acrylate formed from host-guest chemistry. Polymer 2019, 164, 79–85. [Google Scholar] [CrossRef]
- Miyamae, K.; Nakahata, M.; Takashima, Y.; Harada, A. Self-Healing, Expansion–Contraction, and Shape-Memory Properties of a Preorganized Supramolecular Hydrogel through Host–Guest Interactions. Angew. Chem. Int. Ed. 2015, 54, 8984–8987. [Google Scholar] [CrossRef]
- Yu, C.; Wang, C.-F.; Chen, S. Robust Self-Healing Host–Guest Gels from Magnetocaloric Radical Polymerization. Adv. Funct. Mater. 2014, 24, 1235–1242. [Google Scholar] [CrossRef]
- Sordo, F.; Mougnier, S.-J.; Loureiro, N.P.D.; Tournilhac, F.; Michaud, V. Design of Self-Healing Supramolecular Rubbers with a Tunable Number of Chemical Cross-Links. Macromolecules 2015, 48, 4394–4402. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Wang, M.; Wang, Z.; Han, G.; Jin, L.; Lin, P.; Xia, Y.; Zhang, K. Mechanically Robust and Reprocessable Acrylate Vitrimers with Hydrogen-Bond-Integrated Networks for Photo-3D Printing. ACS Appl. Mater. Interfaces 2021, 13, 1581–1591. [Google Scholar] [CrossRef]
- Lee, D.S.; Choi, Y.-S.; Hwang, J.H.; Lee, J.-H.; Lee, W.; Ahn, S.-k.; Park, S.; Lee, J.-H.; Kim, Y.S.; Kim, D.-G. Weldable and Reprocessable Biomimetic Polymer Networks Based on a Hydrogen Bonding and Dynamic Covalent Thiourea Motif. ACS Appl. Polym. Mater. 2021, 3, 3714–3720. [Google Scholar] [CrossRef]
- Xu, W.M.; Rong, M.Z.; Zhang, M.Q. Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. J. Mater. Chem. A 2016, 4, 10683–10690. [Google Scholar] [CrossRef]
- Shaukat, U.; Rossegger, E.; Schlögl, S. Thiol–acrylate based vitrimers: From their structure–property relationship to the additive manufacturing of self-healable soft active devices. Polymer 2021, 231, 124110. [Google Scholar] [CrossRef]
- Heinzmann, C.; Coulibaly, S.; Roulin, A.; Fiore, G.L.; Weder, C. Light-Induced Bonding and Debonding with Supramolecular Adhesives. ACS Appl. Mater. Interfaces 2014, 6, 4713–4719. [Google Scholar] [CrossRef]
- Paolillo, S.; Bose, R.K.; Santana, M.H.; Grande, A.M. Intrinsic Self-Healing Epoxies in Polymer Matrix Composites (PMCs) for Aerospace Applications. Polymers 2021, 13, 201. [Google Scholar] [CrossRef]
- Du, Y.; Li, D.; Liu, L.; Gai, G. Recent Achievements of Self-Healing Graphene/Polymer Composites. Polymers 2018, 10, 114. [Google Scholar] [CrossRef]
- Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic Covalent Chemistry. Angew. Chem. Int. Ed. 2002, 41, 898–952. [Google Scholar] [CrossRef]
- Kloxin, C.J.; Scott, T.F.; Adzima, B.J.; Bowman, C.N. Covalent Adaptable Networks (CANs): A Unique Paradigm in Cross-Linked Polymers. Macromolecules 2010, 43, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Denissen, W.; Winne, J.M.; Du Prez, F.E. Vitrimers: Permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Winne, J.M.; Leibler, L.; Du Prez, F.E. Dynamic covalent chemistry in polymer networks: A mechanistic perspective. Polym. Chem. 2019, 10, 6091–6108. [Google Scholar] [CrossRef]
- Li, Q.-T.; Jiang, M.-J.; Wu, G.; Chen, L.; Chen, S.-C.; Cao, Y.-X.; Wang, Y.-Z. Photothermal Conversion Triggered Precisely Targeted Healing of Epoxy Resin Based on Thermoreversible Diels–Alder Network and Amino-Functionalized Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 20797–20807. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Liu, J.; Li, X.; Zhang, J.; Cheng, J. Recyclable Diels–Alder Furan/Maleimide Polymer Networks with Shape Memory Effect. Ind. Eng. Chem. Res. 2014, 53, 16156–16163. [Google Scholar] [CrossRef]
- Min, Y.; Huang, S.; Wang, Y.; Zhang, Z.; Du, B.; Zhang, X.; Fan, Z. Sonochemical Transformation of Epoxy–Amine Thermoset into Soluble and Reusable Polymers. Macromolecules 2015, 48, 316–322. [Google Scholar] [CrossRef]
- Bai, N.; Saito, K.; Simon, G.P. Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 2013, 4, 724–730. [Google Scholar] [CrossRef]
- Kamplain, J.W.; Bielawski, C.W. Dynamic covalent polymers based upon carbene dimerization. Chem. Commun. 2006, 1727–1729. [Google Scholar] [CrossRef]
- Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Self-Healing of Chemical Gels Cross-Linked by Diarylbibenzofuranone-Based Trigger-Free Dynamic Covalent Bonds at Room Temperature. Angew. Chem. Int. Ed. 2012, 51, 1138–1142. [Google Scholar] [CrossRef]
- Hendriks, B.; Waelkens, J.; Winne, J.M.; Du Prez, F.E. Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts. ACS Macro Lett. 2017, 6, 930–934. [Google Scholar] [CrossRef]
- Liang, H.; Wei, Y.; Ji, Y. Magnetic-responsive Covalent Adaptable Networks. Chem.—Asian J. 2023, 18, e202201177. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Zhou, Q.; Kumar Rajagopalan, K.; Thomas, E.L.; Gardea, F.; Sukhishvili, S.A. Dynamic polymer network conductive Nanocomposites: Low percolation threshold and Joule-heating-induced network plasticity. Chem. Eng. J. 2022, 443, 136400. [Google Scholar] [CrossRef]
- Zhao, S.; Abu-Omar, M.M. Catechol-Mediated Glycidylation toward Epoxy Vitrimers/Polymers with Tunable Properties. Macromolecules 2019, 52, 3646–3654. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Q.; Wang, T. Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites. ACS Appl. Mater. Interfaces 2016, 8, 21691–21699. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Wang, F.; Li, X.; Zhang, R.; Wu, Q.; Sun, P. Using Zn2+ Ionomer To Catalyze Transesterification Reaction in Epoxy Vitrimer. Ind. Eng. Chem. Res. 2019, 58, 5698–5706. [Google Scholar] [CrossRef]
- Altuna, F.I.; Pettarin, V.; Williams, R.J.J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chem. 2013, 15, 3360–3366. [Google Scholar] [CrossRef]
- Legrand, A.; Soulié-Ziakovic, C. Silica–Epoxy Vitrimer Nanocomposites. Macromolecules 2016, 49, 5893–5902. [Google Scholar] [CrossRef]
- Yang, Y.; Terentjev, E.M.; Wei, Y.; Ji, Y. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat. Commun. 2018, 9, 1906. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Yu, K.; Dunn, M.L.; Wang, T.; Qi, H.J. Solvent Assisted Pressure-Free Surface Welding and Reprocessing of Malleable Epoxy Polymers. Macromolecules 2016, 49, 5527–5537. [Google Scholar] [CrossRef]
- Robinson, L.L.; Self, J.L.; Fusi, A.D.; Bates, M.W.; Read de Alaniz, J.; Hawker, C.J.; Bates, C.M.; Sample, C.S. Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Lett. 2021, 10, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Wang, H.; Huang, X.; Huang, G.; Wu, J. Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity. Chem. Eng. J. 2019, 368, 61–70. [Google Scholar] [CrossRef]
- Wang, S.; Ma, S.; Li, Q.; Xu, X.; Wang, B.; Yuan, W.; Zhou, S.; You, S.; Zhu, J. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem. 2019, 21, 1484–1497. [Google Scholar] [CrossRef]
- Zhao, S.; Abu-Omar, M.M. Recyclable and Malleable Epoxy Thermoset Bearing Aromatic Imine Bonds. Macromolecules 2018, 51, 9816–9824. [Google Scholar] [CrossRef]
- Brutman, J.P.; Fortman, D.J.; De Hoe, G.X.; Dichtel, W.R.; Hillmyer, M.A. Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J. Phys. Chem. B 2019, 123, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Pepels, M.; Filot, I.; Klumperman, B.; Goossens, H. Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 2013, 4, 4955–4965. [Google Scholar] [CrossRef]
- Liu, C.; Park, E.; Jin, Y.; Liu, J.; Yu, Y.; Zhang, W.; Lei, S.; Hu, W. Surface-Confined Dynamic Covalent System Driven by Olefin Metathesis. Angew. Chem. Int. Ed. 2018, 57, 1869–1873. [Google Scholar] [CrossRef]
- Lu, Y.-X.; Tournilhac, F.; Leibler, L.; Guan, Z. Making Insoluble Polymer Networks Malleable via Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 8424–8427. [Google Scholar] [CrossRef]
- Nishimura, Y.; Chung, J.; Muradyan, H.; Guan, Z. Silyl Ether as a Robust and Thermally Stable Dynamic Covalent Motif for Malleable Polymer Design. J. Am. Chem. Soc. 2017, 139, 14881–14884. [Google Scholar] [CrossRef] [PubMed]
- Capelot, M.; Unterlass, M.M.; Tournilhac, F.; Leibler, L. Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett. 2012, 1, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Elling, B.R.; Dichtel, W.R. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable? ACS Cent. Sci. 2020, 6, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rowan, S.J. Effect of Sterics and Degree of Cross-Linking on the Mechanical Properties of Dynamic Poly(alkylurea–urethane) Networks. Macromolecules 2017, 50, 5051–5060. [Google Scholar] [CrossRef]
- Wang, H.; Shi, W.; Lu, B.; Wei, W.; Dong, S.; Wang, H. Room-temperature self-healable and recyclable polythiourethane film with excellent mechanical properties based on double dynamic covalent bonds. Prog. Org. Coat. 2024, 187, 108168. [Google Scholar] [CrossRef]
- Hammer, L.; Van Zee, N.J.; Nicolaÿ, R. Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers 2021, 13, 396. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, B.; Jo, S.; Seo, J.H.; Lee, W.; Kim, D.-G.; Lee, K.B.; Kim, Y.S.; Park, S. Weldable and Reprocessable Shape Memory Epoxy Vitrimer Enabled by Controlled Formulation for Extrusion-Based 4D Printing Applications. Adv. Eng. Mater. 2022, 24, 2101497. [Google Scholar] [CrossRef]
- Snyder, R.L.; Fortman, D.J.; De Hoe, G.X.; Hillmyer, M.A.; Dichtel, W.R. Reprocessable Acid-Degradable Polycarbonate Vitrimers. Macromolecules 2018, 51, 389–397. [Google Scholar] [CrossRef]
- Sun, S.; Fei, G.; Wang, X.; Xie, M.; Guo, Q.; Fu, D.; Wang, Z.; Wang, H.; Luo, G.; Xia, H. Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing. Chem. Eng. J. 2021, 412, 128675. [Google Scholar] [CrossRef]
- Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; An, L.; Zhang, Z.; Ji, M.; Chen, K.; Yang, Y.; Su, Q.; Wang, F.; Cheng, Y.; Zhang, Y. Reconfigurable 4D Printing of Reprocessable and Mechanically Strong Polythiourethane Covalent Adaptable Networks. Adv. Funct. Mater. 2022, 32, 2203720. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Ji, Y.; Wei, Y. Functional epoxy vitrimers and composites. Prog. Mater. Sci. 2021, 120, 100710. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, L.; Wu, Y.; Zhao, X.; Zhang, Y. Rapid Stress Relaxation and Moderate Temperature of Malleability Enabled by the Synergy of Disulfide Metathesis and Carboxylate Transesterification in Epoxy Vitrimers. Macro Lett. 2019, 8, 255–260. [Google Scholar] [CrossRef]
- Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J. A Catalyst-Free Epoxy Vitrimer System Based on Multifunctional Hyperbranched Polymer. Macromolecules 2018, 51, 6789–6799. [Google Scholar] [CrossRef]
- Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci. 2014, 5, 3486–3492. [Google Scholar] [CrossRef]
- Dong, G.; He, Q.; Cai, S. Magnetic vitrimer-based soft robotics. Soft Matter 2022, 18, 7604–7611. [Google Scholar] [CrossRef]
- Canadell, J.; Goossens, H.; Klumperman, B. Self-Healing Materials Based on Disulfide Links. Macromolecules 2011, 44, 2536–2541. [Google Scholar] [CrossRef]
- Deng, J.; Kuang, X.; Liu, R.; Ding, W.; Wang, A.C.; Lai, Y.-C.; Dong, K.; Wen, Z.; Wang, Y.; Wang, L.; et al. Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Adv. Mater. 2018, 30, 1705918. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, W.; Liu, Z.; Xue, Y.; Zheng, H.; Majeed, K.; Zhang, B.; Zhou, F.; Zhang, Q. Preparation of carbon nanotube-vitrimer composites based on double dynamic covalent bonds: Electrical conductivity, reprocessability, degradability and photo-welding. Polymer 2021, 235, 124280. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; He, J.; Li, Y.-D.; Zhao, X.-L.; Zeng, J.-B. Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind. Crops Prod. 2020, 153, 112576. [Google Scholar] [CrossRef]
- Guan, Q.; Dai, Y.; Yang, Y.; Bi, X.; Wen, Z.; Pan, Y. Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 2018, 51, 333–339. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Hsieh, C.-Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 905–913. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.H.; Michael, P.; Rana, S. Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos. Part B Eng. 2019, 157, 1–13. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Sorrentino, A.; Binder, W.H.; Kadlec, M. Development of self-healing multifunctional materials. Compos. Part B Eng. 2017, 128, 30–38. [Google Scholar] [CrossRef]
- Wu, J.; Yu, X.; Zhang, H.B.; Guo, J.; Hu, J.; Li, M.H. Fully Biobased Vitrimers from Glycyrrhizic Acid and Soybean Oil for Self-Healing, Shape Memory, Weldable, and Recyclable Materials. ACS Sustain. Chem. Eng. 2020, 8, 6479–6487. [Google Scholar] [CrossRef]
- Lyon, G.B.; Cox, L.M.; Goodrich, J.T.; Baranek, A.D.; Ding, Y.; Bowman, C.N. Remoldable Thiol–Ene Vitrimers for Photopatterning and Nanoimprint Lithography. Macromolecules 2016, 49, 8905–8913. [Google Scholar] [CrossRef]
- Xu, X.; Ma, S.; Feng, H.; Qiu, J.; Wang, S.; Yu, Z.; Zhu, J. Dissociate transfer exchange of tandem dynamic bonds endows covalent adaptable networks with fast reprocessability and high performance. Polym. Chem. 2021, 12, 5217–5228. [Google Scholar] [CrossRef]
- Almutairi, M.D.; Aria, A.I.; Thakur, V.K.; Khan, M.A. Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality. Polymers 2020, 12, 1534. [Google Scholar] [CrossRef] [PubMed]
- Rossegger, E.; Höller, R.; Reisinger, D.; Strasser, J.; Fleisch, M.; Griesser, T.; Schlögl, S. Digital light processing 3D printing with thiol–acrylate vitrimers. Polym. Chem. 2021, 12, 639–644. [Google Scholar] [CrossRef]
- Moazzen, K.; Rossegger, E.; Alabiso, W.; Shaukat, U.; Schlögl, S. Role of Organic Phosphates and Phosphonates in Catalyzing Dynamic Exchange Reactions in Thiol-Click Vitrimers. Macromol. Chem. Phys. 2021, 222, 2100072. [Google Scholar] [CrossRef]
- Rossegger, E.; Höller, R.; Reisinger, D.; Fleisch, M.; Strasser, J.; Wieser, V.; Griesser, T.; Schlögl, S. High resolution additive manufacturing with acrylate based vitrimers using organic phosphates as transesterification catalyst. Polymer 2021, 221, 123631. [Google Scholar] [CrossRef]
- Rossegger, E.; Moazzen, K.; Fleisch, M.; Schlögl, S. Locally controlling dynamic exchange reactions in 3D printed thiol-acrylate vitrimers using dual-wavelength digital light processing. Polym. Chem. 2021, 12, 3077–3083. [Google Scholar] [CrossRef]
- Li, X.; Yu, R.; He, Y.; Zhang, Y.; Yang, X.; Zhao, X.; Huang, W. Self-Healing Polyurethane Elastomers Based on a Disulfide Bond by Digital Light Processing 3D Printing. ACS Macro Lett. 2019, 8, 1511–1516. [Google Scholar] [CrossRef]
- Cortés-Guzmán, K.P.; Parikh, A.R.; Sparacin, M.L.; Remy, A.K.; Adegoke, L.; Chitrakar, C.; Ecker, M.; Voit, W.E.; Smaldone, R.A. Recyclable, Biobased Photoresins for 3D Printing Through Dynamic Imine Exchange. ACS Sustain. Chem. Eng. 2022, 10, 13091–13099. [Google Scholar] [CrossRef]
- Wang, Z.; Gangarapu, S.; Escorihuela, J.; Fei, G.; Zuilhof, H.; Xia, H. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J. Mater. Chem. A 2019, 7, 15933–15943. [Google Scholar] [CrossRef]
- Li, X.; Yu, R.; He, Y.; Zhang, Y.; Yang, X.; Zhao, X.; Huang, W. Four-dimensional printing of shape memory polyurethanes with high strength and recyclability based on Diels-Alder chemistry. Polymer 2020, 200, 122532. [Google Scholar] [CrossRef]
- Macedo, R.; Lima, G.; Orozco, F.; Picchioni, F.; Moreno-Villoslada, I.; Pucci, A.; Bose, R.K.; Araya-Hermosilla, R. Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds. Polymers 2019, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Liguori, A.; Hakkarainen, M. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks. Macromol. Rapid Commun. 2022, 43, 2100816. [Google Scholar] [CrossRef]
- Liguori, A.; Subramaniyan, S.; Yao, J.G.; Hakkarainen, M. Photocurable extended vanillin-based resin for mechanically and chemically recyclable, self-healable and digital light processing 3D printable thermosets. Eur. Polym. J. 2022, 178, 111489. [Google Scholar] [CrossRef]
- Yu, K.; Shi, Q.; Li, H.; Jabour, J.; Yang, H.; Dunn, M.L.; Wang, T.; Qi, H.J. Interfacial welding of dynamic covalent network polymers. J. Mech. Phys. Solids 2016, 94, 1–17. [Google Scholar] [CrossRef]
- Hu, K.; Wang, B.; Xu, X.; Su, Y.; Zhang, W.; Zhou, S.; Zhang, C.; Zhu, J.; Ma, S. Dual-Dynamic Chemistries-Based Fast-Reprocessing and High-Performance Covalent Adaptable Networks. Macromol. Rapid Commun. 2023, 44, 2200726. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Lin, T.; Ke, J.; Chen, T.; Wu, X.; Lin, C. A catalyst-free and recycle-reinforcing elastomer vitrimer with exchangeable links. RSC Adv. 2020, 10, 39271–39276. [Google Scholar] [CrossRef] [PubMed]
- Chabert, E.; Vial, J.; Cauchois, J.-P.; Mihaluta, M.; Tournilhac, F. Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 2016, 12, 4838–4845. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. J. Am. Chem. Soc. 2016, 138, 2118–2121. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yu, X.; Pei, Z.; Yang, Y.; Wei, Y.; Ji, Y. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem. Sci. 2017, 8, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Luo, C.; Lu, H.; Yu, K. Interfacial welding and reprocessing of engineering thermosets based on surface depolymerization. Surf. Interfaces 2021, 26, 101368. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, X.; Lu, H.; Yu, K.; Fu, Y.-Q. Self-Toughening and Interfacial Welding of Covalent Adaptable Networks Undergoing Hydro-Chemo-Mechanical Coupling. Macromolecules 2022, 55, 10320–10329. [Google Scholar] [CrossRef]
- Lu, J.-H.; Li, Z.; Chen, J.-H.; Li, S.-L.; He, J.-H.; Gu, S.; Liu, B.-W.; Chen, L.; Wang, Y.-Z. Adaptable Phosphate Networks towards Robust, Reprocessable, Weldable, and Alertable-Yet-Extinguishable Epoxy Vitrimer. Research 2022, 2022. [Google Scholar] [CrossRef]
- Ji, F.; Liu, X.; Sheng, D.; Yang, Y. Epoxy-vitrimer composites based on exchangeable aromatic disulfide bonds: Reprocessibility, adhesive, multi-shape memory effect. Polymer 2020, 197, 122514. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, E.; Liu, J.; Qin, J.; Wu, M.; Yang, C.; Liang, L. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites. Chem. Eng. J. 2023, 454, 139992. [Google Scholar] [CrossRef]
- Fei, M.; Chang, Y.-C.; Hao, C.; Shao, L.; Liu, W.; Zhao, B.; Zhang, J. Highly engineerable Schiff base polymer matrix with facile fiber composite manufacturability and hydrothermal recyclability. Compos. Part B Eng. 2023, 248, 110366. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, S.; Lu, C.; Ren, Y.; Liu, Z.; Ding, D.; Wu, Z.; Wang, X.; Chen, Y.; Zhang, Q. Thermal, Near-Infrared Light, and Amine Solvent Triple-Responsive Recyclable Imine-Type Vitrimer: Shape Memory, Accelerated Photohealing/Welding, and Destructing Behaviors. Ind. Eng. Chem. Res. 2020, 59, 21768–21778. [Google Scholar] [CrossRef]
- Chen, X.; Wang, R.; Cui, C.; An, L.; Zhang, Q.; Cheng, Y.; Zhang, Y. NIR-triggered dynamic exchange and intrinsic photothermal-responsive covalent adaptable networks. Chem. Eng. J. 2022, 428, 131212. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Cheng, B.; Qian, Z.; Liu, W.; Zhao, N.; Xu, J. Dynamic cross-links to facilitate recyclable polybutadiene elastomer with excellent toughness and stretchability. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 1357–1366. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.-C.; Wang, J.; Qi, H.J.; Wang, T.; Naguib, H.E. Flexible, Reconfigurable, and Self-Healing TPU/Vitrimer Polymer Blend with Copolymerization Triggered by Bond Exchange Reaction. ACS Appl. Mater. Interfaces 2020, 12, 8740–8750. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Yang, Y.; Chen, Q.; Wei, Y.; Ji, Y. Regional Shape Control of Strategically Assembled Multishape Memory Vitrimers. Adv. Mater. 2016, 28, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E.M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36–41. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Y.; Guo, B.; Zhang, L. Malleable, Mechanically Strong, and Adaptive Elastomers Enabled by Interfacial Exchangeable Bonds. Macromolecules 2017, 50, 7584–7592. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, J.; Liu, Y.; Wang, Z.; Yan, C.; Song, C.; Gao, C.; Wu, Y. A NIR laser induced self-healing PDMS/Gold nanoparticles conductive elastomer for wearable sensor. J. Colloid Interface Sci. 2021, 599, 360–369. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, F.; Li, Z.; Qiao, J.; Wei, Y.; Ji, Y. Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH3NH3PbI3 perovskite coating. J. Mater. Chem. A 2017, 5, 7285–7290. [Google Scholar] [CrossRef]
- Yang, H.; Yu, K.; Mu, X.; Wei, Y.; Guo, Y.; Qi, H.J. Molecular dynamics studying on welding behavior in thermosetting polymers due to bond exchange reactions. RSC Adv. 2016, 6, 22476–22487. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, H.; Xia, W.; Guo, Y. Molecular dynamics simulations of surface welding in crosslinked networks with thermally reversible linkages. Appl. Surf. Sci. 2020, 527, 146947. [Google Scholar] [CrossRef]
- He, C.; Shi, S.; Wu, X.; Russell, T.P.; Wang, D. Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions. J. Am. Chem. Soc. 2018, 140, 6793–6796. [Google Scholar] [CrossRef]
- Hu, K.; Wei, T.; Li, H.; He, C.; Yang, H.; Russell, T.P.; Wang, D. Interfacial Broadening Kinetics between a Network and a Linear Polymer and Their Composites Prepared by Melt Blending. Macromolecules 2019, 52, 9759–9765. [Google Scholar] [CrossRef]
- Fairbanks, B.D.; Singh, S.P.; Bowman, C.N.; Anseth, K.S. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction. Macromolecules 2011, 44, 2444–2450. [Google Scholar] [CrossRef]
- Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units. Angew. Chem. Int. Ed. 2011, 50, 1660–1663. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y.; Balazs, A.C.; Kowalewski, T.; Matyjaszewski, K. Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules 2012, 45, 142–149. [Google Scholar] [CrossRef]
- Otsuka, H.; Nagano, S.; Kobashi, Y.; Maeda, T.; Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. 2010, 46, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Negulescu, I.; Zhang, D. Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent. Macromolecules 2016, 49, 6277–6284. [Google Scholar] [CrossRef]
- Chakma, P.; Rodrigues Possarle, L.H.; Digby, Z.A.; Zhang, B.; Sparks, J.L.; Konkolewicz, D. Dual stimuli responsive self-healing and malleable materials based on dynamic thiol-Michael chemistry. Polym. Chem. 2017, 8, 6534–6543. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, J.H.; Liu, Z.Q.; Xu, F.; Zhou, J.X.; Zrínyi, M.; Osada, Y.; Chen, Y.M. Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel. Adv. Funct. Mater. 2015, 25, 1352–1359. [Google Scholar] [CrossRef]
- Xia, N.N.; Rong, M.Z.; Zhang, M.Q. Stabilization of catechol–boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider pH range. J. Mater. Chem. A 2016, 4, 14122–14131. [Google Scholar] [CrossRef]
- He, X.; Lin, Y.; Ding, Y.; Abdullah, A.M.; Lei, Z.; Han, Y.; Shi, X.; Zhang, W.; Yu, K. Reshapeable, rehealable and recyclable sensor fabricated by direct ink writing of conductive composites based on covalent adaptable network polymers. Int. J. Extrem. Manuf. 2022, 4, 015301. [Google Scholar] [CrossRef]
- Garcia, S.J. Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 2014, 53, 118–125. [Google Scholar] [CrossRef]
- Jiang, Y.; Ng, E.L.L.; Han, D.X.; Yan, Y.; Chan, S.Y.; Wang, J.; Chan, B.Q.Y. Self-Healing Polymeric Materials and Composites for Additive Manufacturing. Polymers 2023, 15, 4206. [Google Scholar] [CrossRef]
- Ramirez, A.L.B.; Kean, Z.S.; Orlicki, J.A.; Champhekar, M.; Elsakr, S.M.; Krause, W.E.; Craig, S.L. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 2013, 5, 757–761. [Google Scholar] [CrossRef]
- Kean, Z.S.; Hawk, J.L.; Lin, S.; Zhao, X.; Sijbesma, R.P.; Craig, S.L. Increasing the Maximum Achievable Strain of a Covalent Polymer Gel Through the Addition of Mechanically Invisible Cross-Links. Adv. Mater. 2014, 26, 6013–6018. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, H.; Lin, Y.; Chen, Y.; Xu, Y.; Weng, W.; Xia, H. Mechanoresponsive Healable Metallosupramolecular Polymers. Macromolecules 2013, 46, 8649–8656. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Sun, Y.; Zheng, X.; Guo, Y. A molecular dynamics simulation on tunable and self-healing epoxy-polyimine network based on imine bond exchange reactions. Mol. Simul. 2022, 48, 1605–1615. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, H.; Sun, Y.; Zhang, Y.; Guo, Y. A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions. Polymer 2021, 212, 123111. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, H.; Sun, Y.; Zhang, Y.; Guo, Y. Molecular dynamics simulations on self-healing behavior of photo-polymerization network. Smart Mater. Struct. 2018, 27, 105013. [Google Scholar] [CrossRef]
Dissociative Mechanism | Associative Mechanism | ||
---|---|---|---|
Diels–Alder reaction | Transesterification | ||
Transcarbomoylation of urethanes | Disulfide Exchange | ||
Imine condensation | Amine–imine Exchange /Transamination | ||
Aminal transamination | Imine metathesis | ||
Oxime-promoted transcarbamoylation | Transcarbonation | ||
Thioacetal exchange | Transamination of vinylogous urethanes and amides | ||
Triazolinedione-indole Alder-Ene | Boronic ester exchange | ||
Amine urea exchange | Thiocarbamate exchange | ||
Boronic ester hydrolysis | Silyl ether exchange |
Network Preparation and Property | Weldability Experiment | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dynamic Mechanism | Monomer | Cure Agent/ Cross-Linker | Catalyst | Additional Component | Tg/°C | Process Condition | Sample Size | Virgin Strength /MPa | Welded Strength/ MPa | ||
DSC | DMA | ||||||||||
Transesterification | Epoxy E1, E3 | Pripol 1040 | Zn(acac)2 | - | 11–23 | 34–38 |
| Overlapped rectangle samples (17.5 mm × 3.0 mm × 1.0 mm), superimposed on a 2.5 mm length. | - | 0.4–0.6 | [78] |
DGEBA | Pripol 1040 | Zn(OAc)2 | - | - | ~15 |
| Overlapped rectangle samples (25 mm × 5 mm × 1.4 mm), superimposed on a 15 mm length. | 0.47 | 0.36 | [21] | |
DER331 | Succinic anhydride | - | - | 62.5–72.1 | 70.3–82.4 |
| Overlapped fragments from dumbbell films with a thickness of 0.3 mm. | 46.5 ± 2.3 | 47.3 | [106] | |
Araldite LY564 | Aradur 917CH | Zn(acac)2·xH2O | glass fabric | - | - |
| Overlapped rectangle samples (50 mm × 15 mm × 3 mm), superimposed on a 20 mm length. | - | 1.67 | [135] | |
THFA, AM | Diacrylate prepolymer | TBD | - | 2.4–51.1 | 9.1–40.1 |
| Overlapped dumbbell samples (75 mm × 5 mm × 2 mm), superposed on a 5 mm length. | 14.3–15.0 | 8.5–11.0 | [58] | |
HPPA | BPA.GDA | Zn(acac)2·xH2O | - | - | 30 |
| Rectangle samples (30 mm × 5 mm × 1.5 mm) with a hole ~ 5 mm diameter and a circular disc (5 mm × 1.5 mm). | 15 | 14 | [28] | |
HPPA, DG2A | TMPMP | Miramer A99 | - | 0~20 | - |
| Rectangle samples (30 mm × 5 mm × 1.5 mm) with a hole ~ 5 mm diameter and a circular disc (5 mm × 1.5 mm). | 4 | 4 | [121] | |
HPPA, DG2A | EGMA | Miramer A99 | - | - | 43 |
| Rectangle samples (30 mm × 10 mm × 1.5 mm) with a hole ~ 5 mm diameter and a circular disc (5 mm × 1.5 mm). | 34.1 | 27.9 | [61] | |
DER 332 | Pripol 1040 | Zn(Ac)2·2H2O | Silica | - | 30–37 |
| Overlapped rectangle samples (30 mm × 5 mm × 1.5 mm), superimposed on a 15 mm length. | - | 0.69 | [82] | |
ESO | GL | TBD | - | 8–18 | 39–64 |
| Three rectangle pieces making up an “H” pattern. | - | - | [117] | |
HPPA | BPA.GDA | Zn(acac)2 | - | - | 1.71–4.91 |
| Two parts from dumbbell films welded with different types of adhesion interface. | 47.4 | 90°: 43.8 | [29] | |
45°: 45.1 | |||||||||||
DGEBA | adipic acid | TBD | MWCNTs | Cooling: 39 °C, Heating: 45 °C | ~60 |
| Overlapped rectangle samples (10.0 mm × 1.0 mm × 0.08 mm), superimposed on a 2.0 mm length. | 25.7 | 20.5 | [107] | |
DGEBA | sebacic acid | TBD | CNTs | ~50 | - |
| Overlapped rectangle films. | 22.1 | 22.3 | [136] | |
DGEBA | SA | TBD | ACAT | ~40 | - |
| Overlapped films with a thickness of 0.2 mm. | 17.9 | 21.0 | [137] | |
DGEBA | adipic acid | TBD | - | 44 | 60 |
| Overlapped rectangle wet films with an overlap area of 2.0 mm × 2.0 mm. | 21.8 | 20.8 | [83] | |
Poly(BPA-co-EPI) | HHMPA | - | - | - | - |
| Overlapped rectangle wet films (20.0 mm × 5.0 mm × 1.0 mm), superimposed on a 4.0 mm length. | - | 4.61 ± 0.11 | [138] | |
DGEBA | GA | - | - | - | - |
| Overlapped rectangle wet films (100.0 mm × 25.0 mm × 2.0 mm), superimposed on a 12.5 mm length. | 1.12 | 1.48 | [139] | |
Boronate Esters | DABo, DAP | PETMP | - | - | - | 10–18 |
| Ice cream cone and ice cream | - | - | [85] |
Phosphate transesterification | DGEBA | [Bmim]DPPOO | - | - | ~70 | 101.1 |
| Overlapped rectangle samples. | - | - | [140] |
Transesterification and disulfide exchange | BGPDS | Sebacic acid | TBD | MWCNTs | 43.9–47.9 | 5.9–16.3 |
| Overlapped rectangle samples. | 16.4 | 16.1 | [111] |
DGEBA | DTDA | TBD | Fe3O4 | 22–27 | 25–28 |
| Overlapped samples, superimposed on a 7.5 mm length. | - | ~8 N | [38] | |
| Samples with their cross-sections in contact. | 1.4 | 1.0 | ||||||||
Disulfide exchange | Epon resin 828 | EDDET, Polysulfide oligomer | TBD | - | - | −0.7 |
| Two rectangle samples (30 mm × 5 mm × 1.5 mm), with their cross-sections in contact. | 1.28 | 1.23 | [110] |
ESO | APD | - | - | 2.9–12.1 | 26.2–33.7 |
| Dumbbell samples with a width of 4.0 mm and a thickness of 0.5 mm, superimposed on a 5 mm length. | 3.2 | 3.3 | [112] | |
E51 | dithioaniline | - | PCL | ~21 | ~49 |
| Overlapped rectangle samples. | - | - | [141] | |
DEGBA | Oleylamine, 4-AFD | - | CNT | 66 | 73 |
| Rectangle samples with their cross-sections in contact. | 2.6 | 2.2 | [113] | |
EPS25 | EDDET, PETMP | DMAP | - | - | −35 |
| Broken dumbbell parts brought into contact. | 0.12 | 0.09 | [108] | |
Disulfide exchange and hydrogen bonding | HEA, PEG-1000, HEDS | IPDI | - | - | - | - |
| Cutting a dumbbell sample into two parts. | 3.39 ± 0.09 | 3.22 ± 0.40 | [125] |
HEDS, IPDI, PEG400 | TEA | - | - | 29.8 | - |
| Overlapped fragments from dumbbell films. | 9.6 | 9.2 | [60] | |
Disulfide exchange and imine exchange | PB, AET | SCHO | - | MWCNTs | −24.73 | 27.6 |
| Overlapped rectangle samples (30.0 mm × 6.0 mm × 0.7 mm), superimposed on a 10 mm length. | - | 2.7–4.2 | [26] |
DSEP | DDM, D400 | - | - | - | 129 |
| Cutting a sample in two parts and then overlapping. | 55.0 | 53.5 | [119] | |
Imine exchange | PB, AET, DMPA | Vanillin derivatives | - | - | 14.73 | 39.65 |
| Overlapped rectangle samples (30.0 mm × 6.0 mm × 0.55 mm), superimposed on a 10 mm length. | 14.5 | 12.2 | [27] |
DGEBA, vanillin, aminophenol | Jeffamine | - | - | - | 71 |
| Overlapped rectangle samples (50.0 mm × 12.5 mm × 0.4 mm), superimposed on a 3.2 mm length. | 45.8 | 46.5 | [88] | |
DIDG, TMPTE | Jeffamines (Jeff230, JeffD400, and JeffT403) | - | - | 66.8–92.8 | - |
| Overlapped rectangle samples. | 40.0 | 27.9 | [30] | |
DGEBA | Jeffamine D230, TA | - | - | 52 | 54 |
| Splitting the sample into two parts with their cross-sections in contact. | 51.4 | 34.7 | [142] | |
DER 331 | Jeffamine EDR-148, TPA | - | carbon fiber | 57 | 63 |
| Overlapped rectangle samples. | - | 8.33 | [143] | |
TPA, MXDA | TREN | - | ACAT | - | 107 |
| Overlapped rectangle samples. | 53.5 | 51.4 | [144] | |
| Overlapped rectangle samples. | 51.9 | |||||||||
| Overlapped rectangle samples. | 54.9 | 53.0 | ||||||||
DGEBF | TAD, AB | - | - | - | 100.2 |
| Overlapped fragments from dumbbell films, superposed on a 10 mm length. | 72.8 | 63.9 | [86] | |
6FDA, ODA | DETA | - | - | - | 217 |
| Overlapped dumbbell samples (Width × Thickness = 80 mm × 5 mm), superimposed on a 10 mm length. | 82.7 ± 2.8 | 78.2 ± 0.7 | [31] | |
ODPA, DPD | TREN, DETA | - | - | - | 137 |
| Dumbbell films were cut into two pieces, which were then put together in contact with a crack width of ~400 mm. | 69.37 | 68.6 | [32] | |
Diels–Alder reaction | NGDE, FA | BMI | - | b-CNTs | 8 | - |
| Rectangle samples (20.0 mm × 5.0 mm × 0.6 mm). | 7.2 | 6.9 | [77] |
5.9 | 5.6 | ||||||||||
PEGDGE, FA | Commercial bismaleimide cross-linker | - | NdFeB | −35 | −20 |
| Rectangular samples (25 mm × 4 mm × 0.9 mm). | 0.16 | 0.15 | [37] | |
Hindered urea bond | IBOA, PEA | PPIA | - | - | −10–70 | 3–8 |
| Kresling-patterned material modules. | - | - | [46] |
Piperidine-urea bond exchange | IPDI, PIP | Castor oil | - | - | - | 30.1 |
| Overlapped dumbbell samples (Width × Thickness = 4.0 mm × 0.5 mm), superimposed on a 5 mm length. | 16.4 | 14.3 | [23] |
Thiourea bond exchange and hydrogen bonding | TUEG | TGIC | TBD | - | 27.8 | 46.4 |
| Overlapped area of 5 mm× 5 mm, with a thickness of 0.4 mm. | 23 ± 1 | 19 ± 0 | [59] |
Oxime–carbamate exchange | BQDO | THDI, Jeffamine D230 | - | - | - | Tg1: 65 °C, Tg2: 110 °C |
| Overlapped rectangle samples (20.0 mm × 4.0 mm × 0.6 mm), superimposed on a 4.0 mm length. | - | 1.2 | [145] |
Thiocarbamate bond exchange | MMA | synthesized by DIPEA-catalyzed click reaction of EDDET and IEM | - | - | 83 | - |
| Two half dumbbell samples with their cut cross-sections in contact. | 61.3 | 50.3 | [103] |
Transcarbamoylation | HDI, PEG400 | GLY | DBTBL | Fe3O4 | −15 | - |
| A solder placed between the two PU bulks. | 3.4 | 3.1 | [36] |
Hydroxyl-terminated LC-oligomer | LTI | DBTBL | Fe3O4 | −8.8 | - |
| Overlapped rectangle samples (Width × Thickness = 2.25 mm × 0.40 mm). | 28.9 | 22.8 | [11] | |
Hydrogen bonding | DGEBA, TGMDA | Pripol 1040, UDETA | 2-MI | - | 11–16 | ~23 |
| Dog-bone specimens. | 3.7 | 2.0 | [57] |
Hydrogen bonding and ionic bonding | UMA, AA | ZDMA | CQ, EDMAB | - | 10–58 | 20–83 |
| - | - | - | [22] |
Host–guest interaction | BADA | AAAB | - | β-CD- Graphene Nanosheets | - | 88.9 |
| Two damaged pieces. | 13.5 | 11.5 | [54] |
| 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, S.; Dong, J.; Huo, P.; Zhang, D.; Han, S.; Yang, J.; Jiang, Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers 2024, 16, 621. https://doi.org/10.3390/polym16050621
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers. 2024; 16(5):621. https://doi.org/10.3390/polym16050621
Chicago/Turabian StyleLiu, Yun, Sheng Wang, Jidong Dong, Pengfei Huo, Dawei Zhang, Shuaiyuan Han, Jie Yang, and Zaixing Jiang. 2024. "External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks" Polymers 16, no. 5: 621. https://doi.org/10.3390/polym16050621
APA StyleLiu, Y., Wang, S., Dong, J., Huo, P., Zhang, D., Han, S., Yang, J., & Jiang, Z. (2024). External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers, 16(5), 621. https://doi.org/10.3390/polym16050621