Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CA Film
2.3. Degradation Behavior of CA in Different Aqueous Conditions
2.3.1. Room Temperature Hydrolysis
2.3.2. Degradation in Different Aqueous Environments
2.4. Weight Loss Determination
2.5. DS Determination
- A—NaOH standard solution titrates the volume of the sample, mL,
- B—NaOH standard solution titrates the volume of the blank, mL,
- Nb—normality of the NaOH standard solution, mol/L,
- C—HCl standard solution titrates the volume of the sample, mL,
- D—HCl standard solution titrates the volume of the blank, mL,
- Na—normality of the HCl standard solution, mol/L, and
- w—CA sample used, g.
2.6. Determination of Water Retention Value (WRV) and Water Absorption (WAV)
2.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss Rates of CA in Different Aqueous Conditions
3.2. DS variations of CA in Different Aqueous Conditions
3.3. Hydrophilic Properties of CA Degraded by Different Aqueous Conditions
3.4. FTIR Properties of CA Degraded by Different Aqueous Conditions
3.5. Morphological Analysis of CA Degraded by Different Aqueous Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of cellulose acetate-based materials: A review. J. Polym. Environ. 2011, 19, 152–165. [Google Scholar] [CrossRef]
- Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and applications of cellulose acetate. In Proceedings of the Macromolecular Symposia, Wiesbaden, Germany, 26–28 June 2007; Wiley: Hoboken, NJ, USA, 2008; pp. 89–96. [Google Scholar]
- Wilbert, M.C.; Pellegrino, J.; Zydney, A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes. Desalination 1998, 115, 15–32. [Google Scholar] [CrossRef]
- Ishigaki, T.; Sugano, W.; Ike, M.; Fujita, M. Enzymatic degradation of cellulose acetate plastic by novel degrading bacterium Bacillus sp. S2055. J. Biosci. Bioeng. 2000, 90, 400–405. [Google Scholar] [CrossRef]
- Molaeipour, Y.; Gharehaghaji, A.A.; Bahrami, H. Filtration performance of cigarette filter tip containing electrospun nanofibrous filter. J. Ind. Text. 2015, 45, 187–198. [Google Scholar] [CrossRef]
- Sun, P.; Yang, S.; Sun, X.; Wang, Y.; Pan, L.; Wang, H.; Wang, X.; Guo, J.; Nie, C. Functional porous carboxymethyl cellulose/cellulose acetate composite microspheres: Preparation, characterization, and application in the effective removal of HCN from cigarette smoke. Polymer 2019, 11, 181. [Google Scholar] [CrossRef]
- Ghaseminezhad, S.M.; Barikani, M.; Salehirad, M. Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Compos. Part B Eng. 2019, 161, 320–327. [Google Scholar] [CrossRef]
- Peng, L.; Li, H.; Meng, Y. Layer-by-layer structured polysaccharides-based multilayers on cellulose acetate membrane: Towards better hemocompatibility, antibacterial and antioxidant activities. Appl. Surf. Sci. 2017, 401, 25–39. [Google Scholar] [CrossRef]
- Gemili, S.; Yemenicioğlu, A.; Altınkaya, S.A. Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. J. Food Sci. Eng. 2009, 90, 453–462. [Google Scholar] [CrossRef]
- Assis, R.Q.; Pagno, C.H.; Stoll, L.; Rios, P.D.A.; de Oliveira Rios, A.; Olivera, F.C. Active food packaging of cellulose acetate: Storage stability, protective effect on oxidation of riboflavin and release in food simulants. Food Chem. 2021, 349, 129140. [Google Scholar] [CrossRef]
- Wei, W.; Zhu, Y.; Li, Q.; Cheng, Z.; Yao, Y.; Zhao, Q.; Zhang, P.; Liu, X.; Chen, Z.; Xu, F. An Al2O3-cellulose acetate-coated textile for human body cooling. Sol. Energy Mater. Sol. Cells 2020, 211, 110525. [Google Scholar] [CrossRef]
- Joly, F.-X.; Coulis, M. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments. Waste Manag. 2018, 72, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Hakkarainen, M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere 2021, 265, 128731. [Google Scholar] [CrossRef] [PubMed]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2013, 2, 1–32. [Google Scholar] [CrossRef]
- Su, T.; Zhang, T.; Liu, P.; Bian, J.; Zheng, Y.; Yuan, Y.; Li, Q.; Liang, Q.; Qi, Q. Biodegradation of polyurethane by the microbial consortia enriched from landfill. Appl. Microbiol. Biotechnol. 2023, 107, 1983–1995. [Google Scholar] [CrossRef]
- Abrusci, C.; Marquina, D.; Santos, A.; Del Amo, A.; Corrales, T.; Catalina, F. Biodeterioration of cinematographic cellulose triacetate by Sphingomonas paucimobilis using indirect impedance and chemiluminescence techniques. Int. Biodeterior. Biodegr. 2009, 63, 759–764. [Google Scholar] [CrossRef]
- Yadav, N.; Adolfsson, K.H.; Hakkarainen, M. Carbon dot-triggered photocatalytic degradation of cellulose acetate. Biomacromolecules 2021, 22, 2211–2223. [Google Scholar] [CrossRef]
- Park, C.H.; Kang, Y.K.; Im, S.S. Biodegradability of cellulose fabrics. J. Appl. Polym. Sci. 2004, 94, 248–253. [Google Scholar] [CrossRef]
- ASTM D1141-98 2013; Standard Practice for the Preparation of Substitute Ocean Water. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D871-1996 2019; Standard Test Methods of Testing Cellulose Acetate. ASTM International: West Conshohocken, PA, USA, 2019.
- Jung, J.H.; Ree, M.; Kim, H. Acid-and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal. Today 2006, 115, 283–287. [Google Scholar] [CrossRef]
- Yamashita, Y.; Endo, T. Deterioration behavior of cellulose acetate films in acidic or basic aqueous solutions. J. Appl. Polym. Sci. 2004, 91, 3354–3361. [Google Scholar] [CrossRef]
- Cragg, S.M.; Beckham, G.T.; Bruce, N.C.; Bugg, T.D.; Distel, D.L.; Dupree, P.; Etxabe, A.G.; Goodell, B.S.; Jellison, J.; McGeehan, J.E. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 2015, 29, 108–119. [Google Scholar] [CrossRef]
- Tsuji, H.; Suzuyoshi, K. Environmental degradation of biodegradable polyesters 1. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in controlled static seawater. Polym. Degrad. Stab. 2002, 75, 347–355. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Meng, T.; Zhang, J.; He, J.; Li, H.; Zhang, Y. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr. Polym. 2007, 69, 665–672. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Gardner, R.M.; Komarek, R.J. Aerobic biodegradation of cellulose acetate. J. Appl. Polym. Sci. 1993, 47, 1709–1719. [Google Scholar] [CrossRef]
- Sailema-Palate, G.P.; Vidaurre, A.; Campillo-Fernández, A.J.; Castilla-Cortázar, I. A comparative study on Poly (ε-caprolactone) film degradation at extreme pH values. Polym. Degrad. Stab. 2016, 130, 118–125. [Google Scholar] [CrossRef]
- Schut, F.; de Vries, E.J.; Gottschal, J.C.; Robertson, B.R.; Harder, W.; Prins, R.A.; Button, D.K. Isolation of typical marine bacteria by dilution culture: Growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 1993, 59, 2150–2160. [Google Scholar] [CrossRef]
- Nakayama, A.; Yamano, N.; Kawasaki, N. Biodegradation in seawater of aliphatic polyesters. Polym. Degrad. Stab. 2019, 166, 290–299. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, J. Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb. Technol. 2011, 48, 92–99. [Google Scholar] [CrossRef]
- Thomsen, S.T.; Weiss, N.D.; Zhang, H.; Felby, C. Water retention value predicts biomass recalcitrance for pretreated biomass: Biomass water interactions vary based on pretreatment chemistry and reflect composition. Cellulose 2021, 28, 317–330. [Google Scholar] [CrossRef]
- Weiss, N.D.; Felby, C.; Thygesen, L.G. Water retention value predicts biomass recalcitrance for pretreated lignocellulosic materials across feedstocks and pretreatment methods. Cellulose 2018, 25, 3423–3434. [Google Scholar] [CrossRef]
- Pereira, R.F.; Carvalho, A.; Gil, M.; Mendes, A.; Bártolo, P.J. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. Carbohydr. Polym. 2013, 98, 311–320. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Williams, D.L.; Hodge, D.B. Impacts of delignification and hot water pretreatment on the water induced cell wall swelling behavior of grasses and its relation to cellulolytic enzyme hydrolysis and binding. Cellulose 2014, 21, 221–235. [Google Scholar] [CrossRef]
- Wang, W.-H.; Huang, C.-W.; Tsou, E.-Y.; Ao-Ieong, W.-S.; Hsu, H.-C.; Wong, D.S.-H.; Wang, J. Characterization of degradation behavior of poly (glycerol maleate) films in various aqueous environments. Polym. Degrad. Stab. 2021, 183, 109441. [Google Scholar] [CrossRef]
- Candido, R.; Godoy, G.; Goncalves, A.R. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr. Polym. 2017, 167, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.M.; Rehman, N.; de Miranda, M.I.G.; Nachtigall, S.M.; Bica, C.I. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 2012, 87, 1131–1138. [Google Scholar] [CrossRef]
- Hasima, S.; Kamila, N. Cellulose acetate from palm oil bunch waste for forward osmosis membrane in desalination of brackish water. Results Eng. 2022, 15, 100611. [Google Scholar]
- Sun, X.-F.; Sun, R.-C.; Su, Y.; Sun, J.-X. Comparative study of crude and purified cellulose from wheat straw. J. Agric. Food Chem. 2004, 52, 839–847. [Google Scholar] [CrossRef]
- Wei, J.; Gao, H.; Li, Y.; Nie, Y. Research on the degradation behaviors of wood pulp cellulose in ionic liquids. J. Mol. Liq. 2022, 356, 119071. [Google Scholar] [CrossRef]
- Rodrigues Filho, G.; Monteiro, D.S.; da Silva Meireles, C.; de Assunção, R.M.N.; Cerqueira, D.A.; Barud, H.S.; Ribeiro, S.J.; Messadeq, Y. Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr. Polym. 2008, 73, 74–82. [Google Scholar] [CrossRef]
- Chen, H.; Yu, Y.; Zhong, T.; Wu, Y.; Li, Y.; Wu, Z.; Fei, B. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 2017, 24, 333–347. [Google Scholar] [CrossRef]
- Das, M.; Chakraborty, D. Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J. Appl. Polym. Sci. 2006, 102, 5050–5056. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Xu, P.-Y.; Huang, D.; Lu, B.; Zhen, Z.-C.; Zheng, W.-Z.; Dong, Y.-C.; Li, X.; Wang, G.-X.; Ji, J.-H. Enhanced degradation of Poly (ethylene terephthalate) by the addition of lactic acid/glycolic acid: Composting degradation, seawater degradation behavior and comparison of degradation mechanism. J. Hazard. Mater. 2022, 446, 130670. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liao, Y.; Zou, Z.; Chen, Y.; Jin, M.; Zhu, J.; Abdalkarim, S.Y.H.; Zhou, Y.; Yu, H.-Y. Novel strategy to interpret the degradation behaviors and mechanisms of bio-and non-degradable plastics. J. Clean Prod. 2022, 355, 131757. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Zhang, C.; Zhang, J.; Dong, Z.; Xu, Q. Aging simulation of thin-film plastics in different environments to examine the formation of microplastic. Water Res. 2021, 202, 117462. [Google Scholar] [CrossRef]
Composition | NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 | KBr |
---|---|---|---|---|---|---|---|
Concentration (mg/mL) | 24.53 | 5.2 | 4.1 | 1.16 | 0.695 | 0.201 | 0.101 |
Time | HCl Solution (pH = 1) | NaOH Solution (pH = 12) | River Water | Seawater | Homemade Seawater | |||||
---|---|---|---|---|---|---|---|---|---|---|
Tow | Film | Tow | Film | Tow | Film | Tow | Film | Tow | Film | |
1 week | 2.34 ± 0.02 a | 2.37 ± 0.07 a | 0.27 ± 0.06 a | 1.72 ± 0.06 a | 2.42 ± 0.03 a | 2.40 ± 0.04 a | 2.39 ± 0.01 a | 2.41 ± 0.03 abc | 2.39 ± 0.01 a | 2.40 ± 0.03 a |
3 weeks | 2.28 ± 0.01 a | 2.38 ± 0.00 a | 0.06 ± 0.01 b | 0.01 ± 0.01 b | 2.35 ± 0.04 ab | 2.37 ± 0.04 a | 2.37 ± 0.06 ab | 2.39 ± 0.03 abc | 2.38 ± 0.01 ab | 2.38 ± 0.02 ab |
4 weeks | 2.27 ± 0.02 ab | 2.37 ± 0.02 a | 0 | 0 | 2.35 ± 0.00 ab | 2.40 ± 0.03 a | 2.38 ± 0.01 a | 2.40 ± 0.02 ab | 2.35 ± 0.02 abc | 2.38 ± 0.03 ab |
5 weeks | 2.18 ± 0.02 bc | 2.36 ± 0.00 a | 0 | 0 | 2.37 ± 0.04 ab | 2.41 ± 0.03 a | 2.40 ± 0.04 a | 2.39 ± 0.05 abc | 2.35 ± 0.04 abc | 2.38 ± 0.01 ab |
7 weeks | 2.13 ± 0.02 cd | 2.34 ± 0.02 a | 0 | 0 | 2.35 ± 0.00 ab | 2.39 ± 0.06 a | 2.38 ± 0.03 ab | 2.42 ± 0.00 a | 2.34 ± 0.01 abc | 2.35 ± 0.03 ab |
8 weeks | 2.08 ± 0.07 d | 2.33 ± 0.02 a | 0 | 0 | 2.35 ± 0.02 ab | 2.37 ± 0.04 a | 2.39 ± 0.04 a | 2.40 ± 0.02 abc | 2.35 ± 0.02 abc | 2.35 ± 0.02 ab |
9 weeks | 2.04 ± 0.08 d | 2.24 ± 0.01 b | 0 | 0 | 2.35 ± 0.03 ab | 2.37 ± 0.02 a | 2.38 ± 0.06 ab | 2.39 ± 0.03 abc | 2.35 ± 0.05 abc | 2.36 ± 0.00 ab |
11 weeks | 1.89 ± 0.03 e | 2.15 ± 0.03 bc | 0 | 0 | 2.36 ± 0.04 ab | 2.36 ± 0.03 a | 2.37 ± 0.04 ab | 2.35 ± 0.05 abc | 2.31 ± 0.03 abc | 2.34 ± 0.03 ab |
12 weeks | 1.84 ± 0.01 ef | 2.10 ± 0.02 c | 0 | 0 | 2.33 ± 0.02 ab | 2.32 ± 0.03 ab | 2.37 ± 0.03 ab | 2.37 ± 0.02 abc | 2.32 ± 0.02 abc | 2.34 ± 0.02 ab |
14 weeks | 1.76 ± 0.07 f | 1.85 ± 0.08 d | 0 | 0 | 2.29 ± 0.01 b | 2.32 ± 0.01 ab | 2.37 ± 0.04 ab | 2.34 ± 0.02 bc | 2.29 ± 0.03 bc | 2.35 ± 0.02 ab |
16 weeks | 1.33 ± 0.01 g | 1.78 ± 0.06 d | 0 | 0 | 2.16 ± 0.04 c | 2.24 ± 0.02 b | 2.30 ± 0.01 b | 2.32 ± 0.03 c | 2.28 ± 0.03 c | 2.32 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Liang, Y.; Sun, L.; Yang, Z.; Xu, J.; Dong, D.; Liu, H. Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions. Polymers 2023, 15, 4505. https://doi.org/10.3390/polym15234505
Tan J, Liang Y, Sun L, Yang Z, Xu J, Dong D, Liu H. Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions. Polymers. 2023; 15(23):4505. https://doi.org/10.3390/polym15234505
Chicago/Turabian StyleTan, Jiao, Yinchun Liang, Lihui Sun, Zhanping Yang, Jingjing Xu, Dejun Dong, and Huan Liu. 2023. "Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions" Polymers 15, no. 23: 4505. https://doi.org/10.3390/polym15234505
APA StyleTan, J., Liang, Y., Sun, L., Yang, Z., Xu, J., Dong, D., & Liu, H. (2023). Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions. Polymers, 15(23), 4505. https://doi.org/10.3390/polym15234505