A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Composite
2.3. Oxyacetylene Ablation Test
2.4. Characterizations
3. Results and Discussion
3.1. The Change in Chemical Structure during the Curing Process
3.2. Density, Thermal Conductivity, and Thermal Degradation Behavior of the Composites
3.3. Flexural Strength of the Composites
3.4. Oxyacetylene Ablation Behavior
3.5. Ablation Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Zha, B.; Wang, J.; Sun, Z.; Zhang, Z.; Shi, Y. Ablation mechanism of C/C-SiC and C/C-SiC-ZrC composites in hypersonic oxygen-enriched environment. Ceram. Int. 2022, 48, 22985–22993. [Google Scholar] [CrossRef]
- Qu, H.; Wang, L.; Hui, K.; Bian, C.; Li, H.; Guan, Y.; Luan, T.; Yan, N. Enhancing Thermal Insulation of EPDM Ablators via Constructing Alternating Planar Architectures. Polymers 2022, 14, 1570. [Google Scholar] [CrossRef]
- Uyanna, O.; Najafi, H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 2020, 176, 341–356. [Google Scholar] [CrossRef]
- Arai, Y.; Inoue, R.; Goto, K.; Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceram. Int. 2019, 45, 14481–14489. [Google Scholar] [CrossRef]
- Kumar, C.V.; Kandasubramanian, B. Advances in Ablative Composites of Carbon Based Materials: A Review. Ind. Eng. Chem. Res. 2019, 58, 22663–22701. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Song, W.; Li, C.; Fan, W.; Bian, C.; Zhang, C.; Jing, X. The aryl-boron phenolic resins with super ablation properties for resin-transfer molding process of three-dimensional fabric. Polym. Degrad. Stabil. 2023, 208, 110252. [Google Scholar] [CrossRef]
- Chen, Z.; Han, S.; Ji, Y.; Wu, H.; Guo, S.; Yan, N.; Li, H. Effects of MWCNTs on Char Layer Structure and Physicochemical Reaction in Ethylene Propylene Diene Monomer Insulators. Polymers 2022, 14, 3016. [Google Scholar] [CrossRef]
- Fu, H.; Qin, Y.; Zou, Z.; Fan, J.; Xue, C. Enhancement of the interlaminar performance of silica/phenolic laminates after high-temperature pyrolysis using a boron carbide/silicon carbide fibre z-pin. Mater. Design. 2022, 219, 110770. [Google Scholar] [CrossRef]
- Ji, Y.; Han, S.; Chen, Z.; Wu, H.; Guo, S.; Yan, N.; Li, H.; Luan, T. Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites. Polymers 2022, 14, 268. [Google Scholar] [CrossRef]
- Natali, M.; Kenny, J.M.; Torre, L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Prog. Mater. Sci. 2016, 84, 192–275. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, P.; Hong, C.Q.; Zhang, B.X.; Hui, D. Improved ablation resistance of carbon-phenolic composites by introducing zirconium diboride particles. Compos. Part B Eng. 2013, 47, 320–325. [Google Scholar] [CrossRef]
- Binner, J.; Porter, M.; Baker, B.; Zou, J.; Venkatachalam, V.; Diaz, V.R.; D’Angio, A.; Ramanujam, P.; Zhang, T.; Murthy, T.S.R.C. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—A review. Int. Mater. Rev. 2020, 65, 389–444. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E. Ultra-high temperature ceramics: Materials for extreme environments. Scr. Mater. 2017, 129, 94–99. [Google Scholar] [CrossRef]
- Xue, C.Y.; Qin, Y.; Fu, H.D.; Fan, J.M. Thermal Stability, Mechanical Properties and Ceramization Mechanism of Epoxy Resin/Kaolin/Quartz Fiber Ceramifiable Composites. Polymers 2022, 14, 3372. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhu, S.; Liu, Y.; Ma, Z.; Li, H. Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite. J. Mater. Sci. 2020, 55, 8553–8563. [Google Scholar] [CrossRef]
- Abdulganiyu, I.A.; Adesola, O.E.; Oguocha, I.N.A.; Odeshi, A.G. Dynamic Impact Properties of Carbon-Fiber-Reinforced Phenolic Composites Containing Microfillers. Polymers 2023, 15, 3038. [Google Scholar] [CrossRef]
- Poliakova, D.; Morozov, O.; Lipatov, Y.; Babkin, A.; Kepman, A.; Avdeev, V.; Bulgakov, B. Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites. Polymers 2022, 14, 4975. [Google Scholar] [CrossRef]
- Ding, W.Q.; Zhou, L.; Zhang, J.P.; Fu, Q.A. Long-term oxidation of MoSi2-modified HfB2-SiC-Si/SiC-Si coating at 1700 °C. Surf. Eng. 2023, 39, 315–325. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Qu, J.-L.; Fu, Q.-G. Ablation behavior of nose-shaped HfB2-SiC modified carbon/carbon composites exposed to oxyacetylene torch. Corros. Sci. 2019, 151, 87–96. [Google Scholar] [CrossRef]
- Yang, T.; Dong, C.; Rong, Y.; Deng, Z.; Li, P.; Han, P.; Shi, M.; Huang, Z. Oxidation Behavior of Carbon Fibers in Ceramizable Phenolic Resin Matrix Composites at Elevated Temperatures. Polymers 2022, 14, 2785. [Google Scholar] [CrossRef]
- Chang, K.; Qin, Y.; Zou, Z.; Huang, Z. Mechanical Properties and Thermal Oxygen Corrosion Behavior of Al2O3f-CF Hybrid Fiber Reinforced Ceramicizable Phenolic Resin Matrix Composites. Appl. Compos. Mater. 2023, 30. [Google Scholar] [CrossRef]
- Yue, Y.; Huang, Y.; Zou, H.; Chen, Y.; Liang, M. Enhanced ablation resistance of carbon/phenolic composites based on mesophase pitch reinforced particles. J. Appl. Polym. Sci. 2023, 140, e54529. [Google Scholar] [CrossRef]
- Deng, Z.; Shi, M.; Huang, Z.; Yu, X.; Wu, Y.; Yang, X. Oxidation resistance, ablation resistance and in situ ceramization mechanism of Al-coated carbon fiber/boron phenolic resin ceramizable composites modified with Ti3SiC2. Ceram. Int. 2023, 49, 32490–32502. [Google Scholar] [CrossRef]
- Zhao, T.; Ye, H.; Zhang, L.; Cai, Q. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials. Int. J. Thermophys. 2017, 38, 151. [Google Scholar] [CrossRef]
- Niu, B.; Shen, H.; Li, T.; Zhang, H.; Qian, Z.; Cao, Y.; Zhang, Y.; Long, D. 2.5D quartz fabric reinforced nanoporous phenolic composites with weakened heat transfer and optimized mechanical properties. Compos. Sci. Technol. 2022, 230, 109726. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Z.; Qin, Y.; Li, Y. Thermal behavior of phenolic-based ceramizable composites modified by nano-aluminum oxide. High Perform. Polym. 2016, 28, 1096–1101. [Google Scholar] [CrossRef]
- Wang, H.; Gong, Z.; Hao, Y.; Deng, Y.; Zhang, C. Evolution of strain-rate dependent compressive failure behavior of ceramifiable FRP composites at high temperature conditions. Compos. Sci. Technol. 2023, 241, 110145. [Google Scholar] [CrossRef]
- Yan, X.; Huang, H.; Fan, Z.; Hong, C.; Hu, P. Assessment of a 3D ablation material response model for lightweight quartz fiber reinforced phenolic composite. Polym. Compos. 2022, 43, 8341–8355. [Google Scholar] [CrossRef]
- Wang, H.; Yan, X.; Jin, X.; Pan, Y.; Wu, C.; Huang, H.; Hong, C.; Zhang, X. Mechanical and thermal ablative behavior of ceramic-modified lightweight quartz felt reinforced phenolic aerogel. Compos. Commun. 2022, 35, 101285. [Google Scholar] [CrossRef]
- Zhu, D.; Shi, M.; Huang, Z.; Qin, Y.; Fu, H.; Deng, Z. Thermal oxidation and compressive failure behavior of ZrSi2-B4C modified phenolic resin-based composite. Polym. Test. 2023, 125, 108128. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.; Du, W.; Huang, F.; Du, L. Thermal stability of the copolymers of silicon-containing arylacetylene resin and acetylene-functional benzoxazine. Polym. Degrad. Stabil. 2011, 96, 2276–2283. [Google Scholar] [CrossRef]
- Ding, H.; Wang, X.; Song, L.; Hu, Y. Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins. J. Renew. Mater. 2022, 10, 871–895. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, X.Y.; Han, L.; Zhang, K. Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins. Polymers 2021, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sun, Z.; Wei, J.; Li, Y.; Xiang, D.; Wu, Y.; Que, Y. A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol—A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability. Polymers 2022, 14, 1597. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, P.; Li, L.; Dai, J.; Ran, Q.; Gu, Y. Thermal degradation mechanism of a cured acetylene/aldehyde functional benzoxazine with high thermal stability. Polym. Degrad. Stab. 2020, 171, 109041. [Google Scholar] [CrossRef]
- Chen, J.; Hu, S.; Zhu, S.; Li, T. Metamaterials from fundamental physics to intelligent design. Interdiscip. Mater. 2022, 2, 12049. [Google Scholar] [CrossRef]
- GJB 323A-96; Ablative Material Ablation Test Method. Standardization Administration of the People’s Republic of China: Beijing, China, 1996.
- GB/T 1463-2005; Test Methods for Density and Relative Density of Fiber Reinforced Plastics. Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- GB/T 1449-2005; Fibre−Reinforced Plastic Composites—Determination of Flexural Properties. Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
Samples | Benzoxazine Resin/g | Quartz Fiber/g | Fused SiO2/g | h-BN/g |
---|---|---|---|---|
F0H0 | 75 | 100 | 0 | 0 |
F50H0 | 75 | 100 | 50 | 0 |
F50H5 | 75 | 100 | 50 | 5 |
F50H10 | 75 | 100 | 50 | 10 |
F50H15 | 75 | 100 | 50 | 15 |
F50H20 | 75 | 100 | 50 | 20 |
Parameters | Values | Parameters | Values |
---|---|---|---|
Total unburned gas flow/(L/h) | 2628 | Diameter of the nozzle tip/(mm) | 2 |
Oxygen gas flow/(L/h) | 1512 | Distance between nozzle tip and sample surface/(mm) | 10 |
Acetylene gas flow/(L/h) | 1116 | Flame ablation angle/(°) | 90 |
Oxygen pressure/(MPa) | 0.4 | Heat flux/(kW/m2) | 4328 |
Acetylene pressure/(MPa) | 0.095 | Temperature of ablation flame/(°C) | 3000 ± 300 |
Wave Number/cm−1 | Vibrational Mode |
---|---|
935 | Bending vibration of out-of-plane C-H on the oxazine ring |
1035.1224 | Symmetric and asymmetric stretching vibration of C-O-C on the oxazine ring |
~3420 | Stretching vibration of O-H of phenols |
1148.1363 | Symmetric and asymmetric stretching vibration of C-N-C on the oxazine ring |
~1110 | Stretching vibration of C-N-C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Lv, Y.; Shi, M.; Huang, Z.; Huang, W. A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance. Polymers 2023, 15, 4430. https://doi.org/10.3390/polym15224430
Deng Z, Lv Y, Shi M, Huang Z, Huang W. A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance. Polymers. 2023; 15(22):4430. https://doi.org/10.3390/polym15224430
Chicago/Turabian StyleDeng, Zongyi, Yunfei Lv, Minxian Shi, Zhixiong Huang, and Wenchao Huang. 2023. "A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance" Polymers 15, no. 22: 4430. https://doi.org/10.3390/polym15224430
APA StyleDeng, Z., Lv, Y., Shi, M., Huang, Z., & Huang, W. (2023). A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance. Polymers, 15(22), 4430. https://doi.org/10.3390/polym15224430