Assessment of Molecularly Imprinted Polymers as Selective Solid-Phase Extraction Sorbents for the Detection of Cloxacillin in Drinking and River Water
Abstract
:1. Introduction
2. Experiment
2.1. Chemical, Reagents and Samples
2.2. Chromatographic Conditions
2.3. Synthesis of Cloxacillin Molecularly Imprinted Polymers
2.4. Batch Binding Studies
2.5. MISPE Procedure
3. Results and Discussion
3.1. Synthesis of Molecularly Imprinted Polymers and Binding Site Evaluation
3.2. Saturation Binding Curves and Scatchard Plot Analysis
3.3. MISPE Procedure Optimization
3.4. Validation and Applicability of the MISPE-HPLC Methodology
3.5. Selectivity of the MIP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, W.L.; Song, C.; He, L.Y.; Wang, B.; Gao, F.Z.; Zhang, M.; Ying, G.G. Antibiotics in Soil and Water: Occurrence, Fate, and Risk. Curr. Opin. Environ. Sci. Health 2023, 32, 100437. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Zuo, R.; Liu, X.; Zhang, Q.; Wang, J.; Yang, J.; Teng, Y.; Chen, X.; Zhai, Y. Sulfonamide Antibiotics in Groundwater and Their Migration in the Vadose Zone: A Case in a Drinking Water Resource. Ecol. Eng. 2021, 162, 106175. [Google Scholar] [CrossRef]
- Shi, J.; Dong, Y.; Shi, Y.; Yin, T.; He, W.; An, T.; Tang, Y.; Hou, X.; Chong, S.; Chen, D.; et al. Groundwater Antibiotics and Microplastics in a Drinking-Water Source Area, Northern China: Occurrence, Spatial Distribution, Risk Assessment, and Correlation. Environ. Res. 2022, 210, 112855. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, A.K.; Cheng, L.; Hussain, A.; Maiti, A. Occurrence of Antibiotics in Wastewater: Potential Ecological Risk and Removal through Anaerobic–Aerobic Systems. Environ. Res. 2023, 226, 115678. [Google Scholar] [CrossRef]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics Traces in the Aquatic Environment: Persistence and Adverse Environmental Impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Ding, D.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Gao, Z.; Yu, Z. The Spread of Antibiotic Resistance to Humans and Potential Protection Strategies. Ecotoxicol. Environ. Saf. 2023, 254, 114734. [Google Scholar] [CrossRef]
- Yu, C.; Pang, H.; Wang, J.H.; Chi, Z.Y.; Zhang, Q.; Kong, F.T.; Xu, Y.P.; Li, S.Y.; Che, J. Occurrence of Antibiotics in Waters, Removal by Microalgae-Based Systems, and Their Toxicological Effects: A Review. Sci. Total Environ. 2022, 813, 151891. [Google Scholar] [CrossRef]
- Takács, E.; Wang, J.; Chu, L.; Tóth, T.; Kovács, K.; Bezsenyi, A.; Szabó, L.; Homlok, R.; Wojnárovits, L. Elimination of Oxacillin, Its Toxicity and Antibacterial Activity by Using Ionizing Radiation. Chemosphere 2022, 286, 131467. [Google Scholar] [CrossRef]
- Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current Advances in Immunoassays for the Detection of Antibiotics Residues: A Review. Food Agric. Immunol. 2020, 31, 268–290. [Google Scholar] [CrossRef]
- Merlo, F.; Montagna, J.; Maraschi, F.; Profumo, A.; Baldanti, F.; Speltini, A. A Versatile Method for Multiclass Determination of β-Lactam Drugs in Urine by Solid-Phase Extraction Followed by HILIC-UV. J. Chromatogr. Open 2022, 2, 100048. [Google Scholar] [CrossRef]
- Cámara, M.; Gallego-Picó, A.; Garcinuño, R.M.; Fernández-Hernando, P.; Durand-Alegría, J.S.; Sánchez, P.J. An HPLC-DAD Method for the Simultaneous Determination of Nine β-Lactam Antibiotics in Ewe Milk. Food Chem. 2013, 141, 829–834. [Google Scholar] [CrossRef] [PubMed]
- El-Kimary, E.I.; Korany, M.A.; Issa, A.E.; Basuny, M.G. Simultaneous Microdetermination of Different Penicillin Antibiotics Residues for Cross-Contamination Study in Non-Penicillin Dosage Forms. Microchem. J. 2023, 185, 108291. [Google Scholar] [CrossRef]
- Karci, A.; Balcioǧlu, I.A. Investigation of the Tetracycline, Sulfonamide, and Fluoroquinolone Antimicrobial Compounds in Animal Manure and Agricultural Soils in Turkey. Sci. Total Environ. 2009, 407, 4652–4664. [Google Scholar] [CrossRef]
- Igualada, C.; Giraldo, J.; Font, G.; Yusà, V. Validation of a Multi-Residue UHPLC-HRMS Method for Antibiotics Screening in Milk, Fresh Cheese, and Whey. J. Food Compos. Anal. 2022, 106, 104265. [Google Scholar] [CrossRef]
- Peris-Vicente, J.; Peris-García, E.; Albiol-Chiva, J.; Durgbanshi, A.; Ochoa-Aranda, E.; Carda-Broch, S.; Bose, D.; Esteve-Romero, J. Liquid Chromatography, a Valuable Tool in the Determination of Antibiotics in Biological, Food and Environmental Samples. Microchem. J. 2022, 177, 107309. [Google Scholar] [CrossRef]
- Guironnet, A.; Wiest, L.; Vulliet, E. Improvement of the QuEChERS Extraction Step by Matrix-Dispersion Effect and Application on Beta-Lactams Analysis in Wastewater Sludge by LC-MS/MS. Talanta 2022, 237, 122923. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-Class, Multi-Residue Determination of 132 Veterinary Drugs in Milk by Magnetic Solid-Phase Extraction Based on Magnetic Hypercrosslinked Polystyrene Prior to Their Determination by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Food Chem. 2022, 387, 132866. [Google Scholar] [CrossRef]
- Wu, J.; Guo, E.L.; Wang, M.L.; Wang, K.; Ma, L.; Lian, K. Determination of β-Lactam Antibiotics in Animal Derived Foods by Modified QuEChERS Coupled with Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Food Compos. Anal. 2023, 122, 105437. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Panseri, S.; Arioli, F. Antibiotic Use in Heavy Pigs: Comparison between Urine and Muscle Samples from Food Chain Animals Analysed by HPLC-MS/MS. Food Chem. 2017, 235, 111–118. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Pitarch, E.; Bijlsma, L.; Matei, I.; Hernández, F. Rapid and Sensitive Analytical Method for the Determination of Amoxicillin and Related Compounds in Water Meeting the Requirements of the European Union Watch List. J. Chromatogr. A 2021, 1658, 462605. [Google Scholar] [CrossRef]
- Goessens, T.; Huysman, S.; De Troyer, N.; Deknock, A.; Goethals, P.; Lens, L.; Vanhaecke, L.; Croubels, S. Multi-Class Analysis of 46 Antimicrobial Drug Residues in Pond Water Using UHPLC-Orbitrap-HRMS and Application to Freshwater Ponds in Flanders, Belgium. Talanta 2020, 220, 121326. [Google Scholar] [CrossRef]
- Suseela, M.N.L.; Viswanadh, M.K.; Mehata, A.K.; Priya, V.; Vikas; Setia, A.; Malik, A.K.; Gokul, P.; Selvin, J.; Muthu, M.S. Advances in Solid-Phase Extraction Techniques: Role of Nanosorbents for the Enrichment of Antibiotics for Analytical Quantification. J. Chromatogr. A 2023, 1695, 463937. [Google Scholar] [CrossRef]
- Wang, C.; Ye, D.; Li, X.; Jia, Y.; Zhao, L.; Liu, S.; Xu, J.; Du, J.; Tian, L.; Li, J.; et al. Occurrence of Pharmaceuticals and Personal Care Products in Bottled Water and Assessment of the Associated Risks. Environ. Int. 2021, 155, 106651. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Carlson, K.H. Occurrence of β-Lactam and Polyether Ionophore Antibiotics in Lagoon Water and Animal Manure. Sci. Total Environ. 2018, 640–641, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Sadique, M.A.; Kumar, N.; Yadav, S.; Ranjan, P.; Parihar, A.; Khan, R.; Kaushik, A.K. Multifunctional Carbon Nanomaterials Decorated Molecularly Imprinted Hybrid Polymers for Efficient Electrochemical Antibiotics Sensing. J. Environ. Chem. Eng. 2022, 10, 107703. [Google Scholar] [CrossRef]
- Neng, J.; Wang, J.; Wang, Y.; Zhang, Y.; Chen, P. Trace Analysis of Food by Surface-Enhanced Raman Spectroscopy Combined with Molecular Imprinting Technology: Principle, Application, Challenges, and Prospects. Food Chem. 2023, 429, 136883. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Bozal-Palabiyik, B.; Unal, D.N.; Erkmen, C.; Siddiq, M.; Shah, A.; Uslu, B. Molecularly Imprinted Polymers (MIPs) Combined with Nanomaterials as Electrochemical Sensing Applications for Environmental Pollutants. Trends Environ. Anal. Chem. 2022, 36, e00176. [Google Scholar] [CrossRef]
- Basak, S.; Venkatram, R.; Singhal, R.S. Recent Advances in the Application of Molecularly Imprinted Polymers (MIPs) in Food Analysis. Food Control 2022, 139, 109074. [Google Scholar] [CrossRef]
- Benito-Peña, E.; Partal-Rodera, A.I.; León-González, M.E.; Moreno-Bondi, M.C. Evaluation of Mixed Mode Solid Phase Extraction Cartridges for the Preconcentration of Beta-Lactam Antibiotics in Wastewater Using Liquid Chromatography with UV-DAD Detection. Anal. Chim. Acta 2006, 556, 415–422. [Google Scholar] [CrossRef]
- Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Baghersad, M.H.; Azimzadeh, M. Label-Free Electrochemical Detection of Cloxacillin Antibiotic in Milk Samples Based on Molecularly Imprinted Polymer and Graphene Oxide-Gold Nanocomposite. Measurement 2019, 145, 22–29. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, J.; Wang, X.; Yang, C.; Li, S.; Lu, T.; Li, X.; Wang, X.; Zhu, G. A Highly Sensitive and Selective Method for the Determination of Ceftiofur Sodium in Milk and Animal-Origin Food Based on Molecularly Imprinted Solid-Phase Extraction Coupled with HPLC-UV. Food Chem. 2021, 347, 129013. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Sun, M.; Guo, P.; Chang, C.; Fu, Q. Molecularly Imprinted Membrane Extraction Combined with High-Performance Liquid Chromatography for Selective Analysis of Cloxacillin from Shrimp Samples. Food Chem. 2018, 259, 73–80. [Google Scholar] [CrossRef]
- Ashley, J.; Wu, K.; Hansen, M.F.; Schmidt, M.S.; Boisen, A.; Sun, Y. Quantitative Detection of Trace Level Cloxacillin in Food Samples Using Magnetic Molecularly Imprinted Polymer Extraction and Surface-Enhanced Raman Spectroscopy Nanopillars. Anal. Chem. 2017, 89, 11484–11490. [Google Scholar] [CrossRef]
- Camel, V. Microwave-Assisted Solvent Extraction of Environmental Samples. TrAC Trends Anal. Chem. 2000, 19, 229–248. [Google Scholar] [CrossRef]
- Bravo, J.C.; Garcinuño, R.M.; Fernández, P.; Durand, J.S. A New Molecularly Imprinted Polymer for the On-Column Solid-Phase Extraction of Diethylstilbestrol from Aqueous Samples. Anal. Bioanal. Chem. 2007, 388, 1039–1045. [Google Scholar] [CrossRef]
- Yilmaz, E.; Mosbach, K.; Haupt, K. Influence of Functional and Cross-Linking Monomers and the Amount of Template on the Performance of Molecularly Imprinted Polymers in Binding Assays. Anal. Commun. 1999, 36, 167–170. [Google Scholar] [CrossRef]
- Aly, Z.; Luca, V. Uranium Extraction from Aqueous Solution Using Dried and Pyrolyzed Tea and Coffee Wastes. J. Radioanal. Nucl. Chem. 2013, 295, 889–900. [Google Scholar] [CrossRef]
- Pourfarzib, M.; Shekarchi, M.; Rastegar, H.; Akbari-Adergani, B.; Mehramizi, A.; Dinarvand, R. Molecularly Imprinted Nanoparticles Prepared by Miniemulsion Polymerization as a Sorbent for Selective Extraction and Purification of Efavirenz from Human Serum and Urine. J. Chromatogr. B 2015, 974, 1–8. [Google Scholar] [CrossRef]
- Aly, Z.; Graulet, A.; Scales, N.; Hanley, T. Removal of Aluminium from Aqueous Solutions Using PAN-Based Adsorbents: Characterisation, Kinetics, Equilibrium and Thermodynamic Studies. Environ. Sci. Pollut. Res. 2014, 21, 3972–3986. [Google Scholar] [CrossRef]
Isotherm Results | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
(mg g−1) | (L mg−1) | (mg g−1) | |||||
ACN-MIP | 0.25 | 80.2 | 0.001 | 0.964 | 1.5 | 1.8 | 0.988 |
ACN-NIP | 1.21 | 4.51 | 0.004 | 0.976 | 0.5 | 2.5 | 0.963 |
Binding Sites | ACN-MIP | ACN-NIP | ||
---|---|---|---|---|
(mg g−1) | (mg L−1) | (mg g−1) | (mg L−1) | |
High affinity | 2.9 | 1.3 | 1.8 | 2.7 |
Low affinity | 22.6 | 57.2 | 6.1 | 181.6 |
Sample | Linearity | Spiking Level µg/L | Recovery ± RSD % | LOD µg/L | LOQ µg/L | ||
---|---|---|---|---|---|---|---|
Concentration Range µg/L | R2 | Inter-Day | Intra-Day | ||||
Drinking water | 0.05–1.50 | 0.999 | 0.10 | 96.9 ± 6.3 | 90.5 ± 7.5 | 0.29 | 0.8 |
0.50 | 94.7 ± 4.2 | 92.5 ± 6.8 | |||||
1.00 | 93.8 ± 6.4 | 91.8 ± 7.9 | |||||
River water | 0.05–1.50 | 0.999 | 0.10 | 83.1 ± 2.2 | 89.9 ± 6.0 | 0.37 | 0.98 |
0.50 | 84.3 ± 5.2 | 80.5 ± 5.0 | |||||
1.00 | 89.1 ± 4.2 | 81.7 ± 7.7 |
Sample Matrix | Extraction Method | Detection Method | Recovery (%) | LOD | LOQ | Ref. |
---|---|---|---|---|---|---|
Milk | SPE | Electrochemical sensor | 98.6–101.8 | 36 nM | [31] | |
Shrimp | MIM | HPLC-UV | 80.9–94.9 | 0.03 μg/g | 0.10 μg/g | [33] |
Pig plasma | MMIP | SERS | <80.0 | 7.80 pmol | [34] | |
Drinking water Tap water | MISPE | HPLC-DAD | 93.8–96.9 | 0.29 µg/L | 0.80 µg/L | Present work |
83.1–89.1 | 0.37 µg/L | 0.98 µg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcinuño, R.M.; Collado, E.J.; Paniagua, G.; Bravo, J.C.; Fernández Hernando, P. Assessment of Molecularly Imprinted Polymers as Selective Solid-Phase Extraction Sorbents for the Detection of Cloxacillin in Drinking and River Water. Polymers 2023, 15, 4314. https://doi.org/10.3390/polym15214314
Garcinuño RM, Collado EJ, Paniagua G, Bravo JC, Fernández Hernando P. Assessment of Molecularly Imprinted Polymers as Selective Solid-Phase Extraction Sorbents for the Detection of Cloxacillin in Drinking and River Water. Polymers. 2023; 15(21):4314. https://doi.org/10.3390/polym15214314
Chicago/Turabian StyleGarcinuño, Rosa Mª, Eduardo José Collado, Gema Paniagua, Juan Carlos Bravo, and Pilar Fernández Hernando. 2023. "Assessment of Molecularly Imprinted Polymers as Selective Solid-Phase Extraction Sorbents for the Detection of Cloxacillin in Drinking and River Water" Polymers 15, no. 21: 4314. https://doi.org/10.3390/polym15214314