Polysaccharide/Silica Microcapsules Prepared via Ionic Gelation Combined with Spray Drying: Application in the Release of Hydrophilic Substances and Catalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of Polysaccharide/Silica Hybrid Microcapsules
2.3. Encapsulation of Erioglaucine Disodium Salt
2.4. Particle Characterization
2.4.1. Water Uptake and Swelling Capacity
2.4.2. Morphology, Composition, and Surface Area
2.4.3. Thermogravimetric Analysis
2.5. Release Study
2.6. Deposition of Pd(0) Nanoparticles on of Chitosan Microparticles
2.7. Catalytic Experiments
3. Results and Discussion
3.1. Preparation of Polysaccharide/Silica Microcapsules by Spray Drying
3.2. Application of Chitosan Microcapsules as Carriers of Hydrophilic Substances
3.3. Application of Chitosan Microcapsules in Catalysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Shen, J.; Zolnik, B.; Sadrieh, N.; Burgess, D.J. Optimization and dissolution performance of spray-dried naproxen nano-crystals. Int. J. Pharm. 2015, 486, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Heng, D.; Ng, W.K.; Chan, H.-K.; Tan, R.B.H. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharm. 2011, 403, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Abdel Bary, E.; Fekri, A.; Soliman, Y.; Harmal, A. Biodegradable polymer nanocomposites based on polyvinyl alcohol and nano-rice straw. Indian J. Appl. Res. 2016, 6, 713–721. [Google Scholar] [CrossRef]
- Ammala, A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int. J. Cosm. Sci. 2013, 35, 113–124. [Google Scholar] [CrossRef]
- Aranaz, I.; Paños, I.; Peniche, C.; Heras, Á.; Acosta, N. Chitosan spray-dried microparticles for controlled delivery of venlafaxine hydrochloride. Molecules 2017, 22, 1980. [Google Scholar] [CrossRef]
- Schmid, K.; Arpagaus, C.; Friess, W. Evaluation of the nano spray dryer b-90 for pharmaceutical applications. Pharm. Dev. Technol. 2011, 16, 287–294. [Google Scholar] [CrossRef]
- Li, X.; Anton, N.; Arpagaus, C.; Belleteix, F.; Vandamme, T.F. Nanoparticles by spray drying using innovative new technology: The büchi nano spray dryer b-90. J. Control. Release 2010, 147, 304–310. [Google Scholar] [CrossRef]
- Kašpar, O.; Jakubec, M.; Štěpánek, F. Characterization of spray dried chitosan–tpp microparticles formed by two- and three-fluid nozzles. Powder Technol. 2013, 240, 31–40. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.D.; Selomulya, C. On the spray drying of uniform functional microparticles. Particuology 2015, 22, 1–12. [Google Scholar] [CrossRef]
- Wan, F.; Yang, M. Design of plga-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int. J. Pharm. 2016, 498, 82–95. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Bari, D.B.; Surana, S.J.; Pardeshi, C.V. In vitro, ex vivo and in vivo performance of chitosan-based spray-dried nasal mucoadhesive microspheres of diltiazem hydrochloride. J. Drug Deliv. Sci. Technol. 2016, 31, 108–117. [Google Scholar] [CrossRef]
- Kumar, S.; Shen, J.; Burgess, D.J. Nano-amorphous spray dried powder to improve oral bioavailability of itraconazole. J. Control. Release 2014, 192, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.P.; Hackenhaar, C.R.; Lorenzoni, A.S.G.; Rodrigues, R.C.; Costa, T.M.H.; Ninow, J.L.; Hertz, P.F. Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-d-galactosidase immobilization. Carbohydr. Polym. 2016, 137, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.-W.; Huang, R.-N.; Huang, L.L.H.; Tsai, C.-C. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J. Biomater. Sci. Polym. Ed. 1999, 10, 63–78. [Google Scholar] [CrossRef]
- Panos, I.; Acosta, N.; Heras, A. New drug delivery systems based on chitosan. Curr. Drug Discov. Technol. 2008, 5, 333–341. [Google Scholar] [CrossRef]
- Sreekumar, S.; Lemke, P.; Moerschbacher, B.M.; Torres-Giner, S.; Lagaron, J.M. Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications. Food Addit. Contam. Part A Chem. Anal. 2017, 34, 1795–1806. [Google Scholar] [CrossRef]
- Anal, A.K.; Stevens, W.F.; Remunan-Lopez, C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int. J. Pharm. 2006, 312, 166–173. [Google Scholar] [CrossRef]
- Blandino, A.; Macías, M.; Cantero, D. Formation of calcium alginate gel capsules: Influence of sodium alginate and cacl2 concentration on gelation kinetics. J. Biosci. Bioeng. 1999, 88, 686–689. [Google Scholar] [CrossRef]
- Wang, S.; Chen, M.; Wu, L. One-step synthesis of cagelike hollow silica spheres with large through-holes for macromolecule delivery. ACS Appl. Mater. Interfaces 2016, 8, 33316–33325. [Google Scholar] [CrossRef]
- Doan-Nguyen, T.P.; Natsathaporn, P.; Jenjob, R.; Niyom, Y.; Ittisanronnachai, S.; Flood, A.; Crespy, D. Regulating payload release from hybrid nanocapsules with dual silica/polycaprolactone shells. Langmuir 2019, 35, 11389–11396. [Google Scholar] [CrossRef]
- Fan, J.; Wang, S.; Sun, W.; Guo, S.; Kang, Y.; Du, J.; Peng, X. Anticancer drug delivery systems based on inorganic nanocarriers with fluorescent tracers. AlChE J. 2018, 64, 835–859. [Google Scholar] [CrossRef]
- Ilhan-Ayisigi, E.; Yesil-Celiktas, O. Silica-based organic-inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery. Eng. Life Sci. 2018, 18, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Niyom, Y.; Phakkeeree, T.; Flood, A.; Crespy, D. Synergy between polymer crystallinity and nanoparticles size for payloads release. J. Colloid Interface Sci. 2019, 550, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Gaitzsch, J.; Huang, X.; Voit, B. Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 2016, 116, 1053–1093. [Google Scholar] [CrossRef]
- Behzadi, S.; Steinmann, M.; Estupiñán, D.; Landfester, K.; Crespy, D. The pro-active payload strategy significantly increases selective release from mesoporous nanocapsules. J. Control. Release 2016, 242, 119–125. [Google Scholar] [CrossRef]
- Hajir, M.; Dolcet, P.; Fischer, V.; Holzinger, J.; Landfester, K.; Muñoz-Espí, R. Sol–gel processes at the droplet interface: Hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. J. Mater. Chem. 2012, 22, 5622–5628. [Google Scholar] [CrossRef]
- Elzayat, A.; Tolba, E.; Pérez-Pla, F.F.; Oraby, A.; Muñoz-Espí, R. Increased stability of polysaccharide/silica hybrid sub-millicarriers for retarded release of hydrophilic substances. Macromol. Chem. Phys. 2021, 222, 2100027. [Google Scholar] [CrossRef]
- Shen, C.; Wang, Y.J.; Xu, J.H.; Wang, K.; Luo, G.S. Size control and catalytic activity of highly dispersed pd nanoparticles supported on porous glass beads. Langmuir 2012, 28, 7519–7527. [Google Scholar] [CrossRef]
- Montsch, T.; Heuchel, M.; Traa, Y.; Klemm, E.; Stubenrauch, C. Selective hydrogenation of 3-hexyn-1-ol with pd nanoparticles synthesized via microemulsions. Appl. Catal. A 2017, 539, 19–28. [Google Scholar] [CrossRef]
- Thompson, S.T.; Lamb, H.H. Catalysts for selective hydrogenation of furfural derived from the double complex salt [pd(nh3)4](reo4)2 on γ-al2o3. J. Catal. 2017, 350, 111–121. [Google Scholar] [CrossRef]
- Djoković, V.; Božanic, D.K.; Vodnik, V.V.; Krsmanović, R.M.; Trandafilovic, L.V.; Dimitrijević-Branković, S. Structure and Optical Properties of Noble-Metal and Oxide Nanoparticles Dispersed in Various Polysaccharide Biopolymers; Proc. SPIE: Bellingham, WA, USA, 2011; p. 809816. [Google Scholar]
- Liao, X.; Zhang, Y.; Hill, M.; Xia, X.; Zhao, Y.; Jiang, Z. Highly efficient ni/ceo2 catalyst for the liquid phase hydrogenation of maleic anhydride. Appl. Catal. A 2014, 488, 256–264. [Google Scholar] [CrossRef]
- Regenhardt, S.A.; Meyer, C.I.; Garetto, T.F.; Marchi, A.J. Selective gas phase hydrogenation of maleic anhydride over ni-supported catalysts: Effect of support on the catalytic performance. Appl. Catal. A 2012, 449, 81–87. [Google Scholar] [CrossRef]
- Liu, G.; Hou, M.; Song, J.; Jiang, T.; Fan, H.; Zhang, Z.; Han, B. Immobilization of pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free heck reaction. Green Chem. 2010, 12, 65–69. [Google Scholar] [CrossRef]
- Berguerand, C.; Yuranov, I.; Cárdenas-Lizana, F.; Yuranova, T.; Kiwi-Minsker, L. Size-controlled pd nanoparticles in 2-butyne-1,4-diol hydrogenation: Support effect and kinetics study. J. Phys. Chem. C 2014, 118, 12250–12259. [Google Scholar] [CrossRef]
- Leonhardt, S.E.S.; Stolle, A.; Ondruschka, B.; Cravotto, G.; Leo, C.D.; Jandt, K.D.; Keller, T.F. Chitosan as a support for heterogeneous pd catalysts in liquid phase catalysis. Appl. Catal. A 2010, 379, 30–37. [Google Scholar] [CrossRef]
- Elzayat, A.M.; Pérez-Pla, F.F.; Muñoz-Espí, R. A chitosan/silica hybrid 3d scaffold for simultaneous entrapment of two different hydrophilic substances. Mater. Lett. 2022, 326, 132941. [Google Scholar] [CrossRef]
- Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P. The hill equation: A review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 2008, 22, 633–648. [Google Scholar] [CrossRef]
- Murzin, D.Y.; Heikkilä, T. Modeling of drug dissolution kinetics with sigmoidal behavior from ordered mesoporous silica. Chem. Eng. Commun. 2014, 201, 579–592. [Google Scholar] [CrossRef]
- Haber, F. Gradual electrolytic reduction of nitrobenzene with limited cathode potential. Elektrochem. Angew. Phys. Chem 1898, 22, 506–514. [Google Scholar]
- Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Ang. Chem. Int. Ed. 2007, 46, 7266–7269. [Google Scholar] [CrossRef]
- Ye, W.; Yu, J.; Zhou, Y.; Gao, D.; Wang, D.; Wang, C.; Xue, D. Green synthesis of pt–au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl. Catal. B 2016, 181, 371–378. [Google Scholar] [CrossRef]
- Movahed, S.K.; Lehi, N.F.; Dabiri, M. Palladium nanoparticles supported on core-shell and yolk-shell fe3o4@nitrogen doped carbon cubes as a highly efficient, magnetically separable catalyst for the reduction of nitroarenes and the oxidation of alcohols. J. Catal. 2018, 364, 69–79. [Google Scholar] [CrossRef]
- Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015, 287, 114–136. [Google Scholar] [CrossRef]
- Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.; Jaquet, B.; Zaccone, A. Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 2014, 118, 18618–18625. [Google Scholar] [CrossRef]
- Lara, L.R.S.; Zottis, A.D.; Elias, W.C.; Faggion, D.; Maduro de Campos, C.E.; Acuña, J.J.S.; Domingos, J.B. The catalytic evaluation of in situ grown pd nanoparticles on the surface of fe3o4@dextran particles in the p-nitrophenol reduction reaction. RSC Adv. 2015, 5, 8289–8296. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef]
- Ródenas, M.; El Haskouri, J.; Ros-Lis, J.V.; Marcos, M.D.; Amorós, P.; Úbeda, M.Á.; Pérez-Pla, F. Highly active hydrogenation catalysts based on pd nanoparticles dispersed along hierarchical porous silica covered with polydopamine as interfacial glue. Catalysts 2020, 10, 449. [Google Scholar] [CrossRef]
Sample | System | Cross-Linker | Polymer:Cross-Linker:TEOS Weight Ratio | Initial Load (In Situ) [a] |
---|---|---|---|---|
F1 | Chitosan | — | 4:0:0 | — |
F2 | Chitosan/silica | — | 4:0:5 | — |
F3 | Chitosan | STP | 4:1:0 | — |
F4 | Chitosan/silica | STP | 4:1:5 | — |
F5 | Chitosan/silica | — | 4:0:5 | Erioglaucine |
F6 | Chitosan | STP | 4:1:0 | Erioglaucine |
F7 | Chitosan/silica | STP | 4:1:5 | Erioglaucine |
F8 | Alginate | — | 4:0:0 | — |
F9 | Alginate/silica | — | 4:0:5 | — |
F10 | Alginate | CaCl2 | 4:1:0 | — |
F11 | Alginate/silica | CaCl2 | 4:1:5 | — |
Catalyst | /min−1 mol−1 L | k/min−1 | t1/2/min |
---|---|---|---|
F3-Pd | 0.03 | 0.10 | 6.7 |
F4-Pd | 0.06 | 0.21 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elzayat, A.M.; Adam-Cervera, I.; Albus, M.; Cháfer, A.; Badia, J.D.; Pérez-Pla, F.F.; Muñoz-Espí, R. Polysaccharide/Silica Microcapsules Prepared via Ionic Gelation Combined with Spray Drying: Application in the Release of Hydrophilic Substances and Catalysis. Polymers 2023, 15, 4116. https://doi.org/10.3390/polym15204116
Elzayat AM, Adam-Cervera I, Albus M, Cháfer A, Badia JD, Pérez-Pla FF, Muñoz-Espí R. Polysaccharide/Silica Microcapsules Prepared via Ionic Gelation Combined with Spray Drying: Application in the Release of Hydrophilic Substances and Catalysis. Polymers. 2023; 15(20):4116. https://doi.org/10.3390/polym15204116
Chicago/Turabian StyleElzayat, Asmaa M., Inés Adam-Cervera, Marie Albus, Amparo Cháfer, José D. Badia, Francisco F. Pérez-Pla, and Rafael Muñoz-Espí. 2023. "Polysaccharide/Silica Microcapsules Prepared via Ionic Gelation Combined with Spray Drying: Application in the Release of Hydrophilic Substances and Catalysis" Polymers 15, no. 20: 4116. https://doi.org/10.3390/polym15204116
APA StyleElzayat, A. M., Adam-Cervera, I., Albus, M., Cháfer, A., Badia, J. D., Pérez-Pla, F. F., & Muñoz-Espí, R. (2023). Polysaccharide/Silica Microcapsules Prepared via Ionic Gelation Combined with Spray Drying: Application in the Release of Hydrophilic Substances and Catalysis. Polymers, 15(20), 4116. https://doi.org/10.3390/polym15204116