Preparation and Characterization of a Preformed Polyampholyte Particle Gel Composite for Conformance Control in Oil Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hydrogels Based on AAm-APTAC-AMPS
2.3. Fourier-Transform Infrared Spectroscopy (ATR-FTIR) of Hydrogels
2.4. Thermogravimetric Analysis (TGA) of Hydrogels
2.5. Analysis of Mechanical Properties of Hydrogels
2.6. Determination of Hydrogels’ Water-Holding Capacity at 25 °C
2.7. Determination of Hydrogels’ Water-Holding Capacity in Aqueous Solution at Various Temperatures
2.8. Determination of Water Holding Capacity and Water Absorption Kinetics of Hydrogels in Low-, Medium-, and High-Salinity Formation Water
2.9. Selectivity of Water Holding Capacity in the Water–Organic Mixture
2.10. Scanning Electron Microscopy (SEM) of Hydrogels
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seright, R.S.; Liang, J. A Survey of Field Applications of Gel Treatments for Water Shutoff. In Proceedings of the SPE Latin America/Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 27–29 April 1994. [Google Scholar] [CrossRef]
- Bai, B.; Li, L.; Liu, Y.; Liu, H.; Wang, Z.; You, C. Preformed Particle Gel for Conformance Control: Factors Affecting Its Properties and Applications. SPE Reserv. Eval. Eng. 2007, 10, 415–422. [Google Scholar] [CrossRef]
- Bai, B.; Li, L.; Liu, Y.; Wang, Z.; Liu, H. Preformed Particle Gel for Conformance Control: Factors Affecting its Properties and Applications. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar] [CrossRef]
- Kumar, A.; Mahto, V.; Sharma, V.P. Reinforced preformed particle gel: Synthesis, characterization and performance evaluation for water shut-off jobs in heterogeneous reservoir. J. Pet. Sci. Eng. 2020, 193, 107408. [Google Scholar] [CrossRef]
- Ai, L.Q.; Yang, H.; Wang, S.W.; Zheng, L.J.; Yuan, H.Y.; Yu, X.R.; Su, G. Acrylamide preformed particle gels with movable-crosslinking for conformance control. J. Mol. Liq. 2023, 384, 122217. [Google Scholar] [CrossRef]
- Li, L.; Guo, J.X.; Kang, C.H. LCST-UCST Transition Property of a Novel Retarding Swelling and Thermosensitive Particle Gel. Materials 2023, 16, 2761. [Google Scholar] [CrossRef] [PubMed]
- do Amparo, S.Z.S.; de Vasconcelos, C.K.B.; Almeida, A.; Sena, L.E.B.; Lima, M.; Medeiros, F.S.; Caliman, V.; Silva, G.G.; Viana, M.M. Microwave-assisted synthesis of PAM preformed particle gels reinforced with carbon nanomaterials for conformance control in oil recovery. Fuel 2022, 330, 4121108. [Google Scholar] [CrossRef]
- Kang, W.L.; Wang, J.Q.; Ye, Z.Q.; Gu, G.J.; Li, W.M.; Yang, H.B.; Li, Z.; Xu, H.; Lv, Z.; Sarsenbekuly, B. Study on preparation and plugging effect of sawdust gel particle in fractured reservoir. J. Pet. Sci. Eng. 2022, 212, 110358. [Google Scholar] [CrossRef]
- Chauveteau, G.; Tabary, R.; Blin, N.; Renard, M.; Rousseau, D.; Faber, R. Disproportionate Permeability Reduction by Soft Preformed Microgels. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar] [CrossRef]
- Almohsin, A.M.; Bai, B.; Imqam, A.H.; Wei, M.; Kang, W.; Delshad, M.; Sepehrnoori, K. Transport of Nanogel through Porous Media and Its Resistance to Water Flow. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar] [CrossRef]
- Bai, B.; Wei, M.; Liu, Y. Field and Lab Experience with a Successful Preformed Particle Gel Conformance Control Technology. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 23–26 March 2013. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Zhao, J. Understanding anti-polyelectrolyte behavior of a well-defined polyzwitterion at the single-chain level. Polym. Int. 2015, 64, 999–1005. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E. Application of polyampholytes in emerging technologies. Mater. Today Proc. 2022, 71, 31–37. [Google Scholar] [CrossRef]
- Gussenov, I.S.; Mukhametgazy, N.; Shakhvorostov, A.V.; Kudaibergenov, S.E. Comparative study of oil recovery using amphoteric terpolymer and hydrolyzed polyacrylamide. Polymers 2022, 14, 3095. [Google Scholar] [CrossRef] [PubMed]
- Khutoryanskaya, O.V.; Mayeva, Z.A.; Mun, G.A.; Khutoryanskiy, V.V. Designing Temperature-Responsive Biocompatible Copolymers and Hydrogels Based on 2-Hydroxyethyl(meth)acrylates. Biomacromolecules 2008, 9, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
- Beer, F.; Johnston, R.; Dewolf, J.; Mazurek, D. Mechanics of Materials; McGraw-Hill Companies: New York, NY, USA, 2009; p. 57. [Google Scholar]
- Chavda, H.; Patel, C. Effect of crosslinker concentration on characteristics of superporous hydrogel. Int. J. Pharm. Investig. 2011, 1, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Ibraeva, Z.E.; Zhumaly, A.A.; Blagih, E.; Kudaibergenov, S.E. Preparation and Characterization of Organic-Inorganic Composite Materials Based on Poly(acrylamide) Hydrogels and Clay Minerals. Macromol. Symp. 2015, 351, 97–111. [Google Scholar] [CrossRef]
- Sun, T.L.; Kurokawa, T.; Kuroda, S.; Ihsan, A.B.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937. [Google Scholar] [CrossRef]
- Bai, B.; Liu, Y.; Coste, J.-P.; Li, L. Preformed Particle Gel for Conformance Control: Transport Mechanism Through Porous Media. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Yavari, N.; Azizian, S. Mixed diffusion and relaxation kinetics model for hydrogels swelling. J. Mol. Liq. 2022, 363, 119861. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E. Polyampholytes: Synthesis, Characterization, and Application; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; p. 220. [Google Scholar]
- Cheng, W.-M.; Hu, X.-M.; Zhao, Y.-Y.; Wu, M.-Y.; Hu, Z.-X.; Yu, X.-T. Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels. e-Polymers 2017, 17, 95–106. [Google Scholar] [CrossRef]
- Gussenov, I.; Mukhametgazy, N.; Shakhvorostov, A.; Kudaibergenov, S. Synthesis and characterization of high molecular weight amphoteric terpolymer based on acrylamide, 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt and (3-acrylamidopropyl) trimethylammonium chloride for oil recovery. Chem. Bull. Kaz. Nat. 2021, 103, 12–20. [Google Scholar] [CrossRef]
- Gao, M.; Gawel, K.; Stokke, B.T. Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur. Polym. J. 2014, 53, 65–74. [Google Scholar] [CrossRef]
- Kipcak, A.S.; Ismail, O.; Doymaz, I.; Piskin, S. Modeling and Investigation of the Swelling Kinetics of Acrylamide-Sodium Acrylate Hydrogel. J. Chem. 2014, 2014, 281063. [Google Scholar] [CrossRef]
- Kudaibergenov, S. Polyampholytes: Past, Present, Perspectives; Center of Operative Printing: Almaty, Kazakhstan, 2021; p. 220. [Google Scholar]
- Katayama, S.; Myoga, A.; Akahori, Y. Swelling behavior of amphoteric gel and the volume phase transition. J. Phys. Chem. 1992, 96, 4698–4701. [Google Scholar] [CrossRef]
- Annaka, M.; Tanaka, T. Multiple phases of polymer gels. Nature 1992, 355, 430–432. [Google Scholar] [CrossRef]
- Noh, J.G.; Sung, Y.J.; Geckeler, K.E.; Kudaibergenov, S.E. Synthesis, characterization and stimuli-sensitive properties of novel polycarbobetaines. Polymer 2005, 46, 2183–2190. [Google Scholar] [CrossRef]
Parameter/Element | Uzen Water | Kalamkas Water |
---|---|---|
pH | 7.2 | 6.6 |
Density, g/cm3 | 1.043 | |
Ca2+, mg/L | 3206.4 | 3200 |
Mg2+, mg/L | 1094.4 | 2160 |
Na+ and K+, mg/L | 18,816.3 | 43,789.4 |
Cl-, mg/L | 37,605.4 | 79,566.2 |
SO42−, mg/L | 80.7 | Not detected |
CO32−, mg/L | Not detected | Not detected |
HCO3−, mg/L | 341.6 | 158.6 |
Total salinity, mg/L | 61,144.8 | 128,874.4 |
Hardness, mg-eq/L | 250 | - |
№ | AAm, mol.% | APTAC, mol.% | AMPS, mol.% | MBAA, mol.% | Bentonite, wt.% | APS, mol.% | Monomer Concentration, % |
---|---|---|---|---|---|---|---|
1 | 90 | 5 | 5 | 1 | 5 | 0.1 | 5 |
2 | 10 | ||||||
3 | 15 | ||||||
4 | 20 | ||||||
5 | 25 | ||||||
6 | 90 | 5 | 5 | 0.5 | 5 | 0.1 | 5 |
7 | 0.75 | ||||||
8 | 1 | ||||||
9 | 2 | ||||||
10 | 3.5 | ||||||
11 | 5 | ||||||
12 | 90 | 5 | 5 | 1 | 1 | 0.1 | 5 |
13 | 2 | ||||||
14 | 3 | ||||||
15 | 4 | ||||||
16 | 5 | ||||||
17 | 90 | 5 | 5 | 1 | 5 | 0.1 | 5 |
18 | 80 | 10 | 10 | ||||
19 | 70 | 15 | 15 | ||||
20 | 60 | 20 | 20 |
Dependence of Young’s Modulus on Monomer Concentration (%) | Young’s Modulus, Pa |
5 | 173.7 ± 3.0 |
10 | 787.4 ± 42.0 |
15 | 1462.3 ± 76.0 |
20 | 2391.1 ± 93.0 |
25 | 2694.3 ± 306.0 |
Dependence of Young’s modulus on MBAA concentration (mol.%) | Young’s Modulus, Pa |
0.5 | 124.0 ± 6.0 |
0.75 | 118.8 ± 8.0 |
1 | 173.7 ± 3.0 |
2 | 307.0 ± 10.0 |
3.5 | 356.6 ± 7.0 |
5 | 617.0 ± 9.0 |
Dependence of Young’s modulus on bentonit concentration (wt.%) | Young’s Modulus, Pa |
1 | 82.3 ± 1.0 |
2 | 87.8 ± 5.0 |
3 | 104.7 ± 2.0 |
4 | 119.4 ± 8.0 |
5 | 173.7 ± 3.0 |
Dependence of Young’s modulus on molar ratio of AAm-APTAC-AMPS | Young’s Modulus, Pa |
AAm90-APTAC5-AMPS5 | 173.7 ± 3.0 |
AAm80-APTAC10-AMPS10 | 147.3 ± 12.0 |
AAm70-APTAC15-AMPS15 | 88.9 ± 8.0 |
AAm60-APTAC20-AMPS20 | 51.4 ± 15.0 |
Sample | R2 | Main Process | |||
---|---|---|---|---|---|
AAm90-APTAC5-AMPS5 in water (bentonite 5 wt.%) | 15.32 | 7.60 × 10−4 | 0.0373 | 0.99 | Diffusion |
AAm80-APTAC10-AMPS10 in pure water (bentonite 5 wt.%) | 11.28 | 0.0110 | 0.0589 | 0.99 | Diffusion and relaxation |
AAm90-APTAC5-AMPS5 in brine water from Uzen (bentonite 2.5 wt.%) | 21.70 | 2.33 × 10−4 | 0.0416 | 0.99 | Diffusion |
AAm90-APTAC5-AMPS5 in brine water from Uzen (bentonite 5 wt.%) | 9.03 | 0.0035 | 0.1052 | 0.98 | Diffusion |
AAm80-APTAC10-AMPS10 in brine water from Uzen (bentonite 2.5 wt.%) | 18.11 | 5.22 × 10−4 | 0.1460 | 0.99 | Diffusion |
AAm80-APTAC10-AMPS10 in brine water from Uzen (bentonite 5 wt.%) | 7.83 | 0.0038 | 0.1300 | 0.98 | Diffusion |
AAm90-APTAC5-AMPS5 in brine water from Kalamkas (bentonite 2.5 wt.%) | 23.23 | 2.04 × 10−4 | 0.0416 | 0.99 | Diffusion |
AAm90-APTAC5-AMPS5 in brine water from Kalamkas (bentonite 5 wt.%) | 10.68 | 9.47 × 10−4 | 0.0622 | 0.99 | Diffusion |
AAm80-APTAC10-AMPS10 in brine water from Kalamkas (bentonite 2.5 wt.%) | 20.11 | −0.0012 | 0.1442 | 0.99 | Diffusion |
AAm80-APTAC10-AMPS10 in brine water from Kalamkas (bentonite 5 wt.%) | 9.76 | 0.0033 | 0.0869 | 0.98 | Diffusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gussenov, I.; Shakhvorostov, A.; Ayazbayeva, A.; Gizatullina, N.; Klivenko, A.; Kudaibergenov, S. Preparation and Characterization of a Preformed Polyampholyte Particle Gel Composite for Conformance Control in Oil Recovery. Polymers 2023, 15, 4095. https://doi.org/10.3390/polym15204095
Gussenov I, Shakhvorostov A, Ayazbayeva A, Gizatullina N, Klivenko A, Kudaibergenov S. Preparation and Characterization of a Preformed Polyampholyte Particle Gel Composite for Conformance Control in Oil Recovery. Polymers. 2023; 15(20):4095. https://doi.org/10.3390/polym15204095
Chicago/Turabian StyleGussenov, Iskander, Alexey Shakhvorostov, Aigerim Ayazbayeva, Nargiz Gizatullina, Alexey Klivenko, and Sarkyt Kudaibergenov. 2023. "Preparation and Characterization of a Preformed Polyampholyte Particle Gel Composite for Conformance Control in Oil Recovery" Polymers 15, no. 20: 4095. https://doi.org/10.3390/polym15204095
APA StyleGussenov, I., Shakhvorostov, A., Ayazbayeva, A., Gizatullina, N., Klivenko, A., & Kudaibergenov, S. (2023). Preparation and Characterization of a Preformed Polyampholyte Particle Gel Composite for Conformance Control in Oil Recovery. Polymers, 15(20), 4095. https://doi.org/10.3390/polym15204095