An Analysis of the Effect of Activation Temperature and Crack Geometry on the Healing Efficiency of Polycaprolactone (PCL)/Epoxy Blends
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Manufacturing of PCL/Epoxy Blend
2.3. Dynamic Mechanical Thermal Analysis (DMTA)
2.4. Microstructural Characterization
2.5. Self-Healing Test
3. Results
3.1. Thermomechanical Analysis of PCL/Epoxy Blend
3.2. Self-Healing Ability
3.2.1. Custom Crack Machine-Induced Damage Analysis
3.2.2. Scalpel-Induced Damage Analysis
3.2.3. Pin-Induced Damage Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.Y.; Meure, S.; Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 2008, 33, 479–522. [Google Scholar] [CrossRef]
- Sarfraz, M.S.; Hong, H.; Su Kim, S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos. Struct. 2021, 266, 113864. [Google Scholar] [CrossRef]
- Zimmermann, N.; Hao Wang, P. A review of failure modes and fracture analysis of aircraft composite materials. Eng. Fail. Anal. 2020, 115, 104692. [Google Scholar] [CrossRef]
- Urdl, K.; Kandelbauer, A.; Kern, W.; Müller, U.; Thebault, M.; Zikulnig-Rusch, E. Self-healing of densely crosslinked thermoset polymers-A critical review. Prog. Org. Coat. 2017, 104, 232–249. [Google Scholar] [CrossRef]
- Hornat, C.C.; Urban, M.W. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 2020, 102, 101208. [Google Scholar] [CrossRef]
- Pascault, J.; Sautereau, H.; Verdu, J.; Williams, R.J. Thermosetting Polymers; CRC Press: Boca Raton, FL, USA, 2002; Volume 64. [Google Scholar]
- Putnam-Neeb, A.A.; Kaiser, J.M.; Hubbard, A.M.; Street, D.P.; Dickerson, M.B.; Nepal, D.; Baldwin, L.A. Self-healing and polymer welding of soft and stiff epoxy thermosets via silanolates. A Adv. Compos. Hybrid. Mater. 2022, 5, 3068–3080. [Google Scholar] [CrossRef]
- Kinloch, A. Toughening epoxy adhesives to meet today’s challenges. MRS Bull. 2003, 28, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Masaki, H.; Shojiro, O.; Gustafson, C.; Keisuke, T. Effect of matrix resin on delamination fatigue crack growth in CFRP laminates. Eng. Fract. Mech. 1994, 49, 35–47. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Wang, J.; Wang, Z.; Wang, S. Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surf. Coat. Technol. 2012, 206, 4976–4980. [Google Scholar] [CrossRef]
- Wang, Y.; Raman Pillai, S.K.; Che, J.; Chan-Park, M.B. High interlaminar shear strength enhancement of carbon fiber/epoxy composite through fiber-and matrix-anchored carbon nanotube networks. ACS Appl. Mater. Interfaces 2017, 9, 8960–8966. [Google Scholar] [CrossRef]
- Hourston, D.; Lane, J. The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 1992, 33, 1379–1383. [Google Scholar] [CrossRef]
- Zunjarrao, S.C.; Singh, R.P. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Compos. Sci. Technol. 2006, 66, 2296–2305. [Google Scholar] [CrossRef]
- Levita, G.; De Petris, S.; Marchetti, A.; Lazzeri, A. Crosslink density and fracture toughness of epoxy resins. J. Mater. Sci. 1991, 26, 2348–2352. [Google Scholar] [CrossRef]
- Chang, G.; Yang, L.; Yang, J.; Stoykovich, M.P.; Xu, D.; Cui, J.; Wang, D. High-Performance pH-Switchable Supramolecular Thermosets via Cation–π Interactions. Adv. Mater. 2018, 30, 1704234. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Suárez, A.; Martín-González, J.; Sánchez-Romate, X.F.; Prolongo, S.G. Carbon nanotubes to enable autonomous and volumetric self-heating in epoxy/polycaprolactone blends. Compos. Sci. Technol. 2020, 199, 108321. [Google Scholar] [CrossRef]
- Jeyapragash, R.; Srinivasan, V.; Sathiyamurthy, S. Mechanical properties of natural fiber/particulate reinforced epoxy composites. A review of the literature. Mater. Today Proc. 2020, 22, 1223–1227. [Google Scholar] [CrossRef]
- Yuan, D.; Bonab, V.S.; Patel, A.; Manas-Zloczower, I. Self-healing epoxy coatings with enhanced properties and facile processability. Polymer 2018, 147, 196–201. [Google Scholar] [CrossRef]
- Kimoto, M.; Mizutani, K. Blends of thermoplastic polyimide with epoxy resin: Part II Mechanical studies. J. Mater. Sci. 1997, 32, 2479–2483. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Alvarado, A.; Jiménez-Suárez, A.; Prolongo, S.G. Carbon Nanotube Reinforced Poly(ε-caprolactone)/Epoxy Blends for Superior Mechanical and Self-Sensing Performance in Multiscale Glass Fiber Composites. Polymers 2021, 13, 3159. [Google Scholar] [CrossRef]
- Daelemans, L.; Cohades, A.; Meireman, T.; Beckx, J.; Spronk, S.; Kersemans, M.; De Baere, I.; Rahier, H.; Michaud, V.; Van Paepegem, W.; et al. Electrospun nanofibrous interleaves for improved low velocity impact resistance of glass fibre reinforced composite laminates. Mater. Des. 2018, 141, 170–184. [Google Scholar] [CrossRef]
- Jiménez-Suárez, A.; Del Rosario, G.; Sánchez-Romate, X.X.F.; González Prolongo, S. Influence of Morphology on the Healing Mechanism of PCL/Epoxy Blends. Materials 2020, 13, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chang, F.-C. Phase Separation Process in Poly(ε-caprolactone)−Epoxy Blends. Macromolecules 1999, 32, 5348–5356. [Google Scholar] [CrossRef]
- Pereira Barros, J.J.; dos Santos Silva, I.D.; Guimaraes Jaques, I.D.; Vinícius Lia Fook, M.; Ramos Wellen, R.M. Influence of PCL on the epoxy workability, insights from thermal and spectroscopic analyses. Polym. Test. 2020, 89, 106678. [Google Scholar] [CrossRef]
- Karger-Kocsis, J. Self-healing properties of epoxy resins with poly (ε-caprolactone) healing agent. Polym. Bull. 2016, 73, 3081–3093. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ma, L.; Huang, Y.; Ren, C.; Yang, H.; Wang, Y.; Liu, T.; Zhang, D. Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms. Compos. Part B 2022, 231, 109574. [Google Scholar] [CrossRef]
- Cohades, A.; Manfredi, E.; Plummer, C.J.G.; Michaud, V. Thermal mending in immiscible poly(ε-caprolactone)/epoxy blends. Eur. Polym. J. 2016, 81, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, D.; Wang, J.; Hu, W. Corrosion resistance and near-infrared light induced self-healing behavior of polycaprolactone coating with MIL-53@TA on magnesium alloy. Appl. Surf. Sci. 2022, 585, 152729. [Google Scholar] [CrossRef]
- Huang, L.; Li, J.; Yuan, W.; Liu, X.; Li, Z.; Zheng, Y.; Liang, Y.; Zhub, S.; Cui, Z.; Yang, X.; et al. Near-infrared light controlled fast self-healing protective coating on magnesium alloy. Corros. Sci. 2020, 163, 108257. [Google Scholar] [CrossRef]
- Jones, A.R.; Watkins, C.A.; White, S.R.; Sottos, N.R. Self-healing thermoplastic-toughened epoxy. Polymer 2015, 7415, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Lorwanishpaisarn, N.; Kasemsiri, P.; Jetsrisuparb, K.; Knijnenburg, J.T.N.; Hiziroglu, S.; Pongsa, U.; Chindaprasirt, P.; Uyama, H. Dual-responsive shape memory and self-healing ability of a novel copolymer from epoxy/cashew nut shell liquid and polycaprolactone. Polym. Test. 2020, 81, 106159. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Martín, J.; Jiménez-Suárez, A.; Prolongo, S.G.; Ureña, A. Mechanical and strain sensing properties of carbon nanotube reinforced epoxy/poly(caprolactone) blends. Polymer 2020, 190, 122236. [Google Scholar] [CrossRef]
- Prudic, A.; Kleetz, T.; Korf, M.; Ji, Y.; Sadowski, G. Influence of Copolymer Composition on the Phase Behavior of Solid Dispersions. Mol. Pharm. 2014, 11, 4189–4198. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.W. Calculation of crosslink density in short chain networks. Mater. Today 1997, 31, 235–243. [Google Scholar] [CrossRef]
- Luo, X.; Ou, R.; Eberly, D.E.; Singhal, A.; Viratyaporn, W.; Mather, P.T. A Thermoplastic/Thermoset Blend Exhibiting Thermal Mending and Reversible Adhesion. Appl. Mater. Interfaces 2009, 1, 612–620. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, M.; Ding, Y.; Jiang, B.; Zhu, S. Development of networks in atom transfer radical polymerization of dimethacrylates. Polymer 2007, 48, 7058–7064. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Sans, A.; Jiménez-Suárez, A.; Prolongo, S.G. The addition of graphene nanoplatelets into epoxy/polycaprolactone composites for autonomous self-healing activation by Joule’s heating effect. Compos. Sci. Technol. 2021, 213, 108950. [Google Scholar] [CrossRef]
- Peñas-Caballero, M.; Hernández Santana, M.; Verdejo, R.; Lopez-Manchado, M.A. Measuring self-healing in epoxy matrices: The need for standard conditions. React. Funct. Polym. 2021, 161, 104847. [Google Scholar] [CrossRef]
Condition | (mol/cm3) | E′ (MPa) |
---|---|---|
5-PCL | 2030 ± 130 | 2456 ± 140 |
10-PCL | 1970 ± 420 | 2344 ± 50 |
15-PCL | 1237 ± 506 | 1931 ± 435 |
15% | 10% | 5% | ||||
---|---|---|---|---|---|---|
T (°C) | µ% | V% | µ% | V% | µ% | V% |
90 | - | - | - | - | - | - |
110 | 13 ± 3 | 18 ± 4 | 12 ± 2 | 22 ± 5 | - | - |
130 | 21 ± 2 | 24 ± 3 | 18 ± 2 | 23 ± 6 | - | - |
150 | 34 ± 2 | 38 ± 3 | 20 ± 1 | 30 ± 4 | - | - |
% PCL | Scalpel | Pin | ||
---|---|---|---|---|
µ% | V% | µ% | V% | |
15 | 60 ± 7 | 69 ± 4 | 72 ± 11 | 75 ± 10 |
10 | 33 ± 8 | 42 ± 12 | 66 ± 9 | 65 ± 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Villajos, R.; Fernández Sánchez-Romate, X.; Jiménez-Suárez, A.; Prolongo, S.G. An Analysis of the Effect of Activation Temperature and Crack Geometry on the Healing Efficiency of Polycaprolactone (PCL)/Epoxy Blends. Polymers 2023, 15, 336. https://doi.org/10.3390/polym15020336
Calderón-Villajos R, Fernández Sánchez-Romate X, Jiménez-Suárez A, Prolongo SG. An Analysis of the Effect of Activation Temperature and Crack Geometry on the Healing Efficiency of Polycaprolactone (PCL)/Epoxy Blends. Polymers. 2023; 15(2):336. https://doi.org/10.3390/polym15020336
Chicago/Turabian StyleCalderón-Villajos, Rocío, Xoan Fernández Sánchez-Romate, Alberto Jiménez-Suárez, and Silvia González Prolongo. 2023. "An Analysis of the Effect of Activation Temperature and Crack Geometry on the Healing Efficiency of Polycaprolactone (PCL)/Epoxy Blends" Polymers 15, no. 2: 336. https://doi.org/10.3390/polym15020336
APA StyleCalderón-Villajos, R., Fernández Sánchez-Romate, X., Jiménez-Suárez, A., & Prolongo, S. G. (2023). An Analysis of the Effect of Activation Temperature and Crack Geometry on the Healing Efficiency of Polycaprolactone (PCL)/Epoxy Blends. Polymers, 15(2), 336. https://doi.org/10.3390/polym15020336