ZnO Treatment on Mechanical Behavior of Polyethylene/Yellow Birch Fiber Composites When Exposed to Fungal Wood Rot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungus
2.2. Birch Fiber Treatment with Zinc Oxide (ZnO)
2.3. Preparation of Biocomposite Samples
2.4. Culture Media
2.5. Exposure Tests
2.6. Impact Tests of Exposed Samples
2.7. Microscope Observation
3. Results
3.1. Evaluation of Brown and White Growth on Biocomposite Samples
3.2. Impact Test Results
3.3. Tensile Test Results
3.4. Electron Microscope Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scida, D.; Assarar, M.; Ayad, R.; Poilâne, C. Effet de l’humidité sur le comportement mécanique des composites à fibres de lin. In Proceedings of the 17èmes Journées Nationales sur les Composites (JNC17), Poitiers-Futuroscope, France, 15–17 June 2011; p. 186. [Google Scholar]
- Augier, L. Étude de l’élaboration de Matériaux Composites PVC/bois à Partir de Déchets de Menuiserie: Formulation, Caractérisation, Durabilité et Recyclabilité. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2007. [Google Scholar]
- Tazi, M. Valorisation des Sciures de Bois Dans des Composites Thermoplastiques (HDPE-BOIS): Élaboration, Caractérisation et Modélisation en Soufflage Libre. Ph.D. Thesis, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada, 2015. [Google Scholar]
- Gaudin, S. Étude de la Durabilité Photochimique de Composites Bois-Polymères Biodégradables. Ph.D. Thesis, Université Blaise Pascal-Clermont-Ferrand II, Clermont-Ferrand, France, 2008. [Google Scholar]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Koffi, A.; Koffi, D.; Toubal, L. Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polym. Test. 2021, 93, 106956. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment of biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Madhu, P.; Sanjay, M.R.; Jawaid, M.; Siengchin, S.; Khan, A.; Pruncu, C.I. A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: Physico-chemical, thermal, mechanical and morphological properties. Polym. Test. 2020, 85, 106437. [Google Scholar] [CrossRef]
- Manimaran, P.; Saravanan, S.P.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater. Res. Technol. 2019, 8, 1952–1963. [Google Scholar] [CrossRef]
- Alshammari, B.A.; Alotaibi, M.D.; Alothman, O.Y.; Sanjay, M.R.; Kian, L.K.; Almutairi, Z.; Jawaid, M. A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. J. Polym. Environ. 2019, 27, 2334–2340. [Google Scholar] [CrossRef]
- Size, Mechanical Ventilators Market. “Share & Trends Analysis Report.” by Product (Intumescent Coatings, Cementitious Ma-terials), by Application (Construction, Warehousing), and Segment Forecasts. 2020, p. 2027. Available online: https://www.researchandmarkets.com/reports/5165398/intumescent-coatings-market-size-share-and-trends (accessed on 1 October 2022).
- Shubhra, Q.T.; Alam, A.M.; Quaiyyum, M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2013, 26, 362–391. [Google Scholar] [CrossRef]
- Mijiyawa, F.; Koffi, D.; Kokta, B.V.; Erchiqui, F. Formulation and tensile characterization of wood–plastic composites: Polypropylene reinforced by birch and aspen fibers for gear applications. J. Thermoplast. Compos. Mater. 2015, 28, 1675–1692. [Google Scholar] [CrossRef]
- Mejri, M.; Toubal, L.; Cuillière, J.C.; François, V. Hygrothermal aging effects on mechanical and fatigue behaviors of a short-natural-fiber-reinforced composite. Int. J. Fatigue 2018, 108, 96–108. [Google Scholar] [CrossRef]
- Toubal, L.; Cuillière, J.C.; Bensalem, K.; Francois, V.; Gning, P.B. Hygrothermal effect on moisture kinetics and mechanical properties of hemp/polypropylene composite: Experimental and numerical studies. Polym. Compos. 2016, 37, 2342–2352. [Google Scholar] [CrossRef]
- Schmidt, O. Wood rot. In Wood and Tree Fungi: Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany, 2006; pp. 135–159. [Google Scholar]
- Schmidt, O. Habitat of Wood Fungi. In Wood and Tree Fungi: Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany, 2006; pp. 161–236. [Google Scholar]
- Durmaz, S.; Özgenç, Ö.; Boyacı, İ.H.; Yıldız, Ü.C.; Erişir, E. Examination of the chemical changes in spruce wood degraded by brown-rot fungi using FT-IR and FT-Raman spectroscopy. Vib. Spectrosc. 2016, 85, 202–207. [Google Scholar] [CrossRef]
- Goodell, B.; Qian, Y.; Jellison, J. Fungal decay of wood: Soft rot—Brown rot—White rot. Dev. Commer. Wood Preserv. 2008, 982, 9–31. [Google Scholar]
- Fabiyi, J.S.; McDonald, A.G.; Morrell, J.J.; Freitag, C. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 501–510. [Google Scholar] [CrossRef]
- Catto, A.L.; Montagna, L.S.; Almeida, S.H.; Silveira, R.M.; Santana, R.M. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. Int. Biodeterior. Biodegrad. 2016, 109, 11–22. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—From synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef]
- Farahani, M.R.M.; Banikarim, F. Effect of nano-zinc oxide on decay resistance of wood-plastic composites. BioResources 2013, 8, 5715–5720. [Google Scholar] [CrossRef]
- Marzbani, P.; Afrouzi, Y.M.; Omidvar, A. The effect of nano-zinc oxide on particleboard decay resistance. Maderas. Cienc. Y Tecnol. 2015, 17, 63–68. [Google Scholar] [CrossRef]
- ASTM D256-10e1; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM: West Conshehoken, PA, USA, 2023.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. International Organization of Standardization: Geneva, Switzerland, 2012.
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J. Appl. Polym. Sci. 2011, 119, 3696–3707. [Google Scholar] [CrossRef]
- Valášek, P.; Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; D’Amato, R.; Ruggiero, A. Influence of alkali treatment on the microstructure and mechanical properties of coir and abaca fibers. Materials 2021, 14, 2636. [Google Scholar] [CrossRef]
- Schirp, A.; Ibach, R.E.; Pendleton, D.E.; Wolcott, M.P. Biological degradation of wood-plastic composites (WPC) and strategies for improving the resistance of WPC against biological decay. ACS Symp. Ser. 2008, 982, 480–507. [Google Scholar]
- Koohestani, B.A.B.A.K.; Darban, A.K.; Mokhtari, P.; Yilmaz, E.R.O.L.; Darezereshki, E.S.M.A.E.E.L. Comparison of different natural fiber treatments: A literature review. Int. J. Environ. Sci. Technol. 2019, 16, 629–642. [Google Scholar] [CrossRef]
- Anand, P.; Anbumalar, V. Investigation on thermal behavior of alkali and benzoyl treated hemp fiber reinforced cellulose filled epoxy hybrid green composites. Cellul. Chem. Technol. 2017, 51, 91–101. [Google Scholar]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Ghasemi, E.; Farsi, M. Interfacial behaviour of wood plastic composite: Effect of chemical treatment on wood fibres. Iran. Polym. J. 2010, 19, 811–818. [Google Scholar]
Biocomposite Formulation | Main Surface Covered | |
---|---|---|
White Rot | Brown Rot | |
20% yellow birch fibers | 0 | 0 |
30% yellow birch fibers | 0 | 0 |
Samples | Exposure to Rot | Young Modulus (GPa) | Strain (%) |
---|---|---|---|
Virgin HDPE 0% Yellow Birch Fiber (YBF) | Not exposed | 1.51 ± 0.13 | 18.80 ± 1.64 |
White | - | - | |
Brown | - | - | |
20% YBF Biocomposite nontreated | Not exposed | 2.67 ± 0.13 | 32.47 ± 0.19 |
White | 2.30 ± 0.02 | 28.27 ± 0.47 | |
Brown | 2.36 ± 0.04 | 28.36 ± 0.25 | |
20% YBF Biocomposite treated with ZnO | Not exposed | 1.42 ± 0.05 | 16.58 ±2.18 |
White | 1.18 ± 0.026 | 11.42 ± 1.00 | |
Brown | 1.17 ± 0.07 | 14.71 ± 0.83 | |
30% YBF Biocomposite nontreated | Not exposed | 3.37 ± 0.16 | 38.33 ± 0.47 |
White | 3.22 ± 0.06 | 35.15 ± 1.09 | |
Brown | 3.42 ± 0.07 | 34.64 ± 1.40 | |
30% YBF Biocomposite treated with ZnO | Not exposed | 1.30 ± 0.04 | 10.93 ± 1.33 |
White | 0.79 ± 0.02 | 15.21 ± 1.08 | |
Brown | 0.86 ± 0.01 | 16.68 ± 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agbozouhoue, K.K.; Koffi, D.; Erchiqui, F.; Barnabé, S. ZnO Treatment on Mechanical Behavior of Polyethylene/Yellow Birch Fiber Composites When Exposed to Fungal Wood Rot. Polymers 2023, 15, 3664. https://doi.org/10.3390/polym15183664
Agbozouhoue KK, Koffi D, Erchiqui F, Barnabé S. ZnO Treatment on Mechanical Behavior of Polyethylene/Yellow Birch Fiber Composites When Exposed to Fungal Wood Rot. Polymers. 2023; 15(18):3664. https://doi.org/10.3390/polym15183664
Chicago/Turabian StyleAgbozouhoue, Kodjovi Kekeli, Demagna Koffi, Fouad Erchiqui, and Simon Barnabé. 2023. "ZnO Treatment on Mechanical Behavior of Polyethylene/Yellow Birch Fiber Composites When Exposed to Fungal Wood Rot" Polymers 15, no. 18: 3664. https://doi.org/10.3390/polym15183664
APA StyleAgbozouhoue, K. K., Koffi, D., Erchiqui, F., & Barnabé, S. (2023). ZnO Treatment on Mechanical Behavior of Polyethylene/Yellow Birch Fiber Composites When Exposed to Fungal Wood Rot. Polymers, 15(18), 3664. https://doi.org/10.3390/polym15183664