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Abstract: Wood plastic composite (WPC) usage and demand have increased because of its interesting
chemical and mechanical properties compared to other plastic materials. However, there is a possibil-
ity of structural and mechanical changes to the material when exposed to the external environment;
most research on wood plastic is performed on the material with elevated fiber content (40–70%).
Therefore, more research needs to be performed regarding these issues, especially when the fiber
content of the WPC is low. In this study, composite materials composed of high-density polyethylene
(HDPE) reinforced with yellow birch fibers (20 and 30%) were made by injection molding. The fibers
were treated with dissolved zinc oxide (ZnO) powder in sodium oxide (NaOH) solution, and the fab-
ricated material was exposed to fungal rot. ZnO treatment in this case is different from most studies
because ZnO nanoparticles are usually employed. The main reason was to obtain better fixation of
ZnO on the fibers. The mechanical properties of the composites were assessed by the tensile and Izod
impact tests. The impact energies of the samples fabricated with ZnO-treated fibers and exposed to
Gloephyllum trabeum and Trametes versicolor decreased, when compared to samples fabricated with
ZnO-nontreated fibers. The mechanical properties of the samples composed of ZnO-treated fibers
and exposed to rot decreased, which were reported by a decreased Young’s modulus and impact
energies. The usage of ZnO treatment prevented mycelium proliferation, which was nonexistent on
the samples. It has been noted that the decrease in mechanical properties of the treated samples was
because of the action of NaOH used to dissolve the ZnO powder.

Keywords: Trametes versicolor; Gloephyllum trabeum; mycelium; Young’s modulus; zinc oxide; com-
posite; impact energy

1. Introduction

Biocomposites are composite materials with reinforcements, such as wood fibers. The
development of these materials based on natural fibers has many advantages due to their
biodegradability and interesting mechanical properties [1–5].

Natural fibers can be obtained from natural sources, like animals, plants, and min-
erals [6,7]. Vegetal fibers are classified according to their physiological properties. Bast
fibers are obtained from flax, hemp, kenaf, jute, etc.; leaf fibers from sisal, curauá, palm,
etc.; seed fibers from cotton, soya, kapok, etc.; fruit fibers (coir, luffa, etc.); grass fibers from
bamboo, bagasse, etc.; and wood fibers, such as hardwood and softwood (teak wood, birch,
etc.) [6–13]. Fibers are chosen depending on their properties, such as mechanical chemical,
and physical. It is also important to mention that the availability of a local fiber with
interesting properties could be a determining factor for fiber choice. Yellow birch fibers
were chosen for our studies because of its abundance in Quebec and because its usage is an
alternative for the processing of residuals remaining from the wood exploitation [6].
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Wood plastic composite demand is projected to increase considerably between 2016
and 2024 [6,13]. Many sectors (e.g., construction, sporting equipment, and automotive
parts) use this material, but their development, for example, from short fibers is limited
because of insufficient understanding and knowledge of their mechanical behavior and
impact to environmental factors [6,14–16].

Three types of fungal wood rot are known: white, brown, and soft rot [17]. The damage
to trees and wood can be separated into damage to felled tree, living tree, and stored wood
and wood in exterior use and indoor use [18]. Brown-rot fungi often attack structural wood
products in North America. The wood attacked by brown-rot fungi becomes brown, and it
is degraded by nonenzymatic and enzymatic systems. Cellulolytic enzymes are used in the
degradation process by brown-rot fungi, but lignin-degrading enzymes are not involved.
Durmaz, S. et al., in their 2016 work, observed that when exposed to fungi, wood mass loss
gradually occurs due to the degradation of wood carbohydrates; they also observed that the
intensity of lignin bands increased proportionally to exposure time, and this is characteristic
of brown-rot fungi. Lignin content remains constant [19]. White-rot fungi decay patterns
have different forms. White-rotted wood has a bleached appearance, leaving the wood a
spongy mass; it could also appear as selective decay. White-rot fungi have the cellulolytic-
and lignin-degrading enzymes and therefore have the potential to degrade the complete
wood structure under adequate environmental conditions. Soft-rot fungi attack the lower
lignin content of wood and create cavities in the wood’s cell wall. There is not much
knowledge of soft-rot degradative enzyme systems, but their degradative mechanisms are
reviewed along with the degradative enzymatic and nonenzymatic systems existing in
brown- and white-rot fungi [20].

WPCs are known to be more durable structural material than untreated wood because
the plastic matrix encloses the wood and diminishes moisture uptake. However, extended
WPC exposure will eventually result in fungal growth [21]. In WPCs, plastics are by and
large resistant to fungal attack, although a major problem with these materials is that wood
in the composite is still susceptible to biological degradation. Many industrialists avoid
this risk by fabricating products for interior use with little or no water presence, in order to
minimize the risk of fungal attack [22]. Usage of WPC materials in external conditions may
affect their performance.

Zinc oxide is widely used in many fields because of its various properties. ZnO and its
derivatives suppress the development and growth of fungi and molds. Zinc oxide is added
to fungicides to improve their effectiveness. It reacts with silicates (e.g., sodium silicate) to
produce zinc silicates, which are water- and fire-resistant materials used as binders in paints,
etc. [23]. Zinc oxide has been used in numerous studies on WPCs. It was used in nanoparticle
form by various authors, like MRM Farahani et al. [24] and P Marzbani et al. [25].

Therefore, understanding the impact of microorganism exposure and particularly
white and brown rots caused by Trametes versicolor and Gloephyllum trabeum, respectively,
on the mechanical properties of HDPE reinforced with ZnO-treated yellow birch fibers is
necessary to foresee its possible applications in the external environment, especially when
the fiber content is relatively low (20 and 30%). In our studies, the ZnO treatment of fibers
was different because the pigment was dissolved in a molar sodium hydroxide solution
prior to fiber immersion. ZnO could be efficiently distributed in the fabricated materials
because of better homogeneity in fiber structure.

To achieve these goals, biocomposite samples were fabricated and exposed to fungal
rot; the tensile and Izod impact tests were realized, and the results obtained were compared
to control samples.

2. Materials and Methods
2.1. Fungus

Two strains of fungi were used: Trametes versicolor (ATCC 12679), a white-rot fungus,
and Gloephyllum trabeum (ATCC 11539), a brown-rot fungus. Both strains were provided by
SEREX in Rimouski (Amqui, QC, Canada). They were cultivated in potato dextrose agar
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(PDA) culture media and incubated at 25 ◦C with a 70% relative humidity for approximately
7 to 10 days (until complete colonization) prior the exposition.

2.2. Birch Fiber Treatment with Zinc Oxide (ZnO)

The zinc oxide ZnO was produced by SIGMA Aldrich (St. Louis, MI, USA). It was a
99.99% trace metal basis with 81.39 g/mol molar weight. It is a white to yellow powder.
It was dissolved in a molar NaOH solution. The solution was obtained by adding the
ZnO powder and stirring manually; the solution was heated at 80 ◦C for approximately
2 min until complete dissolution of the ZnO. Around 60 g of ZnO powder was dissolved in
approximately 9 L of the solution. The fibers were immersed in the solution until complete
absorption. No washing process after immersion was performed, and the treated fibers
were dried in stove at 60 ◦C for 5 days.

2.3. Preparation of Biocomposite Samples

The biocomposite samples were made by mixing the components in a Thermotron
mixer (C.W. Brabender; model T-303), (C.W Brabender Instruments Inc., South Hackensack,
NJ, USA). A portion of weighted HDPE (High-Density Polyethylene) was melted on the
rollers at 170 ◦C together with Maleic Anhydride-Grafted Polyethylene MAPE (3% of mix
weight). The remaining HDPE and the fibers were added and blended at 60 rpm for 7 min.
The mix was removed from the roller and remixed for 3 min five times to obtain a uniform
composite sheet, which was further granulated, and the test samples were fabricated
by injection (Figure 1). Two biocomposite formulations made of HDPE reinforced with
20 and 30 (w/w) % fiber were processed by ZHAFIR Plastics Machinery (100-ton Zerus
900 press, Ebermannsdorf, Bavaria, Germany). Figure 1 shows an aspect of the tensile and
the Izod impact test specimens, which specifications followed the ASTM D256-10e1 [26]
and ISO 527-1 [27] standard. Five replicates of each material were tested (ZnO-treated and
-nontreated samples) (Figure 2). Even though in most studies a high fiber content was used
(50–70 wt%), we chose low fiber content to analyze fungal attack possibilities.
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2.4. Culture Media

Potato dextrose agar was used as culture medium for both strains. After preparation,
it was sterilized in an autoclave for 45–60 min at 121 ◦C followed by a resting period of
30 min under pressure. It was further used to fill the Petri dishes and the other containers
through the laminar flow cabinet of the CIPP laboratory, which was previously disinfected
using 70% ethanol and UV lamps. An inoculation of the medium by the two fungal strains
was performed.
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Figure 2. ZnO-nontreated tensile test samples (darkest) and ZnO-treated samples.

2.5. Exposure Tests

The inoculated culture media were totally colonized by the fungal strains for ap-
proximately 7 days as attested by a visual inspection performed every 2 days before the
samples were directly placed on it. This process, which was carried out according to level 2
biosafety standards, lasted 30 days to avoid working with aged strains. A septuplet of each
biocomposite formulation was exposed to each fungal strain. After the incubation period,
the samples were characterized by tensile and impact tests.

2.6. Impact Tests of Exposed Samples

The impact tests were conducted at the mechanical engineering laboratory of UQTR
based on an application of the ASTM D256-10e1 [26] standard on the appropriate sam-
ples, using an impact pendulum instrument (Instron CEAST 9050, fabricated by Instron,
Norwood, MA, USA) with a 0.5 J hammer. With the pendulum, the resilience, ductile,
and/or brittle fracture of the investigated material can be determined. According to ASTM
D256-10e1 [26] standard, the breaking energy of the tested material must be between 10
and 90% of the hammer’s capacity used for the Izod impact tests [6,26].

2.7. Microscope Observation

Samples were observed with the Scanning Electron Microscope (SEM) (Hitachi, Toronto,
ON, Canada) of the electronic microscopy laboratory of I2E3 at the University of Quebec in
Trois-Rivières (UQTR).

3. Results
3.1. Evaluation of Brown and White Growth on Biocomposite Samples

Table 1 gives an evaluation of fungal growth on the ZnO samples. It is expressed in
terms of the proportion of the sample surfaces occupied by the fungal growth, following a
given nomenclature.

Table 1. Evaluation of the biocomposite sample surfaces covered by the white- and brown-rot growth,
together with the nomenclature of their classification.

Biocomposite Formulation
Main Surface Covered

White Rot Brown Rot

20% yellow birch fibers 0 0
30% yellow birch fibers 0 0

Legend: 0 = no visible growth; 1 = up to 10%; 2 = 10–30%; 3 = 30–70%; 4 = > 70%.

These results suggest that the fungal colonization of the sample surfaces was nonex-
istent independent of the kind of fungal strain considered and fiber content. The main
surfaces of the samples were not covered by the fungal rot in all the cases.
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Samples exposed to G. trabeum and T. versicolor generally showed the same appearance.
No trace of colonization was observed; apparently, the hyphae could not propagate. The
samples seem to present a lighter color (Figure 3).
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Sample surfaces that were directly in contact with rot during the exposure did not
present any mycelium; it means that the fibers contained in the samples were not compro-
mised and decayed by fungal enzymes and decomposition usually started at the surface of
the material. It has been demonstrated in other studies that when in contact with fungal rot,
WPC mechanical characteristics were affected and mycelium proliferation on samples were
visible. ZnO antifungal characteristics are responsible for preventing mycelium growth.
Samples after exposure presented a different color; this was due to water absorption, which
is a key element for fungal growth. It is important to underline that NaOH may have also
compromised the fiber’s chemical and structural characteristics; it provokes the swelling of
vegetal fibers. The last statements show that conditions were optimum for fungal growth
in normal conditions.

3.2. Impact Test Results

The results are shown in Figure 4. The results in Figure 5 correspond to Koffi et al.
2021 works. All samples tested were fabricated with the same method and using the same
parameters in both studies.
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Figure 5. Impact energy of HDPE/yellow birch fiber [6].

Treated samples and not exposed to rot had an impact energy of 3.418 kJ/m2 and
4.076 kJ/m2, respectively, with a 20 and 30% fiber content. Nontreated and nonexposed
sample impact energies were respectively 5.33 and 5.46 kJ/m2 (Figure 5). The impact
energies were 4.488 and 4.45 kJ/m2 for the 20% ZnO-treated fiber samples and exposed
to G. trabeum and T. versicolor. The impact energies of the samples loaded with 30% ZnO-
treated fibers and exposed to G. trabeum and T. versicolor were 4.452 and 4.282 kJ/m2,
respectively, while they were 5.676 and 6.538 kJ/m2 [6] for the nontreated samples; impact
energy decreases of 21.6% and 34.6%. The decrease is due to the alkaline treatment. In our
previous works when WPC samples were exposed to T. versicolor, an increase in adhesion
between fibers and polymeric matrix was noted resulting in an increased impact energy.
Schirp et al. 2006 observed similar activity when samples were exposed to the same fungal
rot (T. versicolor). The decrease in impact energy, which can be related to a decrease in
toughness, is a result of a change in the physical and chemical properties of the fibers
caused by the NaOH, because in studies realized by authors like MRM Farahani et al.,
ZnO was used in nanoparticles, and it did not cause such an important decrease in the
WPC-treated fibers.

3.3. Tensile Test Results

Young’s modulus and strain were determined (Figure 6), and Figure 7 represent our
controls [6].

Tensile test results of all samples and controls are reported in Table 2.
The samples with 20% ZnO-non treated fiber and not exposed to fungal decay had a

Young’s modulus (E) of 2.67 ± 0.13 GPa, while the 20% ZnO- treated samples not exposed
to rot had a Young’s modulus of 1.42 ± 0.05 Gpa, which shows a decrease of 53% when
samples are treated with ZnO. When treated with ZnO and exposed to T. versicolor, the
samples with 20% fiber had a Young’s modulus of 1.18 ± 0.026 GPa, while the ZnO-
nontreated samples exposed to the same decay had a Young’s modulus of 2.30 ± 0.02 Gpa,
which represents a decrease of 51% when treated with ZnO. Samples loaded with 30% fiber
treated with ZnO and exposed to T. versicolor had a Young’s modulus of 0.79 ± 0.02 GPa,
while samples with 30% unexposed to Trametes versicolor and untreated with ZnO had a
modulus of 3.37 ± 0.16 Gpa, meaning a decreased of 76% is observed when samples were
treated and exposed. Young’s modulus was 3.22 ± 0.06 GPa for samples with 30% ZnO
nontreated fibers and exposed to T. versicolor; ZnO-treated samples exposed to the same
decay therefore suffered a decrease in Young’s modulus of approximately 75% compared
to ZnO-nontreated samples. The results are similar when samples were exposed to the
brown-rot fungi. The samples with 20% ZnO-nontreated fibers exposed to rot had a Young’s
modulus of 2.36 ± 0.04 GPa, while ZnO-treated fibers exposed to rot had a Young’s modulus
of 1.17 ± 0.07 GPa; there is a decrease of 49.57%. The ZnO-nontreated samples with 30%
fiber and exposed to G. trabeum had a Young’s modulus of 3.42 ± 0.07 GPa, while those
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treated with ZnO and exposed to the same rot had a Young’s modulus of 0.86 ± 0.01 GPa,
a decrease of 74.85%. This is also a consequence of alkaline fiber treatment; in this process,
fibers swell and make changes to the structure, dimension, morphology, and mechanical
performance as mentioned in ASTM-D 1965 [28]. As the alkaline treatment eliminates
celluloses pectin and lignin, which are the principal natural fiber components, the fiber’s
tensile strength may decrease [27–34]. A trend of decreasing mechanical properties is
observed with increased concentration of NaOH, which is likely in our case.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 6. Stress-strain behavior of ZnO-treated samples exposed to rot. Legend: 20%ZnO: 20% sam-
ples treated with ZnO; 30%ZnO: 30% samples treated with ZnO; 20%ZnOGtrab: 20% samples 
treated with ZnO and exposed to G. trabeum; 30%ZnOGtrab: 30% samples treated with ZnO and 
exposed to G. trabeum; 20%ZnOTvers: 20% samples treated with ZnO and exposed to T. versicolor; 
30%ZnOTvers: 30% samples treated with ZnO and exposed to T. versicolor. 

 
Figure 7. Stress–strain behavior of samples [6]. 

Tensile test results of all samples and controls are reported in Table 2. 

Table 2. Tensile properties of treated/non-treated samples to rot. 

Samples Exposure to Rot Young Modulus (GPa) Strain (%) 

Virgin HDPE 0% Yellow Birch Fiber (YBF) 
Not exposed 1.51 ± 0.13 18.80 ± 1.64 

White - - 
Brown - - 

20% YBF Biocomposite nontreated 
Not exposed 2.67 ± 0.13 32.47 ± 0.19 

White 2.30 ± 0.02 28.27 ± 0.47 
Brown 2.36 ± 0.04 28.36 ± 0.25 

20% YBF Biocomposite treated with ZnO Not exposed 1.42 ± 0.05 16.58 ±2.18 

-2

0

2

4

6

8

10

12

14

16

18

-2 0 2 4 6 8 10 12 14 16 18CO
NT

RA
IN

TE
    

 ( 
M

Pa
 )

DEFORMATION   %

20%ZnO 30%ZnO 20%ZnOGtrab

30%ZnOGtrab 20%ZnOTvers 30%ZnOTvers

Figure 6. Stress-strain behavior of ZnO-treated samples exposed to rot. Legend: 20%ZnO: 20%
samples treated with ZnO; 30%ZnO: 30% samples treated with ZnO; 20%ZnOGtrab: 20% samples
treated with ZnO and exposed to G. trabeum; 30%ZnOGtrab: 30% samples treated with ZnO and
exposed to G. trabeum; 20%ZnOTvers: 20% samples treated with ZnO and exposed to T. versicolor;
30%ZnOTvers: 30% samples treated with ZnO and exposed to T. versicolor.

Table 2. Tensile properties of treated/non-treated samples to rot.

Samples Exposure to Rot Young Modulus (GPa) Strain (%)

Virgin HDPE 0%
Yellow Birch Fiber

(YBF)

Not exposed 1.51 ± 0.13 18.80 ± 1.64
White - -
Brown - -

20% YBF
Biocomposite

nontreated

Not exposed 2.67 ± 0.13 32.47 ± 0.19
White 2.30 ± 0.02 28.27 ± 0.47
Brown 2.36 ± 0.04 28.36 ± 0.25

20% YBF
Biocomposite treated

with ZnO

Not exposed 1.42 ± 0.05 16.58 ±2.18
White 1.18 ± 0.026 11.42 ± 1.00
Brown 1.17 ± 0.07 14.71 ± 0.83

30% YBF
Biocomposite

nontreated

Not exposed 3.37 ± 0.16 38.33 ± 0.47
White 3.22 ± 0.06 35.15 ± 1.09
Brown 3.42 ± 0.07 34.64 ± 1.40

30% YBF
Biocomposite treated

with ZnO

Not exposed 1.30 ± 0.04 10.93 ± 1.33
White 0.79 ± 0.02 15.21 ± 1.08
Brown 0.86 ± 0.01 16.68 ± 1.26
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Figure 7. Stress–strain behavior of samples [6].

3.4. Electron Microscope Results

There is mycelium presence on sample surface (Figure 8). On the ZnO-treated samples
exposed to rot, there was no mycelium presence (Figure 9).

Figure 8 shows the nontreated sample surface with mycelium growth. Zinc oxide
avoided the effect of rot during the exposure of the samples; no trace of mycelium was
found on any sample at the same time zinc presence was evidenced (Figure 9). EDX analysis
corroborates Zn (0.3%) and Na (10.6%) presence despite the encapsulation of wood fiber
with HDPE, low fiber content, and limited immersion time of fibers in the NaOH–ZnO solu-
tion. The mechanical properties of zinc oxide-treated WPCs were lower than the untreated
ones. Alkaline treatment when NaOH concentration is lower than 5% promotes an increase
in interfacial strength between the polymeric matrix and lignocellulosic reinforcement
(GHASEMI, E. and Farsi, M., 2010), which also improves the mechanical properties of
WPCs. Valášek, Petr, et al. 2021 also confirmed that the excessive and long-term action of
alkaline treatment of the NaOH solution causes deterioration in the mechanical properties
of individual fibers. In our work, NaOH used as a solvent likely provoked deterioration of
the treated fibers causing a decrease in mechanical properties. It is also very important to
specify sodium zincate (Na2 ZnO2) presence in the solution. It is formed by sodium cation
and zincate anion. This compound, which is a complex salt, has not been studied deeply in
the literature, and its implication in antifungal activities is unknown, making it not very
important in our study.
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4. Conclusions

In this work, ZnO antifungal properties were used for protecting a WPC against
fungal attack. The yellow birch fibers were treated with a ZnO–NaOH solution before WPC
fabrication. WPCs were exposed to Trametes versicolor and Gloephyllum trabeum, white- and
brown-rot fungi, respectively. NaOH affected fibers provoking a decrease in mechanical
properties. Despite taking advantage of ZnO antifungal characteristics, its dissolution in
NaOH was a disadvantage for the WPC mechanical properties. The samples with 20% ZnO-
treated fibers not exposed to fungal decay had a Young’s modulus (E) of 2.67 ± 0.13 GPa,
while samples with 20% ZnO-treated fibers not exposed to fungal decay had a Young’s
modulus of 1.42 ± 0.05 GPa representing a 53% decrease. The results show the efficiency of
ZnO, but its use would be optimized in nanoparticle form without compromising WPC
performance.
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