Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of CS/PVA Blend Solution
2.3. Fabrication of CPZ and CPT BNCs
3. Characterization of the BNCs Thin Films
3.1. Physical Measurements of CPZ and CPT BNCs
3.1.1. Physical Analysis of the BNCs
Appearance, Thickness, and Flexibility
Moisture Content
Swelling Behavior
Hydrophilicity
3.1.2. Functional Analysis of the BNCs
UV-Visible Spectroscopy
FT-IR Spectroscopy
X-ray Diffraction Studies
3.1.3. Morphological Analysis of the BNCs
HR-FESEM Analysis
TEM Analysis
3.2. Statistical Analysis of the Results
3.3. Biological Assays
3.4. Antibacterial Studies
3.5. Antioxidant Studies
DPPH Assay
3.6. Anticancer Studies
4. Results and Discussion
4.1. Physical Measurements of BNC Films
Appearance and Thickness
4.2. Moisture Content
4.3. Swelling Behavior
4.4. Hydrophilicity
4.5. UV-Visible Spectroscopy
4.6. FT-IR Spectroscopy
4.7. XRD Studies
4.8. HR-FESEM Analysis
4.9. TEM Analysis
4.10. Antimicrobial Studies
4.11. Antioxidant Studies
4.12. Cell Viability or Anticancer Studies
Biopolymer | Modifier | Application | Biological Activity | Reference | |||
---|---|---|---|---|---|---|---|
Chitosan | Ag | Antimicrobial, antioxidant, and anticervical cancer activity | Cervical cancer HeLa cell line viability = 22% | [11] | |||
Polylactic acid | Enzymatic hydrolysis | Cassava waste hydrolysis with a conversion rate = 0.99 | [47] | ||||
ZnO | Antibiofouling and water disinfection | Antibacterial = 85.6% Antifungal = 92% (A. fumigatus); 77.7% (F. solani) | [10] | ||||
PVA | Food packaging | Antioxidant activity = 41.1 ± 1.17 | [16] | ||||
Silk fiber and PVA | Tissue engineering | Haemolysis inhibition = >80% | [17] | ||||
PVA and ZnO | Dye removal | AB 1 dye removal = 86% Cell viability = >120% (CS/PVA/ZnO-10) | [20] | ||||
ZnO and TiO2 | Antimicrobial, antioxidant, and anticancer activity | BNCs | Antibacterial activity Zone of inhibition (in mm) | Scavenging activity | Skin cancer cell line A431 inhibition (%) | Present study | |
CPZ | 5.3 ± 0.1 | 75 | 70 | ||||
CPT | 2.3 ± 0.03 | 70 | 61 |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS | Chitosan |
PVA | Polyvinyl Alcohol |
BNCs | Bionanocomposites |
NP | Nanoparticles |
CPZ | CS/PVA/ZnO |
CPT | CS/PVA/TiO2 |
References
- Chakra, C.H.S.; Rajendar, V.; Rao, K.V.; Kumar, M. Enhanced Antimicrobial and Anticancer Properties of ZnO and TiO2 Nanocomposites. 3 Biotech 2017, 7, 89. [Google Scholar] [CrossRef]
- Bullo, S.; Buskaran, K.; Baby, R.; Dorniani, D.; Fakurazi, S.; Hussein, M.Z. Dual Drugs Anticancer Nanoformulation Using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm. Res. 2019, 36, 91. [Google Scholar] [CrossRef] [PubMed]
- Skin Cancer, Internantional Agency for Research on Cancer, World Health Organization. Available online: https://www.iarc.who.int/cancer-type/skin-cancer/ (accessed on 14 June 2023).
- Skin Cancer Statistics. Available online: https://www.wcrf.org/dietandcancer/cancer-trends/skin-cancer-statistics (accessed on 10 June 2023).
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-Based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for Cancer Therapy and Imaging. Mol. Cells 2011, 31, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Annu; Ahmed, S.; Kaur, G.; Sharma, P.; Singh, S.; Ikram, S. Fruit Waste (Peel) as Bio-Reductant to Synthesize Silver Nanoparticles with Antimicrobial, Antioxidant and Cytotoxic Activities. J. Appl. Biomed. 2018, 16, 221–231. [Google Scholar] [CrossRef]
- Annu; Ahmed, S.; Kaur, G.; Sharma, P.; Singh, S.; Ikram, S. Evaluation of the Antioxidant, Antibacterial and Anticancer (Lung Cancer Cell Line A549) Activity of: Punica Granatum Mediated Silver Nanoparticles. Toxicol. Res. 2018, 7, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Annu; Ali, A.; Ahmed, S. Green Synthesis of Metal, Metal Oxide Nanoparticles, and Their Various Applications. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–45. ISBN 978-3-319-48281-1. [Google Scholar]
- Munnawar, I.; Iqbal, S.S.; Anwar, M.N.; Batool, M.; Tariq, S.; Faitma, N.; Khan, A.L.; Khan, A.U.; Nazar, U.; Jamil, T.; et al. Synergistic Effect of Chitosan-Zinc Oxide Hybrid Nanoparticles on Antibiofouling and Water Disinfection of Mixed Matrix Polyethersulfone Nanocomposite Membranes. Carbohydr. Polym. 2017, 175, 661–670. [Google Scholar] [CrossRef]
- Annu; Ahmed, S.; Nirala, R.K.; Kumar, R.; Ikram, S. Green Synthesis of Chitosan/Nanosilver Hybrid Bionanocomposites with Promising Antimicrobial, Antioxidant and Anticervical Cancer Activity. Polym. Polym. Compos. 2021, 29, S199–S210. [Google Scholar] [CrossRef]
- Annu; Ahmed, S. 1–Bionanocomposites: An Overview. In Bionanocomposites in Tissue Engineering and Regenerative Medicine; Ahmed, S., Annu, Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Soston, UK, 2021; pp. 1–6. ISBN 978-0-12-821280-6. [Google Scholar]
- Annu; Pandit, P.; Maity, S.; Bhattacharya, T.; Shekh, M.I.; Ahmed, S. Chapter 30—Chitosan Biobased Materials in Textile Industry. In Advanced Applications of Biobased Materials; Ahmed, S., Annu, Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 717–735. ISBN 978-0-323-91677-6. [Google Scholar]
- Annu; Ahmed, S.; Ahmed, S.; Ikram, S. Chitin and Chitosan: History, Composition and Properties. In Chitosan; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–24. ISBN 9781119364849. [Google Scholar]
- Mihir, K.P.; Singh, R. Membrane Technology in Separation Science; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351858564. [Google Scholar]
- Annu; Ali, A.; Ahmed, S. Eco-Friendly Natural Extract Loaded Antioxidative Chitosan/Polyvinyl Alcohol Based Active Films for Food Packaging. Heliyon 2021, 7, e06550. [Google Scholar] [CrossRef]
- Sheik, S.; Sheik, S.; Nairy, R.; Nagaraja, G.K.; Prabhu, A.; Rekha, P.D.; Prashantha, K. Study on the Morphological and Biocompatible Properties of Chitosan Grafted Silk Fibre Reinforced PVA Films for Tissue Engineering Applications. Int. J. Biol. Macromol. 2018, 116, 45–53. [Google Scholar] [CrossRef]
- Yu, Q.; Song, Y.; Shi, X.; Xu, C.; Bin, Y. Preparation and Properties of Chitosan Derivative/Poly(Vinyl Alcohol) Blend Film Crosslinked with Glutaraldehyde. Carbohydr. Polym. 2011, 84, 465–470. [Google Scholar] [CrossRef]
- Hajji, S.; Chaker, A.; Jridi, M.; Maalej, H.; Jellouli, K.; Boufi, S.; Nasri, M. Structural Analysis, and Antioxidant and Antibacterial Properties of Chitosan-Poly(Vinyl Alcohol) Biodegradable Films. Environ. Sci. Pollut. Res. 2016, 23, 15310–15320. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Krishnakumar, B.; Sobral, A.J.F.N.; Koh, J. Bio-Based (Chitosan/PVA/ZnO) Nanocomposites Film: Thermally Stable and Photoluminescence Material for Removal of Organic Dye. Carbohydr. Polym. 2019, 205, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, Z.I.; El Farargy, A.F.; Negm, N.A. Nanocomposite Framework of Chitosan/Polyvinyl Alcohol/ZnO: Preparation, Characterization, Swelling and Antimicrobial Evaluation. J. Mol. Liq. 2018, 250, 335–343. [Google Scholar] [CrossRef]
- Ahmed, R.; Tariq, M.; Ali, I.; Asghar, R.; Noorunnisa Khanam, P.; Augustine, R.; Hasan, A. Novel Electrospun Chitosan/Polyvinyl Alcohol/Zinc Oxide Nanofibrous Mats with Antibacterial and Antioxidant Properties for Diabetic Wound Healing. Int. J. Biol. Macromol. 2018, 120, 385–393. [Google Scholar] [CrossRef]
- Behera, S.S.; Das, U.; Kumar, A.; Bissoyi, A.; Singh, A.K. Chitosan/TiO2 Composite Membrane Improves Proliferation and Survival of L929 Fibroblast Cells: Application in Wound Dressing and Skin Regeneration. Int. J. Biol. Macromol. 2017, 98, 329–340. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Ruvalcaba-Gómez, J.M.; Maytorena-Verdugo, C.I.; González-Silva, N.; Romero-Toledo, R.; Aguilera-Aguirre, S.; Pérez-Larios, A.; Montalvo-González, E. Chitosan-TiO2: A Versatile Hybrid Composite. Materials 2020, 13, 811. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Park, D.; Lee, Y.-C. Chitosan Combined with ZnO, TiO2 and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends. Polymers 2017, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Rhim, J.-W.; Gennadios, A.; Weller, C.L.; Cezeirat, C.; Hanna, M.A. Soy Protein Isolate–Dialdehyde Starch Films1Journal Series No. 12010, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln. This Study Was Conducted at the Industrial Agricultural Products Center. Ind. Crops Prod. 1998, 8, 195–203. [Google Scholar] [CrossRef]
- De Matteis, V.; Cascione, M.; Costa, D.; Martano, S.; Manno, D.; Cannavale, A.; Mazzotta, S.; Paladini, F.; Martino, M.; Rinaldi, R. Aloe Vera Silver Nanoparticles Addition in Chitosan Films: Improvement of Physicochemical Properties for Eco-Friendly Food Packaging Material. J. Mater. Res. Technol. 2023, 24, 1015–1033. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Shi, J.; Zhang, R.; Tang, H.; Xie, C.; Wang, F.; Han, J.; Jiang, L. Chitosan/Esterified Chitin Nanofibers Nanocomposite Films Incorporated with Rose Essential Oil: Structure, Physicochemical Characterization, Antioxidant and Antibacterial Properties. Food Chem. X 2023, 18, 100714. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant Principles from Bauhinia Tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Lunkov, A.; Konovalova, M.; Shagdarova, B.; Zhuikova, Y.; Il’ina, A.; Varlamov, V. Synthesis of Selenium Nanoparticles Modified by Quaternary Chitosan Covalently Bonded with Gallic Acid. Polymers 2023, 15, 2123. [Google Scholar] [CrossRef] [PubMed]
- Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-Zinc Oxide Nanoparticle Composite Coating for Active Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. [Google Scholar] [CrossRef]
- Yoksan, R.; Chirachanchai, S. Silver Nanoparticle-Loaded Chitosan–Starch Based Films: Fabrication and Evaluation of Tensile, Barrier and Antimicrobial Properties. Mater. Sci. Eng. C 2010, 30, 891–897. [Google Scholar] [CrossRef]
- Vincent, P.; Kim, D.-K.; Kwon, J.-H.; Bae, J.-H.; Kim, H. Correlating the Nanoparticle Size Dependent Refractive Index of ZnO Optical Spacer Layer and the Efficiency of Hybrid Solar Cell through Optical Modelling. Thin Solid Films 2018, 660, 558–563. [Google Scholar] [CrossRef]
- Saravanan, R.; Aviles, J.; Gracia, F.; Mosquera, E.; Gupta, V.K. Crystallinity and Lowering Band Gap Induced Visible Light Photocatalytic Activity of TiO2/CS (Chitosan) Nanocomposites. Int. J. Biol. Macromol. 2018, 109, 1239–1245. [Google Scholar] [CrossRef]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Gong, X.; Tang, C.Y.; Pan, L.; Hao, Z.; Tsui, C.P. Characterization of Poly(Vinyl Alcohol) (PVA)/ZnO Nanocomposites Prepared by a One-Pot Method. Compos. Part B Eng. 2014, 60, 144–149. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Chen, Y.; Xia, W.; Xiong, Y.L.; Wang, H. Enhanced Physicochemical Properties of Chitosan/Whey Protein Isolate Composite Film by Sodium Laurate-Modified TiO2 Nanoparticles. Carbohydr. Polym. 2016, 138, 59–65. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, H.; Sun, S. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2. Nanomaterials 2017, 7, 217. [Google Scholar] [CrossRef] [PubMed]
- Haldorai, Y.; Shim, J.-J. Novel Chitosan-TiO2 Nanohybrid: Preparation, Characterization, Antibacterial, and Photocatalytic Properties. Polym. Compos. 2014, 35, 327–333. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Boura-Theodoridou, O.; Giannakas, A.; Katapodis, P.; Stamatis, H.; Ladavos, A.; Barkoula, N.-M. Performance of ZnO/Chitosan Nanocomposite Films for Antimicrobial Packaging Applications as a Function of NaOH Treatment and Glycerol/PVOH Blending. Food Packag. Shelf Life 2020, 23, 100456. [Google Scholar] [CrossRef]
- Safawo, T.; Sandeep, B.V.; Pola, S.; Tadesse, A. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Tuber Extract of Anchote (Coccinia Abyssinica (Lam.) Cong.) for Antimicrobial and Antioxidant Activity Assessment. OpenNano 2018, 3, 56–63. [Google Scholar] [CrossRef]
- Niska, K.; Pyszka, K.; Tukaj, C.; Wozniak, M.; Radomski, M.W.; Inkielewicz-Stepniak, I. Titanium Dioxide Nanoparticles Enhance Production of Superoxide Anion and Alter the Antioxidant System in Human Osteoblast Cells. Int. J. Nanomed. 2015, 10, 1095–1107. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Mitjans, M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials 2015, 5, 1004–1021. [Google Scholar] [CrossRef]
- Hosny, M.; Eltaweil, A.S.; Mostafa, M.; El-Badry, Y.A.; Hussein, E.E.; Omer, A.M.; Fawzy, M. Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS Omega 2022, 7, 3121–3133. [Google Scholar] [CrossRef]
- Li, T.; Li, F.; Xiang, W.; Yi, Y.; Chen, Y.; Cheng, L.; Liu, Z.; Xu, H. Selenium-Containing Amphiphiles Reduced and Stabilized Gold Nanoparticles: Kill Cancer Cells via Reactive Oxygen Species. ACS Appl. Mater. Interfaces 2016, 8, 22106–22112. [Google Scholar] [CrossRef]
- Gali, K.K.; Soundararajan, N.; Katiyar, V.; Sivaprakasam, S. Electrospun Chitosan Coated Polylactic Acid Nanofiber: A Novel Immobilization Matrix for α—Amylase and Its Application in Hydrolysis of Cassava Fibrous Waste. J. Mater. Res. Technol. 2021, 13, 686–699. [Google Scholar] [CrossRef]
BNCs | CS (wt.%) | PVA (wt.%) | ZnO (wt.%) | TiO2 (wt.%) |
---|---|---|---|---|
CPZ1 | 1 | 5 | 0.1 | - |
CPZ2 | 0.5 | - | ||
CPT1 | - | 0.1 | ||
CPT2 | - | 0.5 |
Sample | Moisture Content | Thickness (mm) | Physical Appearance |
---|---|---|---|
PVA | 42.4 ± 1.73% | 0.16 ± 0.01 a | Colorless, Transparent |
CS | 20 ± 2.25% | 0.15 ± 0.02 b | Yellowish |
CS/PVA | 15.8 ± 2.2% | 0.13 ± 0.02 b | Yellowish |
CPZ1 | 13.9 ± 0.23% | 0.12 ± 0.02 b | Light Yellowish |
CPZ2 | 14.8 ± 0.36% | 0.11 ± 0.01 a | Light Yellowish |
CPT1 | 10.6 ± 0.50% | 0.09 ± 0.01 a | Light Yellowish |
CPT2 | 9.4 ± 0.32% | 0.08 ± 0.0 c | Light Yellowish |
Conc. µg/mL | 50 | 100 | 150 | 200 | 300 | |
---|---|---|---|---|---|---|
Samples | ||||||
CS | 1.6 ± 0.05 a | 2 ± 0.03 b | 1.6 ± 0.05 a | 2.6 ± 0.05 a | 3 ± 0.05 a | |
CS/PVA | 2.3 ± 0.03 b | 2.3 ± 0.03 b | 2.6 ± 0.03 b | 3.6 ± 0.05 a | 4 ± 0.05 a | |
CPZ BNCs | 1.3 ± 0.1 e | 2.6 ± 0.15 e | 3.3 ± 0.05 a | 5.0 ± 0.06 d | 5.3 ± 0.1 e | |
CPT BNCs | 2.3 ± 0.03 b | 3.3 ± 0.06 d | 3.3 ± 0.03 b | 3.3 ± 0.08 c | 4.6 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annu; Bhat, Z.I.; Imtiyaz, K.; Rizvi, M.M.A.; Ikram, S.; Shin, D.K. Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications. Polymers 2023, 15, 3477. https://doi.org/10.3390/polym15163477
Annu, Bhat ZI, Imtiyaz K, Rizvi MMA, Ikram S, Shin DK. Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications. Polymers. 2023; 15(16):3477. https://doi.org/10.3390/polym15163477
Chicago/Turabian StyleAnnu, Zafar Iqbal Bhat, Khalid Imtiyaz, M. Moshahid A. Rizvi, Saiqa Ikram, and Dong Kil Shin. 2023. "Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications" Polymers 15, no. 16: 3477. https://doi.org/10.3390/polym15163477
APA StyleAnnu, Bhat, Z. I., Imtiyaz, K., Rizvi, M. M. A., Ikram, S., & Shin, D. K. (2023). Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications. Polymers, 15(16), 3477. https://doi.org/10.3390/polym15163477