Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MnO2/CC Electrodes
2.3. Preparation of LO, PVA–LO, and PAAM–LO DES–Based Electrolzytes
2.4. Assembly and Electrochemical Tests of MnO2 Symmetric Flexible Electrochemical Supercapacitors (FESCs)
2.5. Characterization
3. Results and Discussion
3.1. Characterization of MnO2/CC Electrode
3.2. Electrochemical Performance of MnO2 Symmetric FESCs with Different LO DES–Based Electrolytes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Qi, H.; Yang, J.; Bo, Z.; Huang, F.; Islam, M.S.; Lu, X.; Dai, L.; Amal, R.; Wang, C.; et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 2021, 14, 1854–1896. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Wang, K.; Wei, M.; Zhang, P.; Zhao, S.; Pei, P.; Wang, H.; Chen, Z.; Shang, N. An Agar gel modulation with melamine foam skeleton for flexible Zn-air batteries. Chem. Eng. J. 2023, 452, 139301. [Google Scholar] [CrossRef]
- Rehman, A.U.; Afzal, A.M.; Iqbal, M.W.; Ali, M.; Wabaidur, S.M.; Al-Ammar, E.A.; Mumtaz, S.; Choi, E.H. Highly efficient and stable layered AgZnS@WS2 nanocomposite electrode as superior charge transfer and active redox sites for energy harvesting device. J. Energy Storage 2023, 71, 108022. [Google Scholar] [CrossRef]
- Yun, T.G.; Hwang, B.; Kim, D.; Hyun, S.; Han, S.M. Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228–9234. [Google Scholar] [CrossRef]
- Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012, 5, 5842–5850. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, J.; Wang, Y.; Yuan, K.; Tan, L.; Chen, Y. Construction of a hierarchical carbon coated Fe3O4 nanorod anode for 2.6 V aqueous asymmetric supercapacitors with ultrahigh energy density. J. Mater. Chem. A 2019, 7, 27313–27322. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Xia, Q.; Sun, S.; Zhu, J.; Xia, H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 2017, 29, 1700804. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, J.; Zhang, Q.; Liu, M.; Hu, Y.; Kou, Z.; Liu, N.; Yang, X.; Ding, X.; Chen, H.; et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 2019, 9, 1802753. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, J.; Li, L.; Gao, X.; Kang, L.; Zhang, Y.; Zhang, Q.; Kou, Z.; Zhang, T.; Wei, L.; et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater. 2020, 25, 124–130. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, M.I.; Cheng, F.; Lu, W. A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J. Energy Storage 2021, 40, 102729. [Google Scholar] [CrossRef]
- Zhang, M.; Lia, Y.; Shen, Z. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes. J. Power Sources 2019, 414, 479–485. [Google Scholar] [CrossRef]
- Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 2019, 52, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Dong, S.; Zhang, X.; Hao, J. Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. Chem. Eng. J. 2022, 446, 137328. [Google Scholar] [CrossRef]
- Guo, R.H.; Chou, C.M.; Wang, C.C.; Deng, M.J.; Lin, J.M.; Chen, C.Y.; Lee, Y.C.; Chiang, Y.W.; Chuang, W.T. Biomimetic strategies for 4.0 V all-solid-state flexible supercapacitor: Moving toward eco-friendly, safe, aesthetic, and high-performance devices. Chem. Eng. J. 2021, 414, 128842. [Google Scholar] [CrossRef]
- Deng, M.J.; Yeh, L.H.; Lin, Y.H.; Chen, J.M.; Chou, T.H. 3D network V2O5 electrodes in a gel Electrolyte for high-voltage wearable symmetric pseudocapacitors. ACS Appl. Mater. Interfaces 2019, 11, 29838–29848. [Google Scholar] [CrossRef]
- Hor, A.A.; Yadav, N.; Hashmi, S.A. High energy density carbon supercapacitor with ionic liquid-based gel polymer electrolyte: Role of redox-additive potassium iodide. J. Energy Storage 2022, 47, 103608. [Google Scholar] [CrossRef]
- Hor, A.A.; Yadav, N.; Hashmi, S.A. Enhanced energy density quasi-solid-state supercapacitor based on an ionic liquid incorporated aqueous gel polymer electrolyte with a redox-additive trimethyl sulfoxonium iodide. J. Energy Storage 2023, 64, 107227. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Ren, Y.; Jin, G.; Zhang, C.; Chen, W.; Yan, F. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 2020, 7, 919–927. [Google Scholar] [CrossRef]
- Wang, H.; Tan, W.M.; Poh, W.C.; Gao, D.; Wu, W.; Lee, P.S. A highly stretchable, self-healable, transparent and solid-state poly(ionic liquid) filler for high-performance dielectric elastomer actuators. J. Mater. Chem. A 2023, 11, 14159–14168. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Deng, M.J.; Wu, Y.S. 2.2 V wearable asymmetric supercapacitors based on Co oxide//Mn oxide electrodes and a PVA–KOH-urea–LiClO4 alkaline gel electrolyte. J. Alloys Compd. 2023, 945, 169285. [Google Scholar] [CrossRef]
- Zhuo, W.J.; Wang, Y.H.; Huang, C.T.; Deng, M.J. Enhanced pseudocapacitive performance of symmetric polypyrrole–MnO2 electrode and polymer gel electrolyte. Polymers 2021, 13, 3577. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.J.; Chang, J.K.; Wang, C.C.; Chen, K.W.; Lin, C.M.; Tang, M.T.; Chen, J.M.; Lu, K.T. High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte. Energy Environ. Sci. 2011, 4, 3942–3946. [Google Scholar] [CrossRef]
- Wu, F.; Chen, R.; Wu, F.; Li, L.; Xu, B.; Chen, S.; Wang, G. Binary room-temperature complex electrolytes based on LiClO4 and organic compounds with acylamino group and its characterization for electric double layer capacitors. J. Power Sources 2008, 184, 402–407. [Google Scholar] [CrossRef]
- Pal, U.; Chen, F.; Gyabang, D.; Pathirana, T.; Roy, B.; Kerr, R.; MacFarlane, D.R.; Armand, M.; Howlett, P.C.; Forsyth, M. Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications. J. Mater. Chem. A 2020, 8, 18826–18839. [Google Scholar] [CrossRef]
- Tu, Q.M.; Fan, L.Q.; Pan, F.; Huang, J.L.; Gu, Y.; Lin, J.M.; Huang, M.L.; Huang, Y.F.; Wu, J.H. Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim. Acta 2018, 268, 562–568. [Google Scholar] [CrossRef]
- Chang, J.K.; Tsai, W.T. Material Characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J. Electrochem. Soc. 2003, 150, 1333–1338. [Google Scholar] [CrossRef]
- Chigane, M.; Ishikawa, M. Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism. J. Electrochem. Soc. 2000, 147, 2246–2251. [Google Scholar] [CrossRef]
- Chigane, M.; Ishikawa, M.; Izaki, M. Manganese oxide thin film Preparation by potentiostatic electrolyses and electrochromism. J. Electrochem. Soc. 2001, 148, 96–101. [Google Scholar] [CrossRef]
- Raza, F.; Ni, X.P.; Wang, J.Q.; Liu, S.F.; Jiang, Z.; Liu, C.L.; Chen, H.F.; Farooq, A.; Ju, A.Q. Ultrathin honeycomb-like MnO2 on hollow carbon nanofiber networks as binder-free electrode for flexible symmetric all-solid-state supercapacitors. J. Energy Storage 2020, 30, 10146. [Google Scholar] [CrossRef]
- Sathyamoorthi, S.; Suryanarayanan, V.; Velayutham, D. Organo-redox shuttle promoted protic ionic liquid electrolyte for supercapacitor. J. Power Sources 2015, 274, 1135–1139. [Google Scholar] [CrossRef]
- Sathiya, M.; Prakash, A.S.; Ramesha, K.; Tarascon, J.M.; Shukla, A.K. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291–16299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, Y.; Xu, Z.; Li, H.; Xu, M.; Li, J.; Dai, Y.; Zong, W.; Chen, R.; He, L.; et al. Rationally designed sodium chromium vanadium phosphate cathodes with multi-electron reaction for fast-charging sodium-ion batteries. Adv. Energy Mater. 2022, 12, 220106. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Peng, J.; Cao, P.; Cai, X.; Li, J.; Zhai, M. A flexible ionic liquid gelled PVA–Li2SO4 polymer electrolyte for semi-solid-state supercapacitors. Adv. Mater. Interfaces 2015, 2, 1500267. [Google Scholar] [CrossRef]
- Li, X.; Wei, B. Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films. Nano Energy 2012, 1, 479–487. [Google Scholar] [CrossRef]
- Han, J.; Choi, Y.; Lee, J.; Pyo, S.; Jo, S.; Yoo, J. UV curable ionogel for all-solid-state supercapacitor. Chem. Eng. J. 2021, 416, 129089. [Google Scholar] [CrossRef]
- Peng, H.; Gao, X.; Sun, K.; Xie, X.; Ma, G.; Zhou, X.; Lei, Z. Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chem. Eng. J. 2021, 422, 130353. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, G.; Guan, T.; Wu, J.; Wang, J.; Li, K. Microphase separation engineering toward 3D porous carbon assembled from nanosheets for flexible all solid-state supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 13250–13260. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Q.; Mugo, S.M.; An, L.; Zhang, Q.; Lu, Y. Self-healing and shape-editable wearable supercapacitors based on highly stretchable hydrogel electrolytes. Adv. Sci. 2022, 9, 2201039. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Shah, S.S.; Nayem, S.M.A.; Shaikh, M.N.; Hakeem, A.S.; Bakare, I.A. Peat soil-derived silica doped porous graphitic carbon with high yield for high performance all-solid-state symmetric supercapacitors. J. Energy Storage 2022, 50, 104278. [Google Scholar] [CrossRef]
- Luo, X.; Liang, Y.; Weng, W.; Hu, Z.; Zhang, Y.; Yang, J.; Yang, L.; Zhu, M. Polypyrrole-coated carbon nanotube/cotton hybrid fabric with high areal capacitance for flexible quasi-solid-state supercapacitors. Energy Storage Mater. 2020, 33, 11–17. [Google Scholar] [CrossRef]
- Du, Y.; Li, G.; Ye, L.; Che, C.; Yang, X.; Zhao, L. Sandwich-like Ni–Zn hydroxide nanosheets vertically aligned on reduced graphene oxide via MOF templates towards boosting supercapacitive performance. Chem. Eng. J. 2021, 417, 129189. [Google Scholar] [CrossRef]
- Ding, S.; An, J.; Ding, D.; Zou, Y.; Zhao, L. Micron-sized NiMn–glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life. Chem. Eng. J. 2022, 431, 134100. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Zhong, Y.; Cui, L.; Zhang, A.; Razal, J.M.; Yang, W.; Liu, J. Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides. J. Mater. Chem. A 2020, 8, 1837–1848. [Google Scholar] [CrossRef]
- Belli, M.; Scafati, A.; Bianconi, A.; Mobilio, S.; Palladino, L.; Reale, A.; Burattini, E. X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Commun. 1980, 35, 355–361. [Google Scholar] [CrossRef]
- Chang, J.K.; Lee, M.T.; Tsai, W.T.; Deng, M.J.; Sun, I.W. X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy studies on reversible insertion/desertion of dicyanamide anions into/from manganese oxide in ionic liquid. Chem. Mater. 2009, 21, 2688–2695. [Google Scholar] [CrossRef]
Electrolyte | Viscosity (cp) | Conductivity (mS/cm) | Ref. |
---|---|---|---|
LO (1:4.5) a | X | 0.7 | [26] |
LO (1:4.2) a | 90.9 | 1.1 | This work |
PAAM–LO | 217.2 | 12.4 | This work |
PVA–LO | 798.2 | 30.6 | This work |
Electrode Material | Electrolyte | Potential Windows (V) | Energy Density (Wh/Kg) | Ref. |
---|---|---|---|---|
AC porous aerogels | PEO–LiTFSI– VBIMBr | 2.0 | 8.7 | [14] |
AC | PVA–Li2SO4–BMIMI | 1.5 | 29.3 | [28] |
AC | PUA–EMITFSI | 4.0 | 93.9 | [38] |
activated CF | Agar/PVA–Li2SO4–EMIMBF4 | 1.0 | 4.0 | [39] |
3D porous carbon nanosheets | PVA–Na2SO4 | 1.8 | 27.0 | [40] |
PEDOT:PSS–rGO | UPyHCBA–acrylamide hydrogel | 0.6 | 1.9 | [41] |
porous graphitic carbon | PVA–KOH | 1.0 | 18.0 | [42] |
PPy-coated CNT/cottonhybrid fabric | PVA–H2SO4 | 0.8 | 12.6 | [43] |
NiZn–OH/rGO//AC | PVA–KOH | 1.6 | 53.7 | [44] |
NiMn–Gly//AC | PVA–KOH | 1.6 | 54.4 | [45] |
MnNiCo–CH/CF//AC | PVA–KOH | 1.5 | 30.4 | [46] |
MnO2/CC//MnO2/CC | LO | 2.4 | 17.1 | This work |
MnO2/CC//MnO2/CC | PAAM–LO | 2.4 | 72.1 | This work |
MnO2/CC//MnO2/CC | PVA–LO | 2.4 | 97.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Huang, W.-T.; Huang, Y.-T.; Jhang, Y.-N.; Shih, T.-T.; Yılmaz, M.; Deng, M.-J. Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors. Polymers 2023, 15, 3438. https://doi.org/10.3390/polym15163438
Lin Y-H, Huang W-T, Huang Y-T, Jhang Y-N, Shih T-T, Yılmaz M, Deng M-J. Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors. Polymers. 2023; 15(16):3438. https://doi.org/10.3390/polym15163438
Chicago/Turabian StyleLin, Yu-Hao, Wan-Tien Huang, Yi-Ting Huang, Yi-Ni Jhang, Tsung-Ting Shih, Murat Yılmaz, and Ming-Jay Deng. 2023. "Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors" Polymers 15, no. 16: 3438. https://doi.org/10.3390/polym15163438
APA StyleLin, Y.-H., Huang, W.-T., Huang, Y.-T., Jhang, Y.-N., Shih, T.-T., Yılmaz, M., & Deng, M.-J. (2023). Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors. Polymers, 15(16), 3438. https://doi.org/10.3390/polym15163438