Effective Detergency Determination for Single Polymeric Fibers Using Confocal Microscopy
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Detergency Determination Procedures for Single Polymeric Fibers
2.2.1. Preparation of Oil-Stained Fibers
2.2.2. Preparation of Protein-Stained Fibers
2.2.3. Washing Procedure
2.2.4. In-Situ Monitoring Oil and Protein Removal on Single Polymeric Fibers
2.3. Detergency Determination Procedures for Fabrics
2.3.1. Soiling Procedure
2.3.2. Laundry Procedure
2.3.3. Detergency Performance Evaluation
3. Results and Discussion
3.1. Detergency of Different Detergents
3.2. Oil Removal Performances of Different Types of Fibers
3.3. Comparison of the CLSM Method with Other Common Methods
3.4. The Applicability of the CLSM Method to Examine Protein Stains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salahuddin, M.; Lee, Y.-A. Are Laundry Balls a Sustainable Washing Option for Consumers? Investigating the Effect of Laundry Balls on Microfiber Pollution through the Lens of Cradle-to-Cradle Design Model. Sustainability 2022, 14, 14314. [Google Scholar] [CrossRef]
- Kalak, T.; Knast, P.; Piepiórka-Stepuk, J. The influence of the addition of anionic sodium bis-(2-ethylhexyl) sulfosuccinate on washing properties of liquid laundry detergents. J. Text. Inst. 2021, 112, 1826–1834. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, V.V. Relationship between Oil–Water Interfacial Tension and Oily Soil Removal in Mixed Surfactant Systems. J. Colloid Interface Sci. 1998, 207, 1–10. [Google Scholar] [CrossRef]
- Whang, H.S.; Kim, Y.-J.; Ko, S.-W.; Cha, O.S. Effect of Hydrophile-Lipophile Balance Values of Surfactant Mixtures on the Detergency of Oil-Soiled Single Fibers. Text. Res. J. 2001, 71, 650–654. [Google Scholar] [CrossRef]
- Raney, K.H.; Benson, H.L. The effect of polar soil components on the phase inversion temperature and optimum detergency conditions. J. Am. Oil Chem. Soc. 1990, 67, 722–729. [Google Scholar] [CrossRef]
- Park, C.H.; Chung, S.E.; Yun, C.S. Effect of drying condition on the electrostatic characteristics of the laundry. Fibers Polym. 2007, 8, 432–437. [Google Scholar] [CrossRef]
- Paul, B.K.; Moulik, S.P. Uses and applications of microemulsions. Curr. Sci. 2001, 80, 990–1001. [Google Scholar]
- Chanwattanakit, J.; Scamehorn, J.F.; Sabatini, D.A.; Chavadej, S. Laundry Detergency of Solid Nonparticulate Soil or Waxy Solids: Part II. Effect of the Surfactant Type. J. Surfactants Deterg. 2019, 22, 571–585. [Google Scholar] [CrossRef]
- Han, H.R.; Chung, S.E.; Kim, J.; Park, C.H. Mechanical and physicochemical contribution in removal of different soil types on cotton fabric. Text. Res. J. 2015, 85, 2009–2019. [Google Scholar] [CrossRef]
- Carroll, B. The direct study of oily soil removal from solid substrates in detergency. Colloids Surf. A Physicochem. Eng. Asp. 1996, 114, 161–164. [Google Scholar] [CrossRef]
- Chanwattanakit, J.; Scamehorn, J.F.; Sabatini, D.A.; Chavadej, S. Laundry Detergency of Solid Non-particulate Soil or Waxy Solids: Part I. Relation to Oily Soil Removal Above the Melting Point. J. Surfactants Deterg. 2017, 20, 815–830. [Google Scholar] [CrossRef]
- Song, H.; Taylor, D.C.; Zhang, M. Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int. J. Mol. Sci. 2023, 24, 2256. [Google Scholar] [CrossRef]
- Heggs, R.P.; Pierce, B.C.; Balbes, L.M.; McRoberts, K.C.; Streicker, M.A.; Cockerline, K.B. Assessing Rodent Gnawing of Elastomers Containing Soybean Oil Derivatives. ACS Sustain. Chem. Eng. 2020, 8, 18015–18022. [Google Scholar] [CrossRef]
- Clemente, T.E.; Cahoon, E.B. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, A.W.; Dykstra, G.J.; Selke, E.; Sorenson, S.C.; Pryde, E.H. Diesel fuel from thermal decomposition of soybean oil. J. Am. Oil Chem. Soc. 1988, 65, 1781–1786. [Google Scholar] [CrossRef]
- Timms, R.E. Physical properties of oils and mixtures of oils. J. Am. Oil Chem. Soc. 1985, 62, 241–249. [Google Scholar] [CrossRef]
- Gotoh, K. Experimental Analysis of Detergency Phenomena and Investigation of a Next-generation Detergency System. J. Oleo Sci. 2017, 66, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ilec, E.; Simončič, B.; Hladnik, A. Evaluation of Surfactant Detergency using Statistical Analysis. Text. Res. J. 2009, 79, 318–325. [Google Scholar] [CrossRef]
- Oya, M. Relation between mechanism of soil removal from fabrics and a parameter derived from probability density functional method for washing force analysis. Text. Res. J. 2018, 89, 2236–2246. [Google Scholar] [CrossRef]
- Goel, S.K. Measuring detergency of oily soils in the vicinity of phase inversion temperatures of commercial nonionic surfactants using an oil-soluble dye. J. Surfactants Deterg. 1998, 1, 221–226. [Google Scholar] [CrossRef]
- Breen, N.E.; Durnam, D.J.; Obendorf, S.K. Residual Oily Soil Distribution on Polyester/Cotton Fabric After, Laundering with Selected Detergents at Various Wash Temperatures. Text. Res. J. 1984, 54, 198–204. [Google Scholar] [CrossRef]
- Jurado, E.; Bravo, V.; Núñez-Olea, J.; Bailón, R.; Altmajer-Vaz, D.; Garíia-Román, M.; Fernández-Arteaga, A. Enzyme-based detergent formulas for fatty soils and hard surfaces in a continuous-flow device. J. Surfactants Deterg. 2006, 9, 83–90. [Google Scholar] [CrossRef]
- Fujii, T.; Tatara, T.; Minagawa, M. Studies on applications of lipolytic enzyme in detergency I. Effect of lipase fromCandida cylindracea on removal of olive oil from cotton fabric. J. Am. Oil Chem. Soc. 1986, 63, 796–799. [Google Scholar] [CrossRef]
- Do, L.D.; Attaphong, C.; Scamehorn, J.F.; Sabatini, D.A. Detergency of Vegetable Oils and Semi-Solid Fats Using Microemulsion Mixtures of Anionic Extended Surfactants: The HLD Concept and Cold Water Applications. J. Surfactants Deterg. 2015, 18, 373–382. [Google Scholar] [CrossRef]
- Pukale, D.D.; Bansode, A.S.; Pinjari, D.V.; Kulkarni, R.R.; Sayed, U. Application of Silicone Surfactant Along with Hydrocarbon Surfactants to Textile Washing for the Removal of Different Complex Stains. J. Surfactants Deterg. 2017, 20, 287–295. [Google Scholar] [CrossRef]
- Kalak, T.; Gąsior, K.; Wieczorek, D.; Cierpiszewski, R. Improvement of washing properties of liquid laundry detergents by modification with N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate sulfobetaine. Text. Res. J. 2020, 91, 115–129. [Google Scholar] [CrossRef]
- Gotoh, K.; Harayama, K. Application of ultrasound to textiles washing in aqueous solutions. Ultrason. Sonochemistry 2013, 20, 747–753. [Google Scholar] [CrossRef]
- Webb, J.J.; Obendorf, S.K. Detergency study of the synergism between oily and particulate soil on polyester/cotton fabric. J. Am. Oil Chem. Soc. 1988, 65, 1357–1364. [Google Scholar] [CrossRef]
- Chi, Y.-S.; Obendorf, S.K. Detergency of used motor oil from cotton and polyester fabrics. J. Surfactants Deterg. 1999, 2, 1–11. [Google Scholar] [CrossRef]
- Stachelek, P.; MacKenzie, L.; Parker, D.; Pal, R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat. Commun. 2022, 13, 553. [Google Scholar] [CrossRef]
- Kim, T.; Zhou, R.; Mir, M.; Babacan, S.D.; Carney, P.S.; Goddard, L.L.; Popescu, G. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 2014, 8, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Mehta, V.N.; Jha, S.; Basu, H.; Singhal, R.K.; Kailasa, S.K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B Chem. 2015, 213, 434–443. [Google Scholar] [CrossRef]
- Alam, A.-M.; Park, B.-Y.; Ghouri, Z.K.; Park, M.; Kim, H.-Y. Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications. Green Chem. 2015, 17, 3791–3797. [Google Scholar] [CrossRef]
- Greenspan, P.; Fowler, S.D. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 1985, 26, 781–789. [Google Scholar] [CrossRef]
- Schmid, M.; Thill, A.; Purkhold, U.; Walcher, M.; Bottero, J.Y.; Ginestet, P.; Nielsen, P.H.; Wuertz, S.; Wagner, M. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Res. 2003, 37, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Ge, H.; Wang, D.; Zhong, Q.; Wang, J. The Influence of Silicone Softeners on Fabric Stain Removal and Whiteness Maintenance During Home Laundry. J. Surfactants Deterg. 2014, 17, 331–339. [Google Scholar] [CrossRef]
- Cole, T.A.; Fok, A.K.; Ueno, M.S.; Allen, R.D. Use of nile red as a rapid measure of lipid content in ciliates. Eur. J. Protistol. 1990, 25, 361–368. [Google Scholar] [CrossRef]
- Wentworth, C.M.; Castonguay, A.C.; Moerman, P.G.; Meredith, C.H.; Balaj, R.V.; Cheon, S.I.; Zarzar, L.D. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew. Chem. Int. Ed. 2022, 61, e202204510. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, Y.; Wei, D. Surface activity and solubilization of a novel series of functional polyurethane surfactants. Polym. Int. 2007, 56, 14–21. [Google Scholar] [CrossRef]
- Hutchings, J.B. Food Colour and Appearance in Perspective. In Food Colour and Appearance; Hutchings, J.B., Ed.; Springer: Boston, MA, USA, 1999; pp. 1–29. [Google Scholar]
- Schott, H. A kinetic study of fabric detergency. J. Am. Oil Chem. Soc. 1975, 52, 225–229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Wu, J.; Qin, Z.; Wei, X.; Jiang, C.; Wu, M.; Yu, D.; Wang, J. Effective Detergency Determination for Single Polymeric Fibers Using Confocal Microscopy. Polymers 2023, 15, 3314. https://doi.org/10.3390/polym15153314
Hu Q, Wu J, Qin Z, Wei X, Jiang C, Wu M, Yu D, Wang J. Effective Detergency Determination for Single Polymeric Fibers Using Confocal Microscopy. Polymers. 2023; 15(15):3314. https://doi.org/10.3390/polym15153314
Chicago/Turabian StyleHu, Qian, Jindan Wu, Zhiqiang Qin, Xuanxiang Wei, Chenchen Jiang, Minghua Wu, Deyou Yu, and Jiping Wang. 2023. "Effective Detergency Determination for Single Polymeric Fibers Using Confocal Microscopy" Polymers 15, no. 15: 3314. https://doi.org/10.3390/polym15153314
APA StyleHu, Q., Wu, J., Qin, Z., Wei, X., Jiang, C., Wu, M., Yu, D., & Wang, J. (2023). Effective Detergency Determination for Single Polymeric Fibers Using Confocal Microscopy. Polymers, 15(15), 3314. https://doi.org/10.3390/polym15153314