Layer-by-Layer Engineered Flexible Functional Film Fabrication with Spreadability Control in Roll-to-Roll Manufacturing
Abstract
1. Introduction
2. Theory
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Byeon, J.; Lee, C. Theories and control technologies for web handling in the roll-to-roll manufacturing process. Int. J. Precis. Eng. Manuf. Green. Technol. 2020, 7, 525–544. [Google Scholar] [CrossRef]
- Scriven, L.E. Physics and applications of DIP coating and spin coating. MRS Proc. 1988, 121, 717–729. [Google Scholar] [CrossRef]
- Kang, H.; Park, J.; Shin, K. Statistical analysis for the manufacturing of multi-strip patterns by roll-to-roll single slot-die systems. Robot. Comput. Integr. Manuf. 2014, 30, 363–368. [Google Scholar] [CrossRef]
- Benkreira, H.; Cohu, O. Direct forward gravure coating on unsupported web. Chem. Eng. Sci. 1998, 53, 1223–1231. [Google Scholar] [CrossRef][Green Version]
- Reale, A.; La Notte, L.; Salamandra, L.; Polino, G.; Susanna, G.; Brown, T.M.; Brunetti, F.; Di Carlo, A. Spray coating for polymer solar cells: An up-to-date overview. Energy Technol. 2015, 3, 385–406. [Google Scholar] [CrossRef]
- Büchler, O.; Bram, M.; Mücke, R.; Buchkremer, H.P. Preparation of Thin Functional Layers for Anode Supported SOFC by Roll Coating Process. ECS Trans. 2009, 25, 655. [Google Scholar] [CrossRef]
- Jung, Y.; Park, J.; Sun, J.; Park, H.; Parajuli, S.; Shrestha, S.; Shrestha, K.; Majima, Y.; Cho, G. Roll-to-roll gravure-printed carbon nanotube-based transistor arrays for a digital column chromatograph. Adv. Mater. Technol. 2022, 7, 2101243. [Google Scholar] [CrossRef]
- Krebs, F.C.; Fyenbo, J.; Jørgensen, M. Product integration of compact roll-to-roll processed polymer solar cell modules: Methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 2010, 20, 8994–9001. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S. Fabrication and characterization of roll-to-roll-coated cantilever-structured touch sensors. ACS Appl. Mater. Interfaces. 2020, 12, 46797–46803. [Google Scholar] [CrossRef]
- Lee, J.; Byeon, J.; Lee, C. Fabrication of thickness-controllable double layer electrolyte using roll-to-roll additive manufacturing system. Int. J. Precis. Eng. Manuf. Green. Technol. 2020, 7, 635–642. [Google Scholar] [CrossRef]
- Park, J.; Shrestha, S.; Parajuli, S.; Jung, Y.; Cho, G. Fully roll-to-roll gravure printed 4-bit code generator based on p-type SWCNT thin-film transistors. Flex. Print. Electron. 2021, 6, 044005. [Google Scholar] [CrossRef]
- Larsen-Olsen, T.T.; Andreasen, B.; Andersen, T.R.; Böttiger, A.P.L.; Bundgaard, E.; Norrman, K.; Andreasen, J.W.; Jørgensen, M.; Krebs, F.C. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water. Sol. Energy Mater. Sol. Cells. 2012, 97, 22–27. [Google Scholar] [CrossRef]
- Jo, M.; Kim, S.; Lee, C. Morphology engineering for compact electrolyte layer of solid oxide fuel cell with roll-to-roll eco-production. Int. J. Precis. Eng. Manuf. Green. Technol. 2022, 9, 431–441. [Google Scholar] [CrossRef]
- Steele, B.C.H. Ceramic ion conducting membranes. Curr. Opin. Solid. State Mater. Sci. 1996, 1, 684–691. [Google Scholar] [CrossRef]
- Kim, D.H.; Cho, N.G.; Han, S.H.; Kim, H.G.; Kim, I.D. Thickness dependence of gate dielectric and active semiconductor on InGaZnO4 TFT fabricated on plastic substrates. Electrochem. Solid-State Lett. 2008, 11, 317–320. [Google Scholar] [CrossRef]
- Noh, J.; Yeom, D.; Lim, C.; Cha, H.; Han, J.; Kim, J.; Park, Y.; Subramanian, V.; Cho, G. Scalability of roll-to-roll gravure-printed electrodes on plastic foils. IEEE Trans. Electron. Packag. Manufact. 2010, 33, 275–283. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S.; Jo, M.; Lee, J. Residual interfacial deformation in flexible copper clad laminate occurring during roll-to-roll composite film manufacturing. Int. J. Precis. Eng. Manuf. Green. Technol. 2021, 8, 805–815. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Kheshgi, H.S. Low-flow limit in slot coating: Theory and experiments. AIChE J. 2000, 46, 1907–1917. [Google Scholar] [CrossRef]
- Jo, M.; Kim, S.; Cho, G.; Lee, T.M.; Lee, J.; Lee, C. Achieving specified geometric quality in a fully printed flexible functional layer using process parameters in roll-to-roll printed electronics. Flex. Print. Electron. 2022, 7, 014007. [Google Scholar] [CrossRef]
- Xia, Z.C.; Hutchinson, J.W. Crack patterns in thin films. J. Mech. Phys. Solids 2000, 48, 1107–1131. [Google Scholar] [CrossRef]
- Choi, H.; Cho, G.Y.; Cha, S.W. Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. Int. J. Precis. Eng. Manuf. Green. Technol. 2014, 1, 95–99. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, B.; Jia, N.; Yu, Y.; Xu, X.; Wang, Y.; Wu, B.; Qian, J.; Xia, R.; Wang, C.; et al. Enhanced thermally conductive and thermomechanical properties of polymethyl methacrylate (PMMA)/graphene nanoplatelets (GNPs) nanocomposites for radiator of electronic components. Polym. Test. 2021, 101, 107237. [Google Scholar] [CrossRef]
- Kim, H.S.; Bae, H.S.; Yu, J.; Kim, S.Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 2016, 6, 26825. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, L.H.; Wang, L.; Jin, Y.F.; Ren, J.W.; Wang, Z.; Jia, L.C. Simultaneously improved thermal conductivity and mechanical properties of boron nitride nanosheets/aramid nanofiber films by constructing multilayer gradient structure. Composites Part. B Eng. 2022, 229, 109454. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Gietzelt, T.; Grundke, K.; Jacobasch, H.-J.; Neumann, A.W. Contact angle measurements and contact angle interpretation. 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique. Langmuir 1997, 13, 2880–2894. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid. Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef]
- Ten Brink, G.H.; Foley, N.; Zwaan, D.; Kooi, B.J.; Palasantzas, G. Roughness controlled superhydrophobicity on single nanometer length scale with metal nanoparticles. RSC Adv. 2015, 5, 28696–28702. [Google Scholar] [CrossRef][Green Version]
- Carré, A.; Shanahan, M.E.R. Direct evidence for viscosity-independent spreading on a soft solid. Langmuir 1995, 11, 24–26. [Google Scholar] [CrossRef]
- Porwal, H.; Grasso, S.; Mani, M.K.; Reece, M.J. In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite. J. Eur. Ceram. Soc. 2014, 34, 3357–3364. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, B.; Hamon, A.-L.; He, D.; Bai, J. Thickness effect on the tensile and dynamic mechanical properties of graphene nanoplatelets-reinforced polymer nanocomposites. Graphene Technol. 2017, 2, 21–27. [Google Scholar] [CrossRef]
- Sethy, D.; Makireddi, S.; Varghese, F.V.; Balasubramaniam, K. Piezoresistive behaviour of graphene nanoplatelet (Gnp)/PMMA spray coated sensors on a polymer matrix composite beam. Express Polym. Lett. 2019, 13, 1018–1025. [Google Scholar] [CrossRef]
- Seong, J.; Park, J.; Lee, J.; Ahn, B.; Yeom, J.H.; Kim, J.; Hassinen, T.; Rhee, S.; Ko, S.; Lee, D.; et al. Practical design guidelines for the development of high-precision roll-to-roll slot-die coating equipment and the process. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1677–1686. [Google Scholar] [CrossRef]
- Seshadri, A.; Pagilla, P.R. Adaptive control of web guides. Control. Eng. Pract. 2012, 20, 1353–1365. [Google Scholar] [CrossRef]
- Hawkins, W.E. The Plastic Film and Foil Web Handling Guide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Feng, C.P.; Chen, L.B.; Tian, G.L.; Wan, S.S.; Bai, L.; Bao, R.Y.; Liu, Z.Y.; Yang, M.B.; Yang, W. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl. Mater. Interfaces 2019, 11, 18739–18745. [Google Scholar] [CrossRef]
- Wang, Z.G.; Lv, J.C.; Zheng, Z.L.; Du, J.G.; Dai, K.; Lei, J.; Xu, L.; Xu, J.Z.; Li, Z.M. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 2021, 13, 25325–25333. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhang, C.; Zhang, Y.F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers 2017, 9, 437. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Idris, M.S.; Subramani, S. Nanostructures multilayer MgO/ZnO thin film thermal interface material for LED applications: Thermal, optical, and surface temperature performance. J. Mater. Sci. Mater. Electron. 2021, 32, 16008–16023. [Google Scholar] [CrossRef]
- Oliva, J.; Mtz-Enriquez, A.I.; Oliva, A.I.; Ochoa-Valiente, R.; Garcia, C.R.; Pei, Q. Flexible graphene composites with high thermal conductivity as efficient heat sinks in high-power LEDs. J. Phys. D Appl. Phys. 2018, 52, 025103. [Google Scholar] [CrossRef]
- Orooji, Y.; Ghasali, E.; Emami, N.; Noorisafa, F.; Razmjou, A. ANOVA design for the optimization of TiO2 coating on polyether sulfone membranes. Molecules 2019, 24, 2924. [Google Scholar] [CrossRef][Green Version]
- Yang, Y. Prediction and analysis of aero-material consumption based on multivariate linear regression model. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 20–22 April 2018; pp. 628–632. [Google Scholar] [CrossRef]
- Park, J.; Kang, H.J.; Shin, K.H.; Kang, H. Fast sintering of silver nanoparticle and flake layers by infrared module assistance in large area roll-to-roll gravure printing system. Sci. Rep. 2016, 6, 34470. [Google Scholar] [CrossRef][Green Version]
- Jin, R.; Chen, W.; Simpson, T.W. Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 2001, 23, 1–13. [Google Scholar] [CrossRef]
- Yeo, L.P.; Yan, Y.H.; Lam, Y.C.; Chan-Park, M.B. Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds. Langmuir 2006, 22, 10196–10203. [Google Scholar] [CrossRef]
- Tucker, R.; Khatamifar, M.; Lin, W.; McDonald, K. Experimental investigation of orientation and geometry effect on additive manufactured aluminium LED heat sinks under natural convection. Hermal Sci. Eng. Prog. 2021, 23, 100918. [Google Scholar] [CrossRef]
- Yang, B.; Pan, Y.; Yu, Y.; Wu, J.; Xia, R.; Wang, S.; Wang, Y.; Su, L.; Miao, J.; Qian, J.; et al. Filler network structure in graphene nanoplatelet (GNP)-filled polymethyl methacrylate (PMMA) composites: From thermorheology to electrically and thermally conductive properties. Polym. Test. 2020, 89, 106575. [Google Scholar] [CrossRef]
- Yan, H.; Tang, Y.; Long, W.; Li, Y. Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J. Mater. Sci. 2014, 49, 5256–5264. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon. 2005, 43, 1378–1385. [Google Scholar] [CrossRef]
- Yang, S.Y.; Ma, C.M.; Teng, C.C.; Huang, Y.W.; Liao, S.H.; Huang, Y.L.; Tien, H.; Lee, T.; Chiou, K. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 2010, 48, 592–603. [Google Scholar] [CrossRef]
- Kernin, A.; Wan, K.; Liu, Y.; Shi, X.; Kong, J.; Bilotti, E.; Peijs, T.; Zhang, H. The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites. Compos. Sci. Technol. 2019, 169, 224–231. [Google Scholar] [CrossRef]
- Lian, H.; Qi, L.; Luo, J.; Hu, K. Experimental study and mechanism analysis on the effect of substrate wettability on graphene sheets distribution morphology within uniform printing droplets. J. Phys. Condens. Matter. 2018, 30, 335001. [Google Scholar] [CrossRef]
Viscosity (Pa·s) | Solid Content (wt%) | Contact Angle (°) | |
---|---|---|---|
Lower layer | 0.00339 | 1.642 | 18.38 |
Upper layer | 0.00378 | 1.038 | 19.43 |
Property | Value |
---|---|
Drying temperature (°C) | 65 |
Tension (N) | 18.6–55.9 |
Coating gap (μm) | 100–300 |
Flow rate (mL/min) | 3 |
Web speed (m/min) | 1 |
Case | ||
---|---|---|
1 | 100 | 18.6 |
2 | 37.3 | |
3 | 55.9 | |
4 | 200 | 18.6 |
5 | 37.3 | |
6 | 55.9 | |
7 | 300 | 18.6 |
8 | 37.3 | |
9 | 55.9 |
Property | p-Value | F-Value |
---|---|---|
Coating gap | 0.0005 | 27.75 |
Tension | 0.0000 | 62.44 |
Coating gap tension | 0.2970 | 1.35 |
Property | p-Value | F-Value |
---|---|---|
Coating gap | 0.0001 | 56.60 |
Tension | 0.0000 | 154.32 |
Coating gap tension | 0.0726 | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.; Noh, J.; Jo, M.; Joo, C.; Jo, J.; Lee, C. Layer-by-Layer Engineered Flexible Functional Film Fabrication with Spreadability Control in Roll-to-Roll Manufacturing. Polymers 2023, 15, 2478. https://doi.org/10.3390/polym15112478
Jeon H, Noh J, Jo M, Joo C, Jo J, Lee C. Layer-by-Layer Engineered Flexible Functional Film Fabrication with Spreadability Control in Roll-to-Roll Manufacturing. Polymers. 2023; 15(11):2478. https://doi.org/10.3390/polym15112478
Chicago/Turabian StyleJeon, Hojin, Jaehyun Noh, Minho Jo, Changbeom Joo, Jeongdai Jo, and Changwoo Lee. 2023. "Layer-by-Layer Engineered Flexible Functional Film Fabrication with Spreadability Control in Roll-to-Roll Manufacturing" Polymers 15, no. 11: 2478. https://doi.org/10.3390/polym15112478
APA StyleJeon, H., Noh, J., Jo, M., Joo, C., Jo, J., & Lee, C. (2023). Layer-by-Layer Engineered Flexible Functional Film Fabrication with Spreadability Control in Roll-to-Roll Manufacturing. Polymers, 15(11), 2478. https://doi.org/10.3390/polym15112478