Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ink spreadability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4100 KB  
Article
The Influence of Mineral Powder Dosage on the Mechanical Properties and Microstructure of Self-Compacting Concrete
by Li Duan, Guihong Xu, Wenbo Deng, Li He and Yi Hu
J. Compos. Sci. 2025, 9(6), 258; https://doi.org/10.3390/jcs9060258 - 23 May 2025
Viewed by 627
Abstract
The dosage of mineral powder has a complex influence on the compressive strength of self-compacting concrete, among which the pore structure is a key determining factor. This study investigated the effects of different dosages of mineral powder (0%, 5%, 10%, 20%, and 30%) [...] Read more.
The dosage of mineral powder has a complex influence on the compressive strength of self-compacting concrete, among which the pore structure is a key determining factor. This study investigated the effects of different dosages of mineral powder (0%, 5%, 10%, 20%, and 30%) on the workability, mechanical properties, and pore distribution in C80 self-compacting concrete. The research results show that an appropriate dosage of mineral powder (0–20%) can significantly improve the spreadability and fluidity of C80 self-compacting concrete. This phenomenon is mainly attributed to the shape effect and micro-aggregate effect of mineral powder, which improve the fluidity of concrete, reduce the viscosity of the paste, and thereby increase the spreadability and gap-passing rate. By testing the BSD-PS1/2 series fully automatic specific surface area and pore size analyzer, we found that there are columnar pores and ink bottle-shaped pores in C80 self-compacting concrete, as well as a small amount of plate-like slit structures. Our observations with an SEM scanning electron microscope revealed that the width of micro-cracks and micro-holes is between 1 and 5 μm and the diameter is between 3 and 10 μm. These microstructures may have an impact on the mechanical properties of the structure. By applying fractal theory and low-temperature liquid nitrogen adsorption tests, this study revealed the relationship between the fractal characteristics of internal pores in C80 self-compacting concrete and the dosage of mineral powder. The results show that with the increase in mineral powder dosage, the fractal dimension first decreases and then increases, reflecting the change rule of the complexity of pore structure first decreasing and then increasing. When the dosage of mineral powder is about 20%, the compressive strength of SCC reaches the maximum value, and this dosage range should be considered in engineering design. Full article
Show Figures

Figure 1

20 pages, 19013 KB  
Article
Control of Meniscus Formation Using an Electrohydrodynamics Module in Roll-to-Roll Systems for the Stable Coating of Functional Layers
by Minjae Kim, Minho Jo, Jaehyun Noh, Sangbin Lee, Junyoung Yun, Gyoujin Cho and Changwoo Lee
Polymers 2024, 16(6), 845; https://doi.org/10.3390/polym16060845 - 19 Mar 2024
Cited by 5 | Viewed by 3596
Abstract
In fabricating functional layers, including thin-film transistors and conductive electrodes, using roll-to-roll (R2R) processing on polymer-based PET film, the instability of the slot-die coating meniscus under a high-speed web impedes functional layer formation with the desired thickness and width. The thickness profiles of [...] Read more.
In fabricating functional layers, including thin-film transistors and conductive electrodes, using roll-to-roll (R2R) processing on polymer-based PET film, the instability of the slot-die coating meniscus under a high-speed web impedes functional layer formation with the desired thickness and width. The thickness profiles of the functional layers significantly impact the performance of the final products. In this study, we introduce an electrohydrodynamic (EHD)-based voltage application module to a slot-die coater to ensure the uniformity of the cross-machine direction (CMD) thickness profile within the functional layer and enable a stable, high-speed R2R process. The module can effectively control the spreadability of the meniscus by utilizing variations in the surface tension of the ink. The effectiveness of the EHD module was experimentally verified by applying a high voltage to a slot-die coater while keeping other process variables constant. As the applied voltage increases, the CMD thickness deviation reduces by 64.5%, and the production rate significantly increases (up to 300%), owing to the formation of a stable coated layer. The introduction of the EHD-based application module to the slot-die coater effectively controlled the spreadability of the meniscus, producing large-area functional layers. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 10760 KB  
Article
Layer-by-Layer Engineered Flexible Functional Film Fabrication with Spreadability Control in Roll-to-Roll Manufacturing
by Hojin Jeon, Jaehyun Noh, Minho Jo, Changbeom Joo, Jeongdai Jo and Changwoo Lee
Polymers 2023, 15(11), 2478; https://doi.org/10.3390/polym15112478 - 27 May 2023
Cited by 6 | Viewed by 3234
Abstract
A roll-to-roll manufacturing system performs printing and coating on webs to mass-produce large-area functional films. The functional film of a multilayered structure is composed of layers with different components for performance improvement. The roll-to-roll system is capable of controlling the geometries of the [...] Read more.
A roll-to-roll manufacturing system performs printing and coating on webs to mass-produce large-area functional films. The functional film of a multilayered structure is composed of layers with different components for performance improvement. The roll-to-roll system is capable of controlling the geometries of the coating and printing layers using process variables. However, research on geometric control using process variables is limited to single-layer structures only. This study entails the development of a method to proactively control the geometry of the upper coated layer by using the lower-layer coating process variable in the manufacture of a double-coated layer. The correlation between the lower-layer coating process variable and upper coated layer geometry was examined by analyzing the lower-layer surface roughness and spreadability of the upper-layer coating ink. The correlation analysis results demonstrate that tension was the dominant variable in the upper coated layer surface roughness. Additionally, this study found that adjusting the process variable of the lower-layer coating in a double-layered coating process could improve the surface roughness of the upper coating layer by up to 14.9%. Full article
(This article belongs to the Special Issue Polymers in Roll to Roll Processes)
Show Figures

Figure 1

Back to TopTop