Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes
Abstract
:1. Introduction
2. Experimental section
2.1. Materials and Methods
2.2. Synthesis of the Polymer Network P1 via Free Radical Polymerization
2.3. Synthesis of the Metallopolymer Networks
3. Results and Discussion
3.1. Isothermal Titration Colorimetry
3.2. Synthesis of a Polymer Network and Metallopolymer Networks
3.3. Raman Spectroscopic Investigations
3.4. Investigation of the Thermal Properties
3.5. Investigation of the Shape-Memory Abilities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Bawa, P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001. [Google Scholar] [CrossRef] [PubMed]
- De Las Heras Alarcon, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Whittell, G.R.; Hager, M.D.; Schubert, U.S.; Manners, I. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater. 2011, 10, 176–188. [Google Scholar] [CrossRef]
- Götz, S.; Zechel, S.; Hager, M.D.; Newkome, G.R.; Schubert, U.S. Versatile applications of metallopolymers. Prog. Polym. Sci. 2021, 119, 101428. [Google Scholar] [CrossRef]
- Karayilan, M.; Brezinski, W.P.; Clary, K.E.; Lichtenberger, D.L.; Glass, R.S.; Pyun, J. Catalytic metallopolymers from [2fe-2s] clusters: Artificial metalloenzymes for hydrogen production. Angew. Chem. Int. Ed. 2019, 58, 7537–7550. [Google Scholar] [CrossRef]
- Wong, W.Y. Luminescent organometallic poly(aryleneethynylene)s: Functional properties towards implications in molecular optoelectronics. Dalton Trans. 2007, 40, 4495–4510. [Google Scholar] [CrossRef]
- Holliday, B.J.; Stanford, T.B.; Swager, T.M. Chemoresistive gas-phase nitric oxide sensing with cobalt-containing conducting metallopolymers. Chem. Mater. 2006, 18, 5649–5651. [Google Scholar] [CrossRef]
- Bode, S.; Bose, R.K.; Matthes, S.; Ehrhardt, M.; Seifert, A.; Schacher, F.H.; Paulus, R.M.; Stumpf, S.; Sandmann, B.; Vitz, J.; et al. Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym. Chem. 2013, 4, 4966. [Google Scholar] [CrossRef]
- He, M.; Chen, F.; Shao, D.; Weis, P.; Wei, Z.; Sun, W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021, 275, 120915. [Google Scholar] [CrossRef]
- Hannewald, N.; Enke, M.; Nischang, I.; Zechel, S.; Hager, M.D.; Schubert, U.S. Mechanical activation of terpyridine metal complexes in polymers. J. Inorg. Organic. Polym. Mater. 2020, 30, 230–242. [Google Scholar] [CrossRef]
- Rüttiger, C.; Hübner, H.; Schöttner, S.; Winter, T.; Cherkashinin, G.; Kuttich, B.; Stühn, B.; Gallei, M. Metallopolymer-based block copolymers for the preparation of porous and redox-responsive materials. ACS Appl. Mater. Interf. 2018, 10, 4018–4030. [Google Scholar] [CrossRef] [PubMed]
- Bode, S.; Zedler, L.; Schacher, F.H.; Dietzek, B.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 2013, 25, 1634–1638. [Google Scholar] [CrossRef]
- Meurer, J.; Hniopek, J.; Bätz, T.; Zechel, S.; Enke, M.; Vitz, J.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Shape-memory metallopolymers based on two orthogonal metal–ligand interactions. Adv. Mater. 2021, 33, 2006655. [Google Scholar] [CrossRef] [PubMed]
- Kumpfer, J.R.; Rowan, S.J. Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. JACS 2011, 133, 12866–12874. [Google Scholar] [CrossRef] [PubMed]
- Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034–2057. [Google Scholar] [CrossRef]
- Hager, M.D.; Bode, S.; Weber, C.; Schubert, U.S. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49-50, 3–33. [Google Scholar] [CrossRef]
- Meurer, J.; Hniopek, J.; Zechel, S.; Enke, M.; Vitz, J.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Shape-memory metallopolymer networks based on a triazole-pyridine ligand. Polymers 2019, 11, 1889. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.K.; Lee, S.Y.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37, 5781–5793. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Han, J.; Zhu, Y.; Huang, H.; Li, J.; Tang, B. Two-way shape memory polymer with “switch–spring” composition by interpenetrating polymer network. J. Mater. Chem. A 2014, 2, 18816–18822. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. [Google Scholar] [CrossRef]
- Lendlein, A.; Schmidt, A.M.; Schroeter, M.; Langer, R. Shape-memory polymer networks from oligo(ϵ-caprolactone)dimethacrylates. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1369–1381. [Google Scholar] [CrossRef]
- Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric triple-shape materials. Proc. Natl. Acad. Sci. USA 2006, 103, 18043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivero, G.; Nguyen, L.-T.T.; Hillewaere, X.K.D.; Du Prez, F.E. One-pot thermo-remendable shape memory polyurethanes. Macromolecules 2014, 47, 2010–2018. [Google Scholar] [CrossRef]
- Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434, 879–882. [Google Scholar] [CrossRef]
- Guo, M.; Pitet, L.M.; Wyss, H.M.; Vos, M.; Dankers, P.Y.; Meijer, E.W. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 2014, 136, 6969–6977. [Google Scholar] [CrossRef] [PubMed]
- Dolog, R.; Weiss, R.A. Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromol. 2013, 46, 7845–7852. [Google Scholar] [CrossRef]
- Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20, 3335. [Google Scholar] [CrossRef]
- Du, H.; Liu, L.; Zhang, F.; Leng, J.; Liu, Y. Triple-shape memory effect in a styrene-based shape memory polymer: Characterization, theory and application. Compos. B Eng. 2019, 173, 106905. [Google Scholar] [CrossRef]
- Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, G.; Dong, X.; Wang, D. Triple-shape memory epoxy based on diels–alder adduct molecular switch. Polymer 2016, 84, 1–9. [Google Scholar] [CrossRef]
- Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K.L.; Maitland, D.J.; Voit, W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012, 45, 1062–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meurer, J.; Rodriguez Agudo, J.A.; Zechel, S.; Hager, M.D.; Schubert, U.S. Quantification of triple-shape memory behavior of polymers utilizing tension and torsion. Macromol. Chem. Phys. 2021, 222, 2000462. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Zhang, C.; Han, J.; Wang, Y.; Kumar, B. A facile approach to fabricate a uv/heat dual-responsive triple shape memory polymer. J. Mater. Chem. A 2015, 3, 97–100. [Google Scholar] [CrossRef]
- Happ, B.; Friebe, C.; Winter, A.; Hager, M.D.; Hoogenboom, R.; Schubert, U.S. 2-(1 h-1,2,3-Triazol-4-yl)-pyridine ligands as alternatives to 2,2-bipyridines in ruthenium(ii) complexes. Chem. Asian J. 2009, 4, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Happ, B.; Pavlov, G.M.; Perevyazko, I.; Hager, M.D.; Winter, A.; Schubert, U.S. Induced charge effect by co(ii) complexation on the conformation of a copolymer containing a bidentate 2-(1,2,3-triazol-4-yl)pyridine chelating unit. Macromol. Chem. Phys. 2012, 213, 1339–1348. [Google Scholar] [CrossRef]
- Meurer, J.; Bätz, T.; Hniopek, J.; Zechel, S.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Dual crosslinked metallopolymers using orthogonal metal complexes as rewritable shape-memory polymers. J. Mater. Chem. A 2021, 9, 15051–15058. [Google Scholar] [CrossRef]
- Conradie, J.; Conradie, M.M.; Mtshali, Z.; van der Westhuizen, D.; Tawfiq, K.M.; Al-Jeboori, M.J.; Coles, S.J.; Wilson, C.; Potgieter, J.H. Synthesis, characterisation and electrochemistry of eight fe coordination compounds containing substituted 2-(1-(4-r-phenyl-1h-1,2,3-triazol-4-yl)pyridine ligands, r = ch3, och3, cooh, f, cl, cn, h and cf3. Inorg. Chimica. Acta 2019, 484, 375–385. [Google Scholar] [CrossRef]
- AshrafKhorasani, M.; Wu, N.; Fleischel, O.; Schatte, G.; Petitjean, A. Fac vs mer selection in octahedral complexes of the n-benzyl-substituted triazolylpyridine diad with labile metal ions (zinc(ii), iron(ii), and nickel(ii)). Cryst. Growth 2018, 18, 1517–1525. [Google Scholar] [CrossRef]
- Ahn, S.-k.; Kasi, R.M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21, 4543–4549. [Google Scholar] [CrossRef]
- Ji, F.; Liu, X.; Lin, C.; Zhou, Y.; Dong, L.; Xu, S.; Sheng, D.; Yang, Y. Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect. Macromol. Mater. Eng. 2019, 304, 1800528. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R foundation for statistical computing: Vienna, Austria, 2021; Available online: https://www.R-project.Org/ (accessed on 31 March 2022).
- Ryan, C.G.; Clayton, E.; Griffin, W.L.; Sie, S.H.; Cousens, D.R. Snip, A statistics-sensitive background treatment for the quantitative analysis of pixe spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1988, 34, 396–402. [Google Scholar] [CrossRef]
Metallopolymer Network | m (P1) (g) | Metal Salt | m (Metal Salt) (mg) | n (Metal Salt) (mmol) |
---|---|---|---|---|
P1-Fe/Fe | 1.180 | FeSO4 × 7 H2O | 86 | 0.311 |
P1-Co/Co | 1.184 | Co(OAc)2 × 4 H2O | 78 | 0.311 |
P1-Fe/Zn | 1.185 | FeSO4 × 7 H2O Zn(TFMS)2 | 43 57 | 0.156 0.156 |
P1-Co/Zn | 1.178 | Co(OAc)2 × 4 H2O Zn(TFMS)2 | 39 57 | 0.155 0.155 |
Ligand | Metal Salt | Kα [M−1] | n |
---|---|---|---|
Tpy | FeSO4 | ~1010 (a) | 1.9 |
Co(OAc)2 | 1.10 × 107 | 1.7 | |
Triaz-Py | Co(OAc)2 | 1.29 × 103 | 1.6 |
FeSO4 | 6.02 × 102 | 1.6 | |
Zn(TFMS)2 | 2.69 × 102 | 2.1 |
Polymer or Metallopolymer Network | Degradation Temperature 1 Td (°C) | Glass Transition Temperature 2 Tg (°C) | |
---|---|---|---|
Turnover point | Range | ||
P1 | 184 | 86 | 75 to 92 |
P1-Fe/Fe | 208 | 86 | 68 to 94 |
P1-Co/Co | 212 | 114 | 82 to 121 |
P1-Fe/Zn | 211 | 126 | 85 to 140 |
P1-Co/Zn | 219 | 101 | 82 to 121 |
Metallopolymer Network | Investigation of the Dual Shape-Memory Properties | Investigation of the Triple Shape-Memory Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fixity Rates (%) | Recovery Rates (%) | |||||||||
Tsw (°C) | Rf (%) | Rr (%) | Tsw (°C) | Rf1 (%) | Rf2 (%) | Rf, total (%) | Rr1 (%) | Rr2 (%) | Rr, total (%) | |
P1-Fe/Fe | 100 110 150 | 100 100 100 | 89.5 84.5 90.0 | 150 and 100 150 and 110 | 87.0 76.5 | 100 100 | 100 100 | 88.5 96.8 | 98.9 94.1 | 93.0 95.8 |
P1-Co/Co | 100 110 150 | 100 100 100 | 70.0 86.5 87.0 | 150 and 100 150 and 110 | 83.0 70.0 | 100 100 | 100 100 | 92.3 93.5 | 104.2 87.4 | 97.3 91.4 |
P1-Fe/Zn | 110 150 | 100 100 | 76.0 87.5 | 150 and 110 | 86.5 | 100 | 100 | 85.9 | 83.8 | 85.0 |
P1-Co/Zn | 110 150 | 100 100 | 80.5 96.5 | 150 and 110 | 90.5 | 100 | 100 | 89.0 | 109.4 | 98.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meurer, J.; Bätz, T.; Hniopek, J.; Jäger, M.; Zechel, S.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes. Polymers 2022, 14, 1833. https://doi.org/10.3390/polym14091833
Meurer J, Bätz T, Hniopek J, Jäger M, Zechel S, Schmitt M, Popp J, Hager MD, Schubert US. Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes. Polymers. 2022; 14(9):1833. https://doi.org/10.3390/polym14091833
Chicago/Turabian StyleMeurer, Josefine, Thomas Bätz, Julian Hniopek, Milena Jäger, Stefan Zechel, Michael Schmitt, Jürgen Popp, Martin D. Hager, and Ulrich S. Schubert. 2022. "Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes" Polymers 14, no. 9: 1833. https://doi.org/10.3390/polym14091833