Study of Lignin Extracted from Rubberwood Using Microwave Assisted Technology for Fuel Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solvent Extraction with Microwave-Assisted Method
2.3. Klason Lignin Analytical Method
- Lignin % = lignin content in the wood sample
- A = weight of lignin, g
- W = dry weight of test specimen, g
2.4. Ultraviolet-Visible Spectrophotometry (UV-vis) Analytical Method
- WExtractedLignin = weight of lignin extracted, g
- WTotalLignin = weight of lignin present in the feedstock, g
2.5. Fourier Transform Infrared Spectroscopy (FT-IR) Characterization Method
2.6. 2D HSQC NMR Characterization Method
2.7. Bomb Calorimeter Characterization Method
3. Results and Discussion
3.1. Microwave-Assisted Extraction of Lignin
3.2. FT-IR Analytical Method
3.3. 2D HSQC NMR Analytical Method
3.4. UV-Vis Analytical Method
3.5. HHV Characterization Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for Lignocellulosic Biofuels. Science 2010, 329, 790–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Qiu, X.; Zhou, M.; Lou, H. Properties of Sodium Lignosulfonate as Dispersant of Coal Water Slurry. Energy Convers. Manag. 2007, 48, 2433–2438. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, X.; Pang, Y.; Zhou, M. Physicochemical Properties of Calcium Lignosulfonate with Different Molecular Weights as Dispersant in Aqueous Suspension. J. Dispers. Sci. Technol. 2008, 29, 1296–1303. [Google Scholar] [CrossRef]
- Milczarek, G. Kraft Lignin as Dispersing Agent for Carbon Nanotubes. J. Electroanal. Chem. 2010, 638, 178–181. [Google Scholar] [CrossRef]
- El-Khatib, E.M.; Ali, N.F.; Nassar, S.H.; El-Shemy, N.S. Functionalization of Natural Fibers Properties by Using Tio2Nanoparticles to Improve Its Antimicrobial Activity. Biointerface Res. Appl. Chem. 2022, 12, 4177–4191. [Google Scholar] [CrossRef]
- Zimniewska, M.; Kozłowski, R.; Batog, J. Nanolignin Modified Linen Fabric as a Multifunctional Product. Mol. Cryst. Liq. Cryst. 2008, 484, 43–50. [Google Scholar] [CrossRef]
- Chung, Y.-L.; Olsson, J.V.; Li, R.J.; Frank, C.W.; Waymouth, R.M.; Billington, S.L.; Sattely, E.S. A Renewable Lignin−Lactide Copolymer and Application in Biobased Composites. ACS Sustain. Chem. Eng. 2013, 1, 1231–1238. [Google Scholar] [CrossRef]
- Xue, B.L.; Wen, J.L.; Sun, R.C. Lignin-Based Rigid Polyurethane Foam Reinforced with Pulp Fiber: Synthesis and Characterization. ACS Sustain. Chem. Eng. 2014, 2, 1474–1480. [Google Scholar] [CrossRef]
- Del Saz-Orozco, B.; Oliet, M.; Alonso, M.V.; Rojo, E.; Rodríguez, F. Formulation Optimization of Unreinforced and Lignin Nanoparticle-Reinforced Phenolic Foams Using an Analysis of Variance Approach. Compos. Sci. Technol. 2012, 72, 667–674. [Google Scholar] [CrossRef]
- Yang, C.; Liu, P. Water-Dispersed Conductive Polypyrroles Doped with Lignosulfonate and the Weak Temperature Dependence of Electrical Conductivity. Ind. Eng. Chem. Res. 2009, 48, 9498–9503. [Google Scholar] [CrossRef]
- Wang, R.; Jiao, L.; Zhou, X.; Guo, Z.; Bian, H.; Dai, H. Highly Fluorescent Graphene Quantum Dots from Biorefinery Waste for Tri-Channel Sensitive Detection of Fe3+ Ions. J. Hazard. Mater. 2021, 412, 125096. [Google Scholar] [CrossRef] [PubMed]
- Norgren, M.; Edlund, H. Lignin: Recent Advances and Emerging Applications. Curr. Opin. Colloid Interface Sci. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Tran, M.H.; Phan, D.P.; Nguyen, T.H.; Kim, H.B.; Kim, J.; Park, E.D.; Lee, E.Y. Catalytic Hydrogenolysis of Alkali Lignin in Supercritical Ethanol over Copper Monometallic Catalyst Supported on a Chromium-Based Metal–Organic Framework for the Efficient Production of Aromatic Monomers. Bioresour. Technol. 2021, 342, 125941. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Biswas, B.; Kaur, R.; Krishna, B.B.; Bhaskar, T. Hydrothermal Oxidative Valorisation of Lignin into Functional Chemicals: A Review. Bioresour. Technol. 2021, 342, 126016. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.F.; Meriö-Talvio, H.; Ruuttunen, K.; Sixta, H. Influence of Reaction Conditions on Solvolysis of Organosolv Lignin Using Water and Green Organic Co-Solvents as Reaction Medium. Fuel Process. Technol. 2020, 197, 106200. [Google Scholar] [CrossRef]
- Dong, M.; Wu, C.; Chen, L.; Zhou, X.; Yang, W.; Xiao, H.; Ji, X.; Dai, H.; Hu, C.; Bian, H. Benzenesulfonic Acid-Based Hydrotropic System for Achieving Lignocellulose Separation and Utilization under Mild Conditions. Bioresour. Technol. 2021, 337, 125379. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xia, X.; Li, J.; Wang, J.; Zhao, T.; Yang, H.; Jiang, J.; Jiang, X. Solvolysis Kinetics of Three Components of Biomass Using Polyhydric Alcohols as Solvents. Bioresour. Technol. 2016, 221, 102–110. [Google Scholar] [CrossRef]
- Kumar, A.; Anushree; Kumar, J.; Bhaskar, T. Utilization of Lignin: A Sustainable and Eco-Friendly Approach. J. Energy Inst. 2020, 93, 235–271. [Google Scholar] [CrossRef]
- Duan, D.; Wang, Y.; Ruan, R.; Tayier, M.; Dai, L.; Zhao, Y.; Zhou, Y.; Liu, Y. Comparative Study on Various Alcohols Solvolysis of Organosolv Lignin Using Microwave Energy: Physicochemical and Morphological Properties. Chem. Eng. Process. Process Intensif. 2018, 126, 38–44. [Google Scholar] [CrossRef]
- Li, H.; Cai, X.; Wang, Z.; Xu, C. Cost-Effective Production of Organosolv Lignin from Woody Biomass Using Ethanol-Water Mixed Solvent at Mild Conditions. J. Supercrit. Fluids 2020, 158, 104745. [Google Scholar] [CrossRef]
- Ahmad, E.; Pant, K.K. Lignin Conversion: A Key to the Concept of Lignocellulosic Biomass-Based Integrated Biorefinery. In Waste Biorefinery; Elsevier B.V.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Inkrod, C.; Raita, M.; Laosiripojana, N. Characteristics of Lignin Extracted from Pararubber Wood Sawdust via Organosolv Fractionation. J. Sustain. Energy Environ. 2017, 8, 71–76. [Google Scholar]
- Bundhoo, Z.M.A. Microwave-Assisted Conversion of Biomass and Waste Materials to Biofuels. Renew. Sustain. Energy Rev. 2018, 82, 1149–1177. [Google Scholar] [CrossRef]
- Yu, H.B.; Ding, L.F.; Wang, Z.; Shi, L.X. Study on Extraction of Polyphenol from Grape Peel Microwave-Assisted Activity. Adv. Mater. Res. 2014, 864–867, 520–525. [Google Scholar] [CrossRef]
- Imman, S.; Arnthong, J.; Burapatana, V.; Champreda, V.; Laosiripojana, N. Fractionation of Rice Straw by a Single-Step Solvothermal Process: Effects of Solvents, Acid Promoters, and Microwave Treatment. Renew. Energy 2015, 83, 663–673. [Google Scholar] [CrossRef]
- Zhou, L.; Budarin, V.; Fan, J.; Sloan, R.; Macquarrie, D. Efficient Method of Lignin Isolation Using Microwave-Assisted Acidolysis and Characterization of the Residual Lignin. ACS Sustain. Chem. Eng. 2017, 5, 3768–3774. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, K.; Yamauchi, T.; Ogino, C.; Shimizu, N.; Takahashi, K. Microwave Pretreatment of Lignocellulosic Material in Cholinium Ionic Liquid for Efficient Enzymatic Saccharification. Biochem. Eng. J. 2014, 90, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Tappi. Acid-Insoluble Lignin in Wood and Pulp (Reaffirmation of T 222 Om-06); Tappi: Atlanta, GA, USA, 2011; pp. 1–7. [Google Scholar]
- Rodríguez, A.; Espinosa, E.; Domínguez-Robles, J.; Sánchez, R.; Bascón, I.; Rosal, A. Different Solvents for Organosolv Pulping. In Pulp and Paper Processing; Kazi, M.S.N., Ed.; Intech Open: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Links, D.A.; Xu, J.; Jiang, J.; Hse, C.; Shupe, T.F. Renewable Chemical Feedstocks from Integrated Liquefaction Processing of Lignocellulosic Materials Using Microwave Energy. Green Chem. 2012, 14, 2821–2830. [Google Scholar] [CrossRef]
- Chemat, F.; Esveld, E. Microwave Super-Heated Boiling of Organic Liquids: Oigin, Effect and Application. Chem. Eng. Technol. 2001, 24, 735–744. [Google Scholar] [CrossRef]
- Kohli, K.; Katuwal, S.; Biswas, A.; Sharma, B.K. Effective Delignification of Lignocellulosic Biomass by Microwave Assisted Deep Eutectic Solvents. Bioresour. Technol. 2020, 303, 122897. [Google Scholar] [CrossRef]
- El Hage, R.; Brosse, N.; Chrusciel, L.; Sanchez, C.; Sannigrahi, P.; Ragauskas, A. Characterization of Milled Wood Lignin and Ethanol Organosolv Lignin from Miscanthus. Polym. Degrad. Stab. 2009, 94, 1632–1638. [Google Scholar] [CrossRef]
- Muley, P.D.; Mobley, J.K.; Tong, X.; Novak, B.; Stevens, J.; Moldovan, D.; Shi, J.; Boldor, D. Rapid Microwave-Assisted Biomass Delignification and Lignin Depolymerization in Deep Eutectic Solvent. Energy Convers. Manag. 2019, 196, 1080–1088. [Google Scholar] [CrossRef]
- Mansor, A.M.; Lim, J.S.; Ani, F.N.; Hashim, H.; Ho, W.S. Characteristics of Cellulose, Hemicellulose and Lignin of MD2 Pineapple Biomass. Chem. Eng. Trans. 2019, 72, 79–84. [Google Scholar] [CrossRef]
- Guerra, A.; Mendonca, R.; Ferraz, A.; Lu, F.; Ralph, J. Structural Characterization of Lignin during Pinus Taeda Wood Treatment with Ceriporiopsis Subvermispora. Appl. Environ. Microbiol. 2004, 70, 4073–4078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; He, J.; Narron, R.; Wang, Y.; Yong, Q. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustain. Chem. Eng. 2017, 5, 11770–11779. [Google Scholar] [CrossRef]
- Yuan, T.Q.; Sun, S.N.; Xu, F.; Sun, R.C. Characterization of Lignin Structures and Lignin-Carbohydrate Complex (LCC) Linkages by Quantitative 13C and 2D HSQC NMR Spectroscopy. J. Agric. Food Chem. 2011, 59, 10604–10614. [Google Scholar] [CrossRef]
- Bauer, S.; Sorek, H.; Mitchell, V.D.; Ibáñez, A.B.; Wemmer, D.E. Characterization of Miscanthus Giganteus Lignin Isolated by Ethanol Organosolv Process under Reflux Condition. J. Agric. Food Chem. 2012, 60, 8203–8212. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Dence, C.W. (Eds.) Methods in Lignin Chemistry, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Lee, R.A.; Bédard, C.; Berberi, V.; Beauchet, R.; Lavoie, J.M. UV-Vis as Quantification Tool for Solubilized Lignin Following a Single-Shot Steam Process. Bioresour. Technol. 2013, 144, 658–663. [Google Scholar] [CrossRef]
- Araújo, L.C.P.; Yamaji, F.M.; Lima, V.H.; Botaro, V.R. Kraft Lignin Fractionation by Organic Solvents: Correlation between Molar Mass and Higher Heating Value. Bioresour. Technol. 2020, 314, 123757. [Google Scholar] [CrossRef]
- Zhou, L.; Boot, M.D.; Johansson, B.H.; Reijnders, J.J.E. Performance of Lignin Derived Aromatic Oxygenates in a Heavy-Duty Diesel Engine. Fuel 2014, 115, 469–478. [Google Scholar] [CrossRef]
- Zhou, L.; Boot, M.D.; Johansson, B.H. Comparison of Emissions and Performance between Saturated Cyclic Oxygenates and Aromatics in a Heavy-Duty Diesel Engine. Fuel 2013, 113, 239–247. [Google Scholar] [CrossRef]
Wavenumbers (cm−1) | Assignments |
---|---|
3680–3025 | O–H stretch, H-bonded |
2930 | C–H stretch methyl and methylene groups (aliphatic) |
2850 | C–H stretch O–CH3 group |
1716 | C=O stretch, unconjugated ketone, carboxyl, and ester groups |
1660 | C=O stretch conj. |
1600 | Aromatic skeletal vibration |
1510 | Aromatic skeletal vibration |
1455 | CH deformations and aromatic ring vibrations |
1420 | Aromatic skeletal vibration combined with C–H in plane deformation |
1368 | Phenolic hydroxyl group |
1325 | Syringyl ring breathing, C–O stretch |
1265 | C–C, C–O, and C=O stretches in guaiacyl |
1226 | Guaiacyl ring breathing |
1170 | Aromatic C–H in plane deformation |
1126 | Syringyl ring breathing |
1026 | C–O–C |
925 | C–H deformation of out of plane, aromatic ring, pyranose ring |
833 | Aromatic CH out of plane deformation G + S |
Labels | δC/δH | Assignment |
---|---|---|
Cβ | 52.81/3.55 | Cβ−Hβ in phenylcoumaran substructures (C) |
Bβ | 55.48/3.06 | Cβ−Hβ in resinol substructures (B) |
−OCH3 (OMe) | 55.48/3.58 | C−H in methoxyls |
Aγ | 59.83/3.63 | Cγ−Hγ in β-O-4 substructures (A) |
Iγ | 62.08/4.13 | Cγ−Hγ in cinnamyl alcohol end- groups (I) |
Bγ | 70.79/4.10,71.21/3.82 | Cγ−Hγ in resinol substructures (B) |
Ba | 89.47/4.65 | Ca−Ha in resinol substructures (B) |
Aβ | 86.52/4.12 | Cβ−Hβ in β-O-4 substructures linked to a S unit (A) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yimtrakarn, T.; Kaveevivitchai, W.; Lee, W.-C.; Lerkkasemsan, N. Study of Lignin Extracted from Rubberwood Using Microwave Assisted Technology for Fuel Additive. Polymers 2022, 14, 814. https://doi.org/10.3390/polym14040814
Yimtrakarn T, Kaveevivitchai W, Lee W-C, Lerkkasemsan N. Study of Lignin Extracted from Rubberwood Using Microwave Assisted Technology for Fuel Additive. Polymers. 2022; 14(4):814. https://doi.org/10.3390/polym14040814
Chicago/Turabian StyleYimtrakarn, Trakarn, Watchareeya Kaveevivitchai, Wen-Chien Lee, and Nuttapol Lerkkasemsan. 2022. "Study of Lignin Extracted from Rubberwood Using Microwave Assisted Technology for Fuel Additive" Polymers 14, no. 4: 814. https://doi.org/10.3390/polym14040814
APA StyleYimtrakarn, T., Kaveevivitchai, W., Lee, W.-C., & Lerkkasemsan, N. (2022). Study of Lignin Extracted from Rubberwood Using Microwave Assisted Technology for Fuel Additive. Polymers, 14(4), 814. https://doi.org/10.3390/polym14040814