From Classical to Advanced Use of Polymers in Food and Beverage Applications
Abstract
:1. Introduction
2. Classified by Application (Advanced Polymers)
- Those based on the migration of an active substance to perform a specific function (antimicrobial, antioxidant function, etc.)
- Those that are not based on the migration of a substance
- Edible and biopolymers
- Extraction and elimination of target species. The target is a dangerous species for the environment (pollutant, toxic substance, etc.) or to human beings (allergen, etc.). The main objective is to remove as much of this target as possible from the food or beverage. Although the polymer used for this purpose is sometimes recovered, the recovery of the target is not essential and is usually discarded.
- Extraction and separation of target species. The idea is the same as in the previous case, but in this section, recovering the target and determining its concentration is also part of the main objective. Outer equipment is used for measuring the concentration of the target (i.e., high-performance liquid chromatography, gas chromatography, spectrophotometry, etc.). The polymer is not involved in the quantification mechanism, which is independent of the polymer’s chemical structure.
- Alert, sensory polymers. The interaction between the target species and polymer produces a measurable signal (change in color, shape, hydrophilicity, conductivity, etc.). External measurement equipment may be used to record this signal, but unlike in the previous case, it is related to the polymer composition or chemical structure.
2.1. Advanced Food Packaging
2.1.1. Active Packaging through Chemical Species Release
2.1.2. Active Packaging without Chemical Species Release
2.1.3. Edible Polymers and Biopolymers
2.2. Target Species Detection and Quantification (Sensory Polymers)
2.2.1. Drugs
2.2.2. Smell and Taste
2.2.3. Biogenic Amines
2.2.4. Heavy Metals
Target/Medium | Polymer | Comments | Ref. |
---|---|---|---|
Hg(II) and Pb(II) in water | Aptamer- functionalized colloidal photonic crystal hydrogel (CPCH) films of polyacrylamide | During detection and caused by the cross-linked aptamers, the hydrogel is shrunk as it binds heavy metal ions, resulting in a blue shift in the Bragg diffraction peak position of the CPCHs. The shift value serves to quantify the concentration of Hg(II) or Pb(II). | [75] |
Hg(II) in water | Conjugated polymer synthesized based on fluorene and 1-CN | Based on the mercury(II) promoted deprotection reaction of dithioacetal; LOD = 1.0 × 10−6 mol L−1. | [76] |
Mercury in 15 different fish | IIP based on N-(pyridin-2-ylmethyl)ethenamine coated on Fe3O4 nanoparticles | The developed sorbent was effectively applied to detect low amounts of Hg(II) ions in different fish samples (Hydrocynus vittatus, sardine, Clarias mossambicus, Bagrus orientalis, Tilapia urolepis, Pseudotolithus, Selene dorsalis, blue shark, Alestes affinis, meagre, Hoplias malabaricus, Pagrus pagrus, Oreochromis niloticus, Bagre marinus, and anchovy). LOD = 0.03 ng mL−1 | [77] |
Cd(II) and Pb(II) in fish samples | IIPs based on 2-(diethylamino) ethyl methacrylate and 8-hydroxyquinoline (complexating agent) | The polymer was used for a previous sample pre-concentration step, and the system was tested with samples from squid, horse mackerel, sardine, hake, grouper, and gilthead bream. LOD = 0.15 mg L−1 for Pb(II) and 0.50 mg L−1 for Cd(II) | [78] |
Hg(II) and organic mercury in fish | IIPs based on poly(3-aminopropyltriethoxysilane) | The sensory systems can effectively cleanup, enrich, and determinate trace mercury species in complex matrices. LOD = 0.015 μg L−1 for Hg(II) and 0.02 μg L−1 for organic mercury | [79] |
Hg(II) in fish | Nickel nanoparticles deposited on high-surface-area carbon porous materials (CPMs) around a triblock copolymer template | The nanoparticles were deposited on CPMs prepared using the direct template method on a triblock copolymer method following the self-assembly of phloroglucinol-formaldehyde resol. The system was effectively quantified Hg(II) in fish samples. LOD = 2.1 nM | [80] |
Hg(II) and organic mercury in fish and drinking water | Polymeric film based on N-vinylpyrrolidone and methylmethacrylate containing covalently anchored dithizone motifs | Color variation from green to red allows for the detection of hake, swordfish, and salmon at the pbb level. | [81] |
Hg(II) and organic mercury in fish | Poly(2-hydroxyethyl acrylate) modified with pendant fluorescent receptors | The sensory polymers suffer an OFF–ON fluorescence process in the presence of mercury and methyl mercury. The system was tested with swordfish, tuna, pangasius, conger, and dogfish. LOD = 6.6 × 10−6 M | [82] |
Hg(II) in river water samples | Br-doped poly(3,4-ethylenedioxythiophene) (PEDOT) modified carbon paper | The system is based on an electrode with a narrower bandgap that reaches detection limits up to 0.3 nM. | [83] |
Hg(II) in zebrafish and drinking water samples | Polymerization process of barbituric acid | Barbituric acid derivatives interact with Hg(II) and then deprotonate to render a polymer and precipitate. LOD = 9.0 × 10−8 M | [84] |
Pb(II) in water and rice samples | IIP based on polymethacrylic acid | A selective system for quantifying selectively lead, in the presence of a number of interfering metals, was achieved using an IIP in the glassy carbon electrode. LOD = 0.01 μM | [85] |
Zn(II) in pet food samples | Polymeric film based on N-vinylpyrrolidone and methylmethacrylate containing covalently anchored quinoline derivative motifs | Fluorescence variation in films with gel behavior (LOD = 29 μg/L; LOQ = 87 μg/L). The system was tested with 15 commercial pet foods. | [86] |
2.2.5. Temperature and pH
2.2.6. Humidity, Gases, and Other Volatile Substances
2.2.7. Nitrates and Nitrites
2.2.8. Microorganisms
2.2.9. Other Targets
2.3. Water and Beverage Treatment. Extraction (Elimination) of Target Species
2.3.1. Desalination
2.3.2. Toxic Metals
2.3.3. Denitrification
2.3.4. Fluoride Elimination
2.4. Polymers for the Separation of Targets
3. Classified by Type of Polymer (Polymers Widely Used in Food Packaging)
3.1. Polyethylene Terephthalate (PET)
3.2. Polyethylene (PE)
3.3. Polyvinyl Chloride (PVC)
3.4. Polypropylene (PP)
3.5. Polystyrene (PS)
3.6. Polymers in Printing Inks for Food Packaging
3.7. Polymeric Adhesives for Food Packaging
4. Classified by Environmental Hazard
5. Conclusions/Prospects
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Cheremisinoff, N.P.; Cheremisinoff, P.N. Handbook of Polymer Science and Technology; Dekker, M., Ed.; CRC Press: New York, NY, USA; Basel, Switzerland, 1989; ISBN 0-8247-8021-3. [Google Scholar]
- Ebewele, R.O.; Raton, B.; York, N. Polymer Science and Technology; CRC Press: New York, NY, USA, 2000; ISBN 9780429127922. [Google Scholar]
- Whitcombe, M.J.; Alexander, C.; Vulfson, E.N. Smart Polymers for the Food Industry. Trends Food Sci. Technol. 1997, 8, 140–145. [Google Scholar] [CrossRef]
- Silvestre, C.; Duraccio, D.; Cimmino, S. Food Packaging Based on Polymer Nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782. [Google Scholar] [CrossRef]
- Siddiqui, J.; Taheri, M.; Alam, A.U.; Deen, M.J. Nanomaterials in Smart Packaging Applications: A Review. Small 2022, 18, 2101171. [Google Scholar] [CrossRef] [PubMed]
- Suppakul, P. Packaging, Active, and Intelligent: Polymer Applications. In Encyclopedia of Polymer Applications, Vols I–III; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 1958–1989. [Google Scholar]
- He, J.; Yap, R.C.C.; Wong, S.Y.; Li, X. Polymer Composites for Intelligent Food Packaging. J. Mol. Eng. Mater. 2015, 3, 1540005. [Google Scholar] [CrossRef]
- Madhusudan, P.; Chellukuri, N.; Shivakumar, N. Smart Packaging of Food for the 21st Century—A Review with Futuristic Trends, Their Feasibility and Economics. Mater. Today Proc. 2018, 5, 21018–21022. [Google Scholar] [CrossRef]
- Kuswandi, B. Environmental Friendly Food Nano-Packaging. Environ. Chem. Lett. 2017, 15, 205–221. [Google Scholar] [CrossRef]
- Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-Nanocomposites for Food Packaging Applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef] [Green Version]
- Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Biopolymers for Food Packaging Applications. In Smart Polymers and their Applications; Aguilar, M.R., San Román, J., Eds.; Woodhead Publishing: Duxford, UK, 2014; pp. 476–509. ISBN 9780857096951. [Google Scholar] [CrossRef]
- Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [Google Scholar] [CrossRef]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active Chitosan/PVA Films with Anthocyanins from Brassica Oleraceae (Red Cabbage) as Time-Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Zhang, M.; Biesold, G.M.; Choi, W.; Yu, J.; Deng, Y.; Silvestre, C.; Lin, Z. Recent Advances in Polymers and Polymer Composites for Food Packaging. Mater. Today 2022, 53, 134–161. [Google Scholar] [CrossRef]
- Technical report of Plastics Europe and European Association of Plastic Recycling & Recovery Organizations. Plastics—The Facts. An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 14 September 2022).
- Sameen, D.E.; Ahmed, S.; Lu, R.; Li, R.; Dai, J.; Qin, W.; Zhang, Q.; Li, S.; Liu, Y. Electrospun Nanofibers Food Packaging: Trends and Applications in Food Systems. Crit. Rev. Food Sci. Nutr. 2021, 62, 6238–6251. [Google Scholar] [CrossRef] [PubMed]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased Materials for Active Food Packaging: A Review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Li, C.; Lin, J. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Microw. Noncontact Motion Sens. Anal. 2013, 21, 157–202. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawakkal, I.S.M.A.; Cran, M.J.; Miltz, J.; Bigger, S.W. A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging. J. Food Sci. 2014, 79, R1477–R1490. [Google Scholar] [CrossRef] [PubMed]
- Castro López, M.D.M.; Dopico García, S.; Ares Pernas, A.; López Vilariño, J.M.; González Rodríguez, M.V. Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. J. Agric. Food Chem. 2012, 60, 8163–8170. [Google Scholar] [CrossRef]
- Zhang, H.; Hortal, M.; Dobon, A.; Jorda-Beneyto, M.; Bermudez, J.M. Selection of Nanomaterial-Based Active Agents for Packaging Application: Using Life Cycle Assessment (LCA) as a Tool. Packag. Technol. Sci. 2017, 30, 575–586. [Google Scholar] [CrossRef]
- Wang, H.; She, Y.; Chu, C.; Liu, H.; Jiang, S.; Sun, M.; Jiang, S. Preparation, Antimicrobial and Release Behaviors of Nisin-Poly (Vinyl Alcohol)/Wheat Gluten/ZrO2 Nanofibrous Membranes. J. Mater. Sci. 2015, 50, 5068–5078. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, Y.; Huang, X.; Yue, T. Controlled Release of Protein from Core-Shell Nanofibers Prepared by Emulsion Electrospinning Based on Green Chemical. J. Appl. Polym. Sci. 2015, 132, 41811. [Google Scholar] [CrossRef]
- Caro, N.; Medina, E.; Díaz-Dosque, M.; López, L.; Abugoch, L.; Tapia, C. Novel Active Packaging Based on Films of Chitosan and Chitosan/Quinoa Protein Printed with Chitosan-Tripolyphosphate-Thymol Nanoparticles via Thermal Ink-Jet Printing. Food Hydrocoll. 2016, 52, 520–532. [Google Scholar] [CrossRef]
- Tornuk, F.; Hancer, M.; Sagdic, O.; Yetim, H. LLDPE Based Food Packaging Incorporated with Nanoclays Grafted with Bioactive Compounds to Extend Shelf Life of Some Meat Products. LWT 2015, 64, 540–546. [Google Scholar] [CrossRef]
- Otoni, C.G.; Pontes, S.F.O.; Medeiros, E.A.A.; Soares, N.D.F.F. Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium aromaticum) and Oregano (Origanum vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread. J. Agric. Food Chem. 2014, 62, 5214–5219. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Ul-Islam, M.; Ahmed, A.A.Q.; Ullah, M.W.; Yang, G. Development and Characterization of Plant Oil-Incorporated Carboxymethyl Cellulose/Bacterial Cellulose/Glycerol-Based Antimicrobial Edible Films for Food Packaging Applications. Adv. Compos. Hybrid Mater. 2022, 5, 973–990. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M.C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. J. Food Eng. 2012, 109, 513–519. [Google Scholar] [CrossRef]
- Liu, B.; Xu, H.; Zhao, H.; Liu, W.; Zhao, L.; Li, Y. Preparation and Characterization of Intelligent Starch/PVA Films for Simultaneous Colorimetric Indication and Antimicrobial Activity for Food Packaging Applications. Carbohydr. Polym. 2017, 157, 842–849. [Google Scholar] [CrossRef]
- Wattananawinrat, K.; Threepopnatkul, P.; Kulsetthanchalee, C. Morphological and Thermal Properties of LDPE/EVA Blended Films and Development of Antimicrobial Activity in Food Packaging Film. Energy Procedia 2014, 56, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, J.; Sobral, P.J.A. Investigation of the Physicochemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Edible Film Mixed with Plant Ethanolic Extracts. Food Biosci. 2016, 16, 17–25. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Development of Bioactive Fish Gelatin/Chitosan Nanoparticles Composite Films with Antimicrobial Properties. Food Chem. 2016, 194, 1266–1274. [Google Scholar] [CrossRef]
- Yang, W.; Owczarek, J.S.; Fortunati, E.; Kozanecki, M.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Torre, L.; Puglia, D. Antioxidant and Antibacterial Lignin Nanoparticles in Polyvinyl Alcohol/Chitosan Films for Active Packaging. Ind. Crops Prod. 2016, 94, 800–811. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Physical, Mechanical and Antimicrobial Properties of Gelatin Based Active Nanocomposite Films Containing AgNPs and Nanoclay. Food Hydrocoll. 2014, 35, 644–652. [Google Scholar] [CrossRef]
- González-Ceballos, L.; Guirado-moreno, J.C.; Guembe-García, M.; Rovira, J.; Melero, B.; Arnaiz, A.; Diez, A.M.; García, J.M.; Vallejos, S. Metal-Free Organic Polymer for the Preparation of a Reusable Antimicrobial Material with Real-Life Application as an Absorbent Food Pad. Food Packag. Shelf Life 2022, 33, 100910. [Google Scholar] [CrossRef]
- Delezuk, J.A.M.; Ramírez-Herrera, D.E.; Esteban-Fernández de Ávila, B.; Wang, J. Chitosan-Based Water-Propelled Micromotors with Strong Antibacterial Activity. Nanoscale 2017, 9, 2195–2200. [Google Scholar] [CrossRef]
- Spiridon, I.; Ursu, R.G.; Spiridon, I.A.C. New Polylactic Acid Composites for Packaging Applications: Mechanical Properties, Thermal Behavior, and Antimicrobial Activity. Int. J. Polym. Anal. Charact. 2015, 20, 681–692. [Google Scholar] [CrossRef]
- Lacroix, M.; Vu, K.D. Edible Coating and Film Materials: Proteins. In Innovations in Food Packaging, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 277–304. [Google Scholar] [CrossRef]
- Vodnar, D.C.; Pop, O.L.; Dulf, F.V.; Socaciu, C. Antimicrobial Efficiency of Edible Films in Food Industry. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Sothornvit, R.; Mishra, M. Food Packaging: Edible Products-Web of Science Core Collection. In Encyclopedia of Polymer Applications, Vols I–III; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 1304–1324. [Google Scholar]
- Karaca, O.B.; Oluk, C.A.; Taşpinar, T.; Güven, M. New Concept in Packaging: Milk Protein Edible Films. In Health and Safety Aspects of Food Processing Technologies; Springer: Cham, Switzerland, 2019; pp. 537–565. [Google Scholar] [CrossRef]
- Chen, H. Functional Properties and Applications of Edible Films Made of Milk Proteins. J. Dairy Sci. 1995, 78, 2563–2583. [Google Scholar] [CrossRef]
- Gagaoua, M.; Bhattacharya, T.; Lamri, M.; Oz, F.; Dib, A.L.; Oz, E.; Uysal-Unalan, I.; Tomasevic, I. Green Coating Polymers in Meat Preservation. Coatings 2021, 11, 1379. [Google Scholar] [CrossRef]
- Davachi, S.M.; Shekarabi, A.S. Preparation and Characterization of Antibacterial, Eco-Friendly Edible Nanocomposite Films Containing Salvia Macrosiphon and Nanoclay. Int. J. Biol. Macromol. 2018, 113, 66–72. [Google Scholar] [CrossRef]
- Piñeros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible Cassava Starch Films Carrying Rosemary Antioxidant Extracts for Potential Use as Active Food Packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Jang, S.A.; Lim, G.O.; Song, K. Bin Preparation and Mechanical Properties of Edible Rapeseed Protein Films. J. Food Sci. 2011, 76, C218–C223. [Google Scholar] [CrossRef] [PubMed]
- García Pérez, J.M.; García García, F.C.; Vallejos, S.; Trigo, M.; Reglero-Ruiz, J.A. Smart Polymers. Principles and Applications; De Gruyter: Berlin, Germany; Boston, MA, USA, 2022; ISBN 978-1-5015-2240-6. [Google Scholar]
- Madikizela, L.M.; Chimuka, L. Determination of Ibuprofen, Naproxen and Diclofenac in Aqueous Samples Using a Multi-Template Molecularly Imprinted Polymer as Selective Adsorbent for Solid-Phase Extraction. J. Pharm. Biomed. Anal. 2016, 128, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.X.; Wang, G.N.; Yang, K.; Liu, H.Z.; Wang, J.P. Molecularly Imprinted Polymer-High Performance Liquid Chromatography for the Determination of Tetracycline Drugs in Animal Derived Foods. Food Control 2016, 69, 171–176. [Google Scholar] [CrossRef]
- Liu, B.; Tang, D.; Zhang, B.; Que, X.; Yang, H.; Chen, G. Au(III)-Promoted Magnetic Molecularly Imprinted Polymer Nanospheres for Electrochemical Determination of Streptomycin Residues in Food. Biosens. Bioelectron. 2013, 41, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Karimi, M. Recent Configurations and Progressive Uses of Magnetic Molecularly Imprinted Polymers for Drug Analysis. Talanta 2017, 167, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Karaseva, N.A.; Ermolaeva, T.N. A Piezoelectric Immunosensor for Chloramphenicol Detection in Food. Talanta 2012, 93, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Lin, J.H.; Chen, C.F.; Ito, Y.; Luo, S.C. Conducting Polymer-Based Sensors for Food and Drug Analysis. J. Food Drug Anal. 2021, 29, 544–558. [Google Scholar] [CrossRef]
- Yadav, D. Conference Record #43684. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018. Part Number: CFP18D27-ART. [Google Scholar]
- Ahn, S.R.; An, J.H.; Song, H.S.; Park, J.W.; Lee, S.H.; Kim, J.H.; Jang, J.; Park, T.H. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano 2016, 10, 7287–7296. [Google Scholar] [CrossRef]
- Tazi, I.; Choiriyah, A.; Siswanta, D.; Triyana, K. Detection of Taste Change of Bovine and Goat Milk in Room Ambient Using Electronic Tongue. Indones. J. Chem. 2017, 17, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Pérez-González, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Dias, L.; Rodriguez-Perez, M.A.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Analysis of Milk Using a Portable Potentiometric Electronic Tongue Based on Five Polymeric Membrane Sensors. Front. Chem. 2021, 9, 706460. [Google Scholar] [CrossRef]
- Gruber, J.; Nascimento, H.M.; Yamauchi, E.Y.; Li, R.W.C.; Esteves, C.H.A.; Rehder, G.P.; Gaylarde, C.C.; Shirakawa, M.A. A Conductive Polymer Based Electronic Nose for Early Detection of Penicillium Digitatum in Post-Harvest Oranges. Mater. Sci. Eng. C 2013, 33, 2766–2769. [Google Scholar] [CrossRef] [PubMed]
- Péres, L.O.; Li, R.W.C.; Yamauchi, E.Y.; Lippi, R.; Gruber, J. Conductive Polymer Gas Sensor for Quantitative Detection of Methanol in Brazilian Sugar-Cane Spirit. Food Chem. 2012, 130, 1105–1107. [Google Scholar] [CrossRef] [Green Version]
- Mahato, M.; Adhikari, B. Monitoring of Drinking Water Quality: A Preliminary Approach by an Electronic Tongue Based on Functionalized Polymer Membrane Electrodes. Anal. Methods 2017, 9, 6019–6031. [Google Scholar] [CrossRef]
- Yurova, N.S.; Danchuk, A.; Mobarez, S.N.; Wongkaew, N.; Rusanova, T.; Baeumner, A.J.; Duerkop, A. Functional Electrospun Nanofibers for Multimodal Sensitive Detection of Biogenic Amines in Food via a Simple Dipstick Assay. Anal. Bioanal. Chem. 2018, 410, 1111–1121. [Google Scholar] [CrossRef]
- Li, H.; Gan, J.; Yang, Q.; Fu, L.; Wang, Y. Colorimetric Detection of Food Freshness Based on Amine-Responsive Dopamine Polymerization on Gold Nanoparticles. Talanta 2021, 234, 122706. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.F.; Lam, M.H.W.; Wong, W.Y. Design and Synthesis of Heterobimetallic Ru(II)–Ln(III) Complexes as Chemodosimetric Ensembles for the Detection of Biogenic Amine Odorants. Anal. Chem. 2013, 85, 8246–8253. [Google Scholar] [CrossRef]
- Pablos, J.L.; Vallejos, S.; Muñoz, A.; Rojo, M.J.; Serna, F.; García, F.C.; García, J.M. Solid Polymer Substrates and Coated Fibers Containing 2,4,6-Trinitrobenzene Motifs as Smart Labels for the Visual Detection of Biogenic Amine Vapors. Chem. A Eur. J. 2015, 21, 8733–8736. [Google Scholar] [CrossRef]
- González-Ceballos, L.; Melero, B.; Trigo-López, M.; Vallejos, S.; Muñoz, A.; García, F.C.; Fernandez-Muiño, M.A.; Sancho, M.T.; García, J.M. Functional Aromatic Polyamides for the Preparation of Coated Fibres as Smart Labels for the Visual Detection of Biogenic Amine Vapours and Fish Spoilage. Sens. Actuators B Chem. 2020, 304, 127249. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Almeida, J.M.; Saraiva, C.; Viveiros, D.; Jorge, P.A.S.; Coelho, L. Preliminary Assessment on the Detection of Putrescine Using Long Period Fiber Gratings Coated with Titanium Dioxide and Poly(Ethylene-Co-Vinyl Acetate). In Optical Sensing and Detection VI; SPIE: Bellingham, WA, USA, 2020; Volume 11354, pp. 51–56. [Google Scholar] [CrossRef]
- Kumar, S.; Arockiaraj, M.; Esokkiya, A.; Sudalaimani, S.; Hansda, S.; Sivakumar, C.; Sulaiman, Y.; Khan, M.M.; Giribabu, K. Ion-Pair Facilitated Non-Enzymatic Electrochemical Sensing of Cadaverine and Putrescine. J. Electrochem. Soc. 2021, 168, 047505. [Google Scholar] [CrossRef]
- Bustamante Fonseca, S.E.; Rivas, B.L.; García Pérez, J.M.; Vallejos Calzada, S.; García, F. Synthesis of a Polymeric Sensor Containing an Occluded Pyrylium Salt and Its Application in the Colorimetric Detection of Trimethylamine Vapors. J. Appl. Polym. Sci. 2018, 135, 4–9. [Google Scholar] [CrossRef]
- Akhoundian, M.; Rüter, A.; Shinde, S. Ultratrace Detection of Histamine Using a Molecularly-Imprinted Polymer-Based Voltammetric Sensor. Sensors 2017, 17, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattsson, L.; Xu, J.; Preininger, C.; Tse Sum Bui, B.; Haupt, K. Competitive Fluorescent Pseudo-Immunoassay Exploiting Molecularly Imprinted Polymers for the Detection of Biogenic Amines in Fish Matrix. Talanta 2018, 181, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Jinadasa, K.K.; Peña-Vázquez, E.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Smart Materials for Mercury and Arsenic Determination in Food and Beverages. Microchem. J. 2022, 179, 107472. [Google Scholar] [CrossRef]
- Ye, B.F.; Zhao, Y.J.; Cheng, Y.; Li, T.T.; Xie, Z.Y.; Zhao, X.W.; Gu, Z.Z. Colorimetric Photonic Hydrogel Aptasensor for the Screening of Heavy Metal Ions. Nanoscale 2012, 4, 5998–6003. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, H.; Xie, Y.; Peng, Q.; Li, Q.; Li, Z. Reaction-Based Conjugated Polymer Fluorescent Probe for Mercury(II): Good Sensing Performance with “Turn-on” Signal Output. Polym. Chem. 2017, 8, 2221–2226. [Google Scholar] [CrossRef]
- Najafi, E.; Aboufazeli, F.; Zhad, H.R.L.Z.; Sadeghi, O.; Amani, V. A Novel Magnetic Ion Imprinted Nano-Polymer for Selective Separation and Determination of Low Levels of Mercury(II) Ions in Fish Samples. Food Chem. 2013, 141, 4040–4045. [Google Scholar] [CrossRef] [PubMed]
- Barciela-Alonso, M.C.; Plata-García, V.; Rouco-López, A.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Ionic Imprinted Polymer Based Solid Phase Extraction for Cadmium and Lead Pre-Concentration/Determination in Seafood. Microchem. J. 2014, 114, 106–110. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Song, X.; Ma, J.; Chen, L. Hg2+ Ion-Imprinted Polymers Sorbents Based on Dithizone-Hg2+ Chelation for Mercury Speciation Analysis in Environmental and Biological Samples. RSC Adv. 2014, 4, 46444–46453. [Google Scholar] [CrossRef]
- Veerakumar, P.; Chen, S.M.; Madhu, R.; Veeramani, V.; Hung, C.T.; Liu, S.B. Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes and Sensitive Detection of Hg(II) Ions. ACS Appl. Mater. Interfaces 2015, 7, 24810–24821. [Google Scholar] [CrossRef]
- Vallejos, S.; Reglero, J.A.; García, F.C.; García, J.M. Direct Visual Detection and Quantification of Mercury in Fresh Fish Meat Using Facilely Prepared Polymeric Sensory Labels. J. Mater. Chem. A 2017, 5, 13710–13716. [Google Scholar] [CrossRef]
- García-Calvo, J.; Vallejos, S.; García, F.C.; Rojo, J.; García, J.M.; Torroba, T. A Smart Material for the in Situ Detection of Mercury in Fish. Chem. Commun. 2016, 52, 11915–11918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Dai, Z.; Xiao, L.; Hong, H.; Wei, J.; Li, Y.; Hao, N.; Wang, K. Mass-Produced Flexible Br Doped PEDOT Modified Carbon Paper Electrodes for Constructing Mercury Ion Photoelectrochemical Sensor. Sens. Actuators B Chem. 2021, 339, 129871. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Su, M.; Rong, X.; Wang, X.; Wang, K.; Li, X.; Zhu, H.; Yu, M.; Sheng, W.; et al. A Highly Selective Barbiturate-Based Fluorescent Probe for Detecting Hg2+ in Cells and Zebrafish as Well as in Real Water Samples. J. Photochem. Photobiol. A Chem. 2022, 425, 113706. [Google Scholar] [CrossRef]
- Hu, S.; Xiong, X.; Huang, S.; Lai, X. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination. Anal. Sci. 2016, 32, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Guirado-Moreno, J.C.; González-Ceballos, L.; Carreira-Barral, I.; Ibeas, S.; Fernández-Muiño, M.A.; Sancho, M.T.; García, J.M.; Vallejos, S. Smart Sensory Polymer for Straightforward Zn(II) Detection in Pet Food Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121820. [Google Scholar] [CrossRef]
- Selman, J.D. Time—Temperature Indicators. In Active Food Packaging; Rooney, M.L., Ed.; Springer: Boston, MA, USA, 1995; pp. 215–237. [Google Scholar]
- Maddali, H.; Tyryshkin, A.M.; O’Carroll, D.M. Dual-Mode Polymer-Based Temperature Sensor by Dedoping of Electrochemically Doped, Conjugated Polymer Thin Films. ACS Appl. Electron. Mater. 2021, 3, 4718–4725. [Google Scholar] [CrossRef]
- Escobedo, P.; Bhattacharjee, M.; Nikbakhtnasrabadi, F.; Dahiya, R. Flexible Strain and Temperature Sensing NFC Tag for Smart Food Packaging Applications. IEEE Sens. J. 2021, 21, 26406–26414. [Google Scholar] [CrossRef]
- Li, F.; Li, X.G.; Zhou, X.; Zhang, Y.N.; Lv, R.Q.; Zhao, Y.; Xie, L.S.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. Simultaneous Measurement of Temperature and Relative Humidity Using Cascaded C-Shaped Fabry-Perot Interferometers. J. Light. Technol. 2022, 40, 1209–1215. [Google Scholar] [CrossRef]
- Sidhu, N.K.; Sohi, P.A.; Kahrizi, M. Polymer Based Optical Humidity and Temperature Sensor. J. Mater. Sci. Mater. Electron. 2019, 30, 3069–3077. [Google Scholar] [CrossRef]
- Pawlak, R.; Lebioda, M.; Rymaszewski, J.; Szymanski, W.; Kolodziejczyk, L.; Kula, P. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene. Sensors 2017, 17, 51. [Google Scholar] [CrossRef]
- Salvatore, G.A.; Sülzle, J.; Dalla Valle, F.; Cantarella, G.; Robotti, F.; Jokic, P.; Knobelspies, S.; Daus, A.; Büthe, L.; Petti, L.; et al. Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things. Adv. Funct. Mater. 2017, 27, 1702390. [Google Scholar] [CrossRef]
- da Silva, C.K.; da Silveira Mastrantonio, D.J.; Costa, J.A.V.; de Morais, M.G. Innovative PH Sensors Developed from Ultrafine Fibers Containing Açaí (Euterpe oleracea) Extract. Food Chem. 2019, 294, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Chalitangkoon, J.; Monvisade, P. Synthesis of Chitosan-Based Polymeric Dyes as Colorimetric PH-Sensing Materials: Potential for Food and Biomedical Applications. Carbohydr. Polym. 2021, 260, 117836. [Google Scholar] [CrossRef] [PubMed]
- Jović, M.; Hidalgo-Acosta, J.C.; Lesch, A.; Costa Bassetto, V.; Smirnov, E.; Cortés-Salazar, F.; Girault, H.H. Large-Scale Layer-by-Layer Inkjet Printing of Flexible Iridium-Oxide Based PH Sensors. J. Electroanal. Chem. 2018, 819, 384–390. [Google Scholar] [CrossRef]
- Huang, W.D.; Deb, S.; Seo, Y.S.; Rao, S.; Chiao, M.; Chiao, J.C. A Passive Radio-Frequency PH-Sensing Tag for Wireless Food-Quality Monitoring. IEEE Sens. J. 2012, 12, 487–495. [Google Scholar] [CrossRef]
- Fucinõs, C.; Fucinõs, P.; Míguez, M.; Katime, I.; Pastrana, L.M.; Ŕua, M.L. Temperature- and PH-Sensitive Nanohydrogels of Poly(N-Isopropylacrylamide) for Food Packaging Applications: Modelling the Swelling-Collapse Behaviour. PLoS ONE 2014, 9, e87190. [Google Scholar] [CrossRef]
- Topasna, D.M.; Topasna, G.A. Response of Optically Transparent PH Sensing Films to Temperature and Temperature Variations. Coatings 2020, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Schoelch, S.; Vapaavuori, J.; Rollet, F.G.; Barrett, C.J. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation. Macromol. Rapid Commun. 2017, 38, 1600582. [Google Scholar] [CrossRef]
- Manzari, S.; Occhiuzzi, C.; Nawale, S.; Catini, A.; Di Natale, C.; Marrocco, G. Humidity Sensing by Polymer-Loaded UHF RFID Antennas. IEEE Sens. J. 2012, 12, 2851–2858. [Google Scholar] [CrossRef] [Green Version]
- Graboski, A.M.; Ballen, S.C.; Manzoli, A.; Shimizu, F.M.; Zakrzevski, C.A.; Steffens, J.; Steffens, C. Array of Different Polyaniline-Based Sensors for Detection of Volatile Compounds in Gummy Candy. Food Anal. Methods 2018, 11, 77–87. [Google Scholar] [CrossRef]
- Matindoust, S.; Farzi, A.; Baghaei Nejad, M.; Shahrokh Abadi, M.H.; Zou, Z.; Zheng, L.R. Ammonia Gas Sensor Based on Flexible Polyaniline Films for Rapid Detection of Spoilage in Protein-Rich Foods. J. Mater. Sci. Mater. Electron. 2017, 28, 7760–7768. [Google Scholar] [CrossRef]
- Timsorn, K.; Wongchoosuk, C. Inkjet Printing of Room-Temperature Gas Sensors for Identification of Formalin Contamination in Squids. J. Mater. Sci. Mater. Electron. 2019, 30, 4782–4791. [Google Scholar] [CrossRef]
- Fraser, P.; Chilvers, C. Health Aspects of Nitrate in Drinking Water. Sci. Total Environ. 1981, 18, 103–116. [Google Scholar] [CrossRef]
- Comunidad de Castilla y León Boletín Oficial de Castilla y León D-05052022-1. Available online: https://bocyl.jcyl.es/html/2022/05/05/html/BOCYL-D-05052022-1.do (accessed on 14 September 2022).
- Shahnia, S.; Ebendorff-Heidepriem, H.; Evans, D.; Afshar, S. A Fibre-Optic Platform for Sensing Nitrate Using Conducting Polymers. Sensors 2021, 21, 138. [Google Scholar] [CrossRef]
- Pires, N.M.M.; Dong, T.; Yang, Z. A Fluorimetric Nitrite Biosensor with Polythienothiophene-Fullerene Thin Film Detectors for on-Site Water Monitoring. Analyst 2019, 144, 4342–4350. [Google Scholar] [CrossRef]
- Guembe-García, M.; González-Ceballos, L.; Arnaiz, A.; Fernández-Muiño, M.A.; Sancho, M.T.; Osés, S.M.; Ibeas, S.; Rovira, J.; Melero, B.; Represa, C.; et al. Easy Nitrite Analysis of Processed Meat with Colorimetric Polymer Sensors and a Smartphone App. ACS Appl. Mater. Interfaces 2022, 14, 37051–37058. [Google Scholar] [CrossRef]
- Elgiddawy, N.; Ren, S.; Yassar, A.; Louis-Joseph, A.; Sauriat-Dorizon, H.; El Rouby, W.M.A.; El-Gendy, A.O.; Farghali, A.A.; Korri-Youssoufi, H. Dispersible Conjugated Polymer Nanoparticles as Biointerface Materials for Label-Free Bacteria Detection. ACS Appl. Mater. Interfaces 2020, 12, 39979–39990. [Google Scholar] [CrossRef]
- Yousefi, H.; Ali, M.M.; Su, H.M.; Filipe, C.D.M.; Didar, T.F. Sentinel Wraps: Real-Time Monitoring of Food Contamination by Printing DNAzyme Probes on Food Packaging. ACS Nano 2018, 12, 3287–3294. [Google Scholar] [CrossRef]
- Arreguin-Campos, R.; Eersels, K.; Lowdon, J.W.; Rogosic, R.; Heidt, B.; Caldara, M.; Jiménez-Monroy, K.L.; Diliën, H.; Cleij, T.J.; van Grinsven, B. Biomimetic Sensing of Escherichia Coli at the Solid-Liquid Interface: From Surface-Imprinted Polymer Synthesis toward Real Sample Sensing in Food Safety. Microchem. J. 2021, 169, 106554. [Google Scholar] [CrossRef]
- Shim, J.; Tawfik, S.M.; Thangadurai, D.T.; Lee, Y.I. Amphiphilic Conjugated Polythiophene-Based Fluorescence “Turn on” Sensor for Selective Detection of Escherichia Coli in Water and Milk. Bull. Korean Chem. Soc. 2021, 42, 1047–1053. [Google Scholar] [CrossRef]
- Wu, T.; Wang, C.; Wu, M.; Wang, P.; Feng, Q. Novel Integrating Polymethylene Blue Nanoparticles with Dumbbell Hybridization Chain Reaction for Electrochemical Detection of Pathogenic Bacteria. Food Chem. 2022, 382, 132501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, R.; Liu, W.; Liu, H.; Zhou, X.; Xing, D. Rapid and Visual Detection of Listeria Monocytogenes Based on Nanoparticle Cluster Catalyzed Signal Amplification. Biosens. Bioelectron. 2016, 86, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Sabharwal, P.K.; Jain, S.; Kaur, A.; Singh, H. Functionalized Polymeric Magnetic Nanoparticle Assisted SERS Immunosensor for the Sensitive Detection of S. Typhimurium. Anal. Chim. Acta 2019, 1067, 98–106. [Google Scholar] [CrossRef]
- Wang, Z.X.; Gao, Y.F.; Jin, X.; Yu, X.H.; Tao, X.; Kong, F.Y.; Fan, D.H.; Wang, W. Excitation-Independent Emission Carbon Nanoribbon Polymer as a Ratiometric Photoluminescent Probe for Highly Selective and Sensitive Detection of Quercetin. Analyst 2019, 144, 2256–2263. [Google Scholar] [CrossRef]
- Vallejos, S.; Moreno, D.; Ibeas, S.; Muñoz, A.; García, F.C.; García, J.M. Polymeric Chemosensor for the Colorimetric Determination of the Total Polyphenol Index (TPI) in Wines. Food Control 2019, 106, 106684. [Google Scholar] [CrossRef]
- González-Ceballos, L.; del Mar Cavia, M.; Fernández-Muiño, M.A.; Osés, S.M.; Sancho, M.T.; Ibeas, S.; García, F.C.; García, J.M.; Vallejos, S. A Simple One-Pot Determination of Both Total Phenolic Content and Antioxidant Activity of Honey by Polymer Chemosensors. Food Chem. 2021, 342, 12830. [Google Scholar] [CrossRef] [PubMed]
- González-Ceballos, L.; Fernández-Muiño, M.A.; Osés, S.M.; Sancho, M.T.; Ibeas, S.; Reglero-Ruiz, J.A.; Vallejos, S. Polymer Film as Starch Azure Container for the Easy Diastase Activity Determination in Honey. Food Chem. 2021, 355, 129629. [Google Scholar] [CrossRef]
- Pérez-Ortega, P.; Gilbert-López, B.; García-Reyes, J.F.; Ramos-Martos, N.; Molina-Díaz, A. Generic Sample Treatment Method for Simultaneous Determination of Multiclass Pesticides and Mycotoxins in Wines by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2012, 1249, 32–40. [Google Scholar] [CrossRef]
- Lu, R.Q.; Yuan, W.; Croy, R.G.; Essigmann, J.M.; Swager, T.M. Metallocalix[4]Arene Polymers for Gravimetric Detection of N-Nitrosodialkylamines. J. Am. Chem. Soc. 2021, 143, 19809–19815. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, X.; Li, Z.; Zhang, Y.; Wang, J.; Fu, Y.; Li, Y. Detection of Acrylamide in Potato Chips Using a Fluorescent Sensing Method Based on Acrylamide Polymerization-Induced Distance Increase between Quantum Dots. Biosens. Bioelectron. 2014, 54, 64–71. [Google Scholar] [CrossRef]
- Bano, S.; Mahmood, A.; Kim, S.J.; Lee, K.H. Graphene Oxide Modified Polyamide Nanofiltration Membrane with Improved Flux and Antifouling Properties. J. Mater. Chem. A 2015, 3, 2065–2071. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J. Nanoparticle-Templated Nanofiltration Membranes for Ultrahigh Performance Desalination. Nat. Commun. 2018, 9, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiee, H.; Jin, B.; Yun, S.; Dai, S. Gas-Responsive Cationic Microgels for Forward Osmosis Desalination. Chem. Eng. J. 2018, 347, 424–431. [Google Scholar] [CrossRef]
- Lu, X.; Feng, X.; Yang, Y.; Jiang, J.; Cheng, W.; Liu, C.; Gopinadhan, M.; Osuji, C.O.; Ma, J.; Elimelech, M. Tuning the Permselectivity of Polymeric Desalination Membranes via Control of Polymer Crystallite Size. Nat. Commun. 2019, 10, 2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, J.; Ming, H.; Liu, S.; Shen, X.; Geng, C.; Gao, W.; Meng, J.; Gao, Y.; Zhao, Z.; Lv, J.; et al. Effect of Anion-Exchange Membrane Type for FCDI Performance at Different Concentrations. Environ. Technol. 2022, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Srimuk, P.; Aslan, M.; Gallei, M.; Presser, V. Polymer Ion-Exchange Membranes for Capacitive Deionization of Aqueous Media with Low and High Salt Concentration. Desalination 2020, 479, 114331. [Google Scholar] [CrossRef]
- Zhang, P.; Fritz, P.A.; Schroën, K.; Duan, H.; Boom, R.M.; Chan-Park, M.B. Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination. ACS Appl. Mater. Interfaces 2018, 10, 33564–33573. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. A Hydrogel-Based Antifouling Solar Evaporator for Highly Efficient Water Desalination. Energy Environ. Sci. 2018, 11, 1985–1992. [Google Scholar] [CrossRef]
- World Health Organization. 10 Chemicals of Public Health Concern. Available online: https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern (accessed on 14 October 2022).
- Tan, M.X.; Sum, Y.N.; Ying, J.Y.; Zhang, Y. A Mesoporous Poly-Melamine-Formaldehyde Polymer as a Solid Sorbent for Toxic Metal Removal. Energy Environ. Sci. 2013, 6, 3254–3259. [Google Scholar] [CrossRef]
- Bhaumik, M.; Noubactep, C.; Gupta, V.K.; McCrindle, R.I.; Maity, A. Polyaniline/Fe0 Composite Nanofibers: An Excellent Adsorbent for the Removal of Arsenic from Aqueous Solutions. Chem. Eng. J. 2015, 271, 135–146. [Google Scholar] [CrossRef]
- Mustafai, F.A.; Balouch, A.; Abdullah; Jalbani, N.; Bhanger, M.I.; Jagirani, M.S.; Kumar, A.; Tunio, A. Microwave-Assisted Synthesis of Imprinted Polymer for Selective Removal of Arsenic from Drinking Water by Applying Taguchi Statistical Method. Eur. Polym. J. 2018, 109, 133–142. [Google Scholar] [CrossRef]
- Yilmaz, V.; Arslan, Z.; Hazer, O.; Yilmaz, H. Selective Solid Phase Extraction of Copper Using a New Cu(II)-Imprinted Polymer and Determination by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Microchem. J. 2014, 114, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarezade, V.; Behbahani, M.; Omidi, F.; Abandansari, H.S.; Hesam, G. A New Magnetic Tailor Made Polymer for Separation and Trace Determination of Cadmium Ions by Flame Atomic Absorption Spectrophotometry. RSC Adv. 2016, 6, 103499–103507. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Deng, Z.; Liu, M.; Wei, W.; Zheng, C.; Zhang, Y.; Chen, S.; Deng, P. Rapid Removal of Mercury from Water by Novel Mof/Pp Hybrid Membrane. Nanomaterials 2021, 11, 2488. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.R.; Wang, Y.; Zhang, D.; Yang, Y.W. Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(II) Detection and Removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Ma, D.; Shi, Z.; Ma, S. Mercury Nano-Trap for Effective and Efficient Removal of Mercury(II) from Aqueous Solution. Nat. Commun. 2014, 5, 5537. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.T.; Peng, L.; Reeder, W.S.; Moosavi, S.M.; Tiana, D.; Britt, D.K.; Oveisi, E.; Queen, W.L. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite. ACS Cent. Sci. 2018, 4, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naushad, M.; Ahamad, T.; Al-Maswari, B.M.; Abdullah Alqadami, A.; Alshehri, S.M. Nickel Ferrite Bearing Nitrogen-Doped Mesoporous Carbon as Efficient Adsorbent for the Removal of Highly Toxic Metal Ion from Aqueous Medium. Chem. Eng. J. 2017, 330, 1351–1360. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Tay, W.J.D.; Hidajat, K.; Uddin, M.S. Fe3O4/Cyclodextrin Polymer Nanocomposites for Selective Heavy Metals Removal from Industrial Wastewater. Carbohydr. Polym. 2013, 91, 322–332. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Y.; Li, Z.; Feng, S.; Yang, R.; Qu, L. Detection, Detoxification, and Removal of Multiply Heavy Metal Ions Using a Recyclable Probe Enabled by Click and Declick Chemistry. J. Hazard. Mater. 2022, 423, 127242. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, H.; Wang, J.; Ling, Z.; Qiu, J. In Situ Synthesis of Chemically Active ZIF Coordinated with Electrospun Fibrous Film for Heavy Metal Removal with a High Flux. Sep. Purif. Technol. 2017, 177, 257–262. [Google Scholar] [CrossRef]
- Purbasari, A.; Ariyanti, D.; Sumardiono, S. Preparation and Application of Fly Ash-Based Geopolymer for Heavy Metal Removal. AIP Conf. Proc. 2020, 2197, 050006. [Google Scholar] [CrossRef]
- Li, K.; Li, J.-j.; Zhao, N.; Di, B.; Ma, Y.; Xu, L.-L. Synthesis, Crystal Structures and Properties of Five Novel Coordination Polymers and Application in Removing Heavy Metals from Water. Inorg. Chim. Acta 2020, 507, 119598. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J. Denitrification Performance and Biofilm Characteristics Using Biodegradable Polymers PCL as Carriers and Carbon Source. Chemosphere 2013, 91, 1310–1316. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J. Denitrification of Groundwater Using PHBV Blends in Packed Bed Reactors and the Microbial Diversity. Chemosphere 2016, 155, 463–470. [Google Scholar] [CrossRef]
- Nabid, M.R.; Sedghi, R.; Sharifi, R.; Oskooie, H.A.; Heravi, M.M. Removal of Toxic Nitrate Ions from Drinking Water Using Conducting Polymer/MWCNTs Nanocomposites. Iran. Polym. J. 2013, 22, 85–92. [Google Scholar] [CrossRef]
- Abousalman-Rezvani, Z.; Eskandari, P.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Synthesis of Coumarin-Containing Multi-Responsive CNC-Grafted and Free Copolymers with Application in Nitrate Ion Removal from Aqueous Solutions. Carbohydr. Polym. 2019, 225, 115247. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Wang, J.; Xu, S.; Yu, L.; Philippe, C.; Wintgens, T. Nitrate Removal from Water by New Polymeric Adsorbent Modified with Amino and Quaternary Ammonium Groups: Batch and Column Adsorption Study. J. Taiwan Inst. Chem. Eng. 2016, 66, 191–199. [Google Scholar] [CrossRef]
- Rajeswari, A.; Amalraj, A.; Pius, A. Adsorption Studies for the Removal of Nitrate Using Chitosan/PEG and Chitosan/PVA Polymer Composites. J. Water Process Eng. 2016, 9, 123–134. [Google Scholar] [CrossRef]
- Mukherjee, R.; De, S. Adsorptive Removal of Nitrate from Aqueous Solution by Polyacrylonitrile-Alumina Nanoparticle Mixed Matrix Hollow-Fiber Membrane. J. Memb. Sci. 2014, 466, 281–292. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Meez, E.; Kyzas, G.Z.; Torretta, V.; Collivignarelli, M.C.; Caccamo, F.M.; Deliyanni, E.A.; Katsoyiannis, I.A. A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. C—J. Carbon Res. 2021, 7, 74. [Google Scholar] [CrossRef]
- Jiang, T.F.; Chong, L.; Yue, M.E.; Wang, Y.H.; Lv, Z.H. Separation and Determination of Carbohydrates in Food Samples by Capillary Electrophoresis Using Dynamically Coating the Capillary with Indirect UV Detection. Food Anal. Methods 2015, 8, 2588–2594. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Xue, C.; Wen, T.; Wu, J.; Hong, J.; Zhou, X. Selective Separation and Enrichment of Glibenclamide in Health Foods Using Surface Molecularly Imprinted Polymers Prepared via Dendritic Grafting of Magnetic Nanoparticles. J. Sep. Sci. 2013, 36, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kan, J. Separation and Determination of Alkylamides from Prickly Ash Powder Using Molecularly Imprinting Technique. J. Food Compos. Anal. 2020, 86, 103387. [Google Scholar] [CrossRef]
- Bişgin, A.T.; Narin, I.; Uçan, M. Determination of Sunset Yellow (E110) in Foodstuffs and Pharmaceuticals after Separation and Preconcentration via Solid-Phase Extraction Method. Int. J. Food Sci. Technol. 2015, 50, 919–925. [Google Scholar] [CrossRef]
- Miao, J.; Liu, A.; Wu, L.; Yu, M.; Wei, W.; Liu, S. Magnetic Ferroferric Oxide and Polydopamine Molecularly Imprinted Polymer Nanocomposites Based Electrochemical Impedance Sensor for the Selective Separation and Sensitive Determination of Dichlorodiphenyltrichloroethane (DDT). Anal. Chim. Acta 2020, 1095, 82–92. [Google Scholar] [CrossRef]
- Aboufazeli, F.; Zhad, H.R.L.Z.; Sadeghi, O.; Karimi, M.; Najafi, E. Novel Ion Imprinted Polymer Magnetic Mesoporous Silica Nano-Particles for Selective Separation and Determination of Lead Ions in Food Samples. Food Chem. 2013, 141, 3459–3465. [Google Scholar] [CrossRef]
- Appell, M.; Jackson, M.A.; Wang, L.C.; Bosma, W.B. Determination of Citrinin Using Molecularly Imprinted Solid Phase Extraction Purification, HPLC Separation, and Fluorescence Detection. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1815–1819. [Google Scholar] [CrossRef]
- Aydoğan, C.; Karakoç, V.; Denizli, A. Chiral Ligand-Exchange Separation and Determination of Malic Acid Enantiomers in Apple Juice by Open-Tubular Capillary Electrochromatography. Food Chem. 2015, 187, 130–134. [Google Scholar] [CrossRef]
- Aydoğan, C. Chiral Separation and Determination of Amino Acid Enantiomers in Fruit Juice by Open-tubular Nano Liquid Chromatography. Chirality 2018, 30, 1144–1149. [Google Scholar] [CrossRef]
- Miller, C.E.; Eichinger, B.E. Determination of Crystallinity and Morphology of Fibrous and Bulk Poly(Ethylene Terephthalate) by Near-Infrared Diffuse Reflectance Spectroscopy. Appl. Spectrosc. 1990, 44, 496–504. [Google Scholar] [CrossRef]
- Bach, C.; Dauchy, X.; Etienne, S. Characterization of Poly(Ethylene Terephthalate) Used in Commercial Bottled Water. IOP Conf. Ser. Mater. Sci. Eng. 2009, 5, 012005. [Google Scholar] [CrossRef] [Green Version]
- De Cort, S.; Godts, F.; Moreau, A. Polyethylene Terephthalate (PET) for Food Packaging Applications. In Packaging Materials; Schuermans, J., Geurts, L., Eds.; International Life Sciences Institute: Brussels, Belgium, 2017; ISBN 9789078637448. [Google Scholar]
- Triantafyllou, V.I.; Karamani, A.G.; Akrida-Demertzi, K.; Demertzis, P.G. Studies on the Usability of Recycled PET for Food Packaging Applications. Eur. Food Res. Technol. 2002, 215, 243–248. [Google Scholar] [CrossRef]
- Tice, P. Polyethylene for Food Packaging Applications. In Packaging Materials; Yates, K., Ed.; International Life Sciences Institute: Brussels, Belgium, 2003; ISBN 1-57881-155-4. [Google Scholar]
- Gächter, R.; Müller, H. Plastics Additives Handbook: Stabilizers, Processing Aids, Plasticizers, Fillers, Reinforcements, Colorants for Thermoplastics, 4th ed.; Carl Hanser Verlag: Munich, Germany, 1987. [Google Scholar]
- Leadbitter, J. Polyvinyl Chloride (PVC) for Food Packaging Applications. In Packaging Materials; International Life Sciences Institute: Brussels, Belgium, 2003; ISBN 1-57881-161-9. [Google Scholar]
- Tice, P. Polypropylene as a Packaging Material for Foods and Beverages. In Packaging Materials; Yates, K., Ed.; International Life Sciences Institute: Brussels, Belgium, 2002; ISBN 1-57881-134-1. [Google Scholar]
- Yates, K. Polystyrene for Food Packaging Applications. In Packaging Materials; Yates, K., Ed.; International Life Sciences Institute: Brussels, Belgium, 2002; ISBN 1578811279. [Google Scholar]
- Sutter, J.; Dudler, V.; Meuwly, R. Printing Inks for Food Packaging Composition and Properties of Printing Inks. In Packaging Materials; Yates, K., Ed.; International Life Sciences Institute: Brussels, Belgium, 2011; ISBN 9789078637257. [Google Scholar]
- McCarthy, R.R.; Ullah, M.W.; Booth, P.; Pei, E.; Yang, G. The Use of Bacterial Polysaccharides in Bioprinting. Biotechnol. Adv. 2019, 37, 107448. [Google Scholar] [CrossRef] [PubMed]
- Toenniessen, M. Adhesives for Food Packaging Applications. In Packaging Materials; Geurts, L., Ed.; International Life Sciences Institute: Brussels, Belgium, 2018; ISBN 9789078637455. [Google Scholar]
- Ashley, R.J.; Cochran, M.A.; Allen, K.W. Adhesives in Packaging. Int. J. Adhes. Adhes. 1995, 15, 101–108. [Google Scholar] [CrossRef]
- Svensson, K.; Binderup, M.; Brede, C.; Fabech, B.; Hallikainien, A.; Hellstrøm, T.; Højslev-Petersen, J.; Sveinsdottir, S. Adhesives in Food Contact Materials and Articles: Proceedings from a Nordic Seminar. In Tema Nord Report; Nordic Council of Ministers: Copenhagen, Denmark, 2002; ISBN 92-893-0808-7. [Google Scholar]
- Aznar, M.; Vera, P.; Canellas, E.; Nerín, C.; Mercea, P.; Störmer, A. Composition of the Adhesives Used in Food Packaging Multilayer Materials and Migration Studies from Packaging to Food. J. Mater. Chem. 2011, 21, 4358–4370. [Google Scholar] [CrossRef]
- Vera, P.; Aznar, M.; Mercea, P.; Nerín, C. Study of Hotmelt Adhesives Used in Food Packaging Multilayer Laminates. Evaluation of the Main Factors Affecting Migration to Food. J. Mater. Chem. 2010, 21, 420–431. [Google Scholar] [CrossRef]
- Dhaka, V.; Singh, S.; Anil, A.G.; Sunil Kumar Naik, T.S.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P.C.; Singh, J. Occurrence, Toxicity and Remediation of Polyethylene Terephthalate Plastics. A Review. Environ. Chem. Lett. 2022, 20, 1777–1800. [Google Scholar] [CrossRef]
- Sridharan, S.; Kumar, M.; Saha, M.; Kirkham, M.B.; Singh, L.; Bolan, N.S. The Polymers and Their Additives in Particulate Plastics: What Makes Them Hazardous to the Fauna? Sci. Total Environ. 2022, 824, 153828. [Google Scholar] [CrossRef]
- What Are the Types of Plastic That Exist According to Their Ease of Recycling? Available online: https://www.nationalgeographic.com.es/ciencia/actualidad/tipos-plastico-segun-su-facilidad-reciclaje_12714 (accessed on 28 September 2022).
- Yuan, Z.; Nag, R.; Cummins, E. Ranking of Potential Hazards from Microplastics Polymers in the Marine Environment. J. Hazard. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, A.; Dave, G. Environmental and Health Hazard Ranking and Assessment of Plastic Polymers Based on Chemical Composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
Delivered Drug | Host Polymer | Comments | Ref. |
---|---|---|---|
Tocopherol | PP films modified with different chain extenders | In films with antioxidant activity, tocopherol is released as temperature and storage time increase. Chain extender migration tests fall within the European legislation’s values. | [22] |
Silver and titanium dioxide nanoparticles | PLA | Active agents, including Ag nanoparticles, TiO2 nanoparticles, and their combination were incorporated in various films to perform a proof of concept to test the life cycle. The results demonstrated that a film with both nanoparticles have fewer environmental effects. | [23] |
Nisin | EVOH-based nanofibers | Nisin release from the nanofiber was well controlled, following the Fickian diffusion model and showing improved antimicrobial effect against Staphylococcus aureus. | [24] |
Water soluble protein | PS | Water-soluble protein was encapsulated for the first time using hydrophobic PS. The authors used an electrospinning procedure, taking advantage of L-limonene for the controlled release of a model protein (BSA). | [25] |
Thymol | Blend of chitosan/quinoa protein | Antimicrobial activity was tested against Listeria innocua, S. aureus, Salmonella typhimurium, Enterobacter aerogenes, Pseudomonas aeruginosa, and Escherichia coli. | [26] |
Essential oils (carvacrol, thymol, and eugenol) | LLDPE-based active clay nanocomposite | Antimicrobial activity against E. coli was investigated in fresh beef and fermented Turkish-type sausages. The color of fresh meat was maintained for up to 4 days. | [27] |
Essential oils from clove bud and oregano | Methylcellulose | Both essential oils reduced the stiffness of methylcellulose films and reduced yeast and mold counts in sliced bread for 15 days. | [28] |
Olive oil and ginger oil | Composite (bacterial cellulose, carboxymethylcellulose, and glycerol) | The composite film’s antimicrobial activity was studied for nine weeks (at different temperatures) against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Trichosporon sp. | [29] |
Carvacrol and thymol | PP films | Compared to carvacrol, thymol showed higher antimicrobial activity, inhibiting bacterial growth in food. | [30] |
Anthocyanins and limonene | Starch/PVA | The system showed simultaneous color change and antimicrobial activity. The system revealed outstanding antimicrobial activity for Bacillus subtilis, Aspergillus niger, and S. aureus tested in pasteurized milk. | [31] |
Essential oils: clove leaf oil, sweet basil oil, and cinnamon bark oil. | LDPE/EVA blended films | The system was tested with sliced tomatoes and showed good inhibition % for E. coli and S. aureus. | [32] |
Ethanolic extracts of cinnamon, guarana, rosemary, and boldo-do-chile | Gelatin and chitosan | High growth inhibition % for E. coli and S. aureus | [33] |
Origanum vulgare L. essential oil | The films revealed a unique antimicrobial effect for common food pathogens: S. aureus, Listeria monocytogenes, Salmonella enteritidis, and E. coli. | [34] | |
Lignin | PVA and chitosan | The system showed Gram-negative bacterial growth inhibition against Erwinia carotovora subsp. carotovora and Xanthomonas arboricola pv. Pruni. | [35] |
Silver nanoparticles and organoclay (Cloisite 30B) | Gelatin | The nanocomposites demonstrated both Gram-positive and -negative food-borne pathogen inhibition. | [36] |
Target Ions | Type of Sensory Polymer | Comments | Ref. |
---|---|---|---|
Lead | Poly-melamine-formaldehyde polymer | The polymer has good porosity and thus a high surface area and density of functional groups (amine and triazine). It can rapidly diminish lead ions in water to trace levels (ppt). Other ions commonly found in drinking water do not present interference, such as Na+, K+, and Ca2+. The system was successfully tested with water in dynamic flow. The process is reversible, and the material can be reused. | [133] |
Arsenic | PAni/Fe0 composite | The maximum adsorption capabilities at pH 7.0 for As(III) and As(V) were 232.5 and 227.3 mg/g, respectively. HCO3−, SiO32−, and SO42− ions did not interfere with the removal, but NO3− and PO43− did. | [134] |
Poly(1-vinyl imidazole)-based IIP | Compared to a non-imprinted polymer, the relative selectivity coefficient of MIP for As3+/Cd2+, As3+/Zn2+, and As3+/Ni2+ were respectively 45.93, 131.01, and 262.63 times greater. | [135] | |
Copper | 2-thiozylmethacrylamide-based IIP | Quantitative retention was achieved between pH 5.0 and 6.0. | [136] |
Cadmium | IIPs containing magnetic nanoparticles | Tested in the extraction of cadmium ions from food samples (shrimp, fish, crab, persimmon, apple, tomato, mushroom, and potato) | [137] |
Cadmium and lead | Poly(2-(diethylamino) ethyl metacrilate) containing 8-hydroxyquinoline motifs | Quantitative retention was achieved at pH 8.5. | [78] |
Mercury | Copolymer of N-vinylpyrrolidone, methylmethacrylate, and a monomer containing dithizone motifs | 86% removal | [81] |
Polyvinylidene fluoride membrane with blended MoS2 nanosheets | The most favorable pH values for mercury ion removal were 4.5–6.0. Maximum adsorption capacity = 578 mg g−1 | [138] | |
Fluorescent supramolecular polymer; thymine-modified [2]biphenyl-extended version of pillarene | The pillarene serves as host by an easy supramolecular assembly aided by an AIEgen-bridged quaternary ammonium guest. | [139] | |
Amorphous porous aromatic framework | Mercury uptake capability of over 1000 mg g−1, and the system can efficiently diminish the mercury(II) content from 10 ppm to 0.4 ppb. Removal efficiency = >99.9%. | [140] | |
Water-stable metal–organic framework/polymer based on Fe-1,3,5-benzenetricarboxylate and polydopamine | The material binds up to 1634 mg of Hg(II) and 394 mg of Pb2+ per gram of composite. Removal % = 99.8% from a 1 ppm solution, with no interference from Na+ ions; it is resistant to fouling when tested with humic acid and is fully regenerable over many cycles. | [141] | |
Urea–formaldehyde polymer containing polymer bimetal complexes (nickel ferrite bearing nitrogen-doped mesoporous carbon) | NiFe2O4-NC had a high Brunauer–Emmett–Teller surface area (147.4 m2 g−1), and the particles were in the range of 8 to 10 nm. The maximum adsorption capacity was 476.2 mg g−1 at 25 °C. | [142] | |
Lead Cadmium Niquel | Modified Fe3O4 nanoparticles modified with carboxymethyl-β-cyclodextrin polymer | In non-competitive adsorption mode at 25 °C, the maximum Pb2+, Cd2+, and Ni2+ uptakes were 64.5, 27.7, and 13.2 mg g−1, respectively, at 25 °C. | [143] |
Zinc Cadmium Nickel Mercury Cobalt Copper | Polymer beads containing DMPS–Si-pyronine-based fluorescent probe (DMPS = 2,3-dimercapto-1-propanesulfonic sodium) | The system is valid for determining, detoxifying, and eliminating heavy metal ions. The percent of detection, removal, and detoxification are 98.10%, 97.59%, and 65.55%, respectively. The system could be recycled 10 times. | [144] |
Chromium Mercury Copper Cadmium | Polymer film based on electrospun polyacrylonitrile containing a zeolitic imidazolate framework-8 | The capability for heavy metal removal improved up to three times compared to pure polyacrylonitrile films. Removal efficiency of 99.5% | [145] |
Copper Iron Manganese Zinc | Fly ash-based geopolymer | The ashes contain mainly alumino-silicate oxide from coal combustion. Basically, it is an inorganic polymer with Si-O-Al polymeric bonds, with an amorphous to semi-crystalline structure. | [146] |
Zinc Iron Nickel Copper | Coordination polymers (porous materials composed of various metals and suitable organic ligands) | Adsorption efficiency up to 99% and adsorption capability up to 348 mg/g | [147] |
Manufacturing Technology | Format | Applications |
---|---|---|
Injection, stretch blow, molding | Bottles Wide-mouth jars and tubs |
|
Thermoforming | Trays | They are used in precooked products, ideal for heating for a few minutes in a microwave oven, such as precooked pizzas. |
Films | Films and metalized foils | These films are used in the manufacturing of packaging for snacks, nuts, sweets, ice cream, etc. On many occasions, it is part of a multilayer. |
Monomers and Additives | Specific Migration Limit (SML) | Function |
---|---|---|
Terephthalic acid (PTA) | 7.5 mg/kg | Monomer |
Terephthalic acid, dimethyl ester (DMT) | No SML | |
Isophthalic acid (IPA) | 5 mg/kg | Additive to enhance processing and performance |
Ethylene glycol (EG) | 30 mg/kg (Alone or with diethylene glycol or stearic acid esters of ethylene glycol) | Monomer |
Diethylene glycol (DEG) | ||
1,4-Bis(hydroxymethyl)cyclohexane (CHDM) | No SML | Additive to enhance processing and performance |
Antimony trioxide | 0.04 mg/kg, expressed as antimony | Catalyst |
Manufacturing Technology | Product | Applications |
---|---|---|
Cast and oriented processes | Films |
|
Extrusion coating | Multilayer |
|
Thermoforming and blow molding | Bottles and other containers |
|
Miscellaneous | Film bags, heat-sealed overwrapping film, and container liners for bulk transport |
|
Monomers and Additives | Specific Migration Limit (SML) | Function |
---|---|---|
Pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxphenyl)propionate] | None | Antioxidant |
Octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl)propionate | SML = 6 mg/kg | |
Phosphorous acid, tri (2,4-di-tert-butylphenyl) ester | None | |
Erucamide, oleamide, and stearamide | None | Slip agent |
Calcium carbonate, talc, and titanium dioxide | None | Fillers |
Glycerol monostearate | None | Anti-static agent |
N,N-bis(2-hydroxyethyl)alkyl(C8-C18) amine hydrochlorides | SML (T) = 1.2 mg/kg (expressed as N,N-bis(2- hydroxyethyl)alkyl(C8-C18) amine) |
Manufacturing Technology | Product | Applications |
---|---|---|
1°. Extrusion into thermoformed sheet. 2°. Thermoforming process | Trays and containers | Extended-shelf-life food trays, general-purpose food trays, and collation or straight-on-shelf display trays (PVC-U) |
Blow-molding | Bottles | Container for liquids and drinks |
Blow-film extrusion | Flexible film | Food preservation in supermarkets and domestic kitchens (PVC-P) |
Emulsion polymerization | Coating | Adhesives for closures and can linings. These formulations are known as PVC “plastisols”. |
Extrusion | Tubes | Hose and tubing. Transport of soft drinks and beers, etc. |
Monomers and/or Additives | Specific Migration Limit—SML (mg/kg) According to 2002/72/EC | Function |
---|---|---|
Organo–tin compounds | Mono octyl = 1.2 Di octyl = 0.04 Di methyl = 0.18 (SML(T) expressed as tin) | Stabilizer for PVC-U |
Calcium/zinc stearates | No restriction | Stabilizer for PVC-U and PVC-P |
Methylmethacrylate butadiene/styrene | (Polymeric additive) | Impact modifier for PVC-U |
Acrylate | (Polymeric additive) | Processing aid for PVC-U |
Glycerol monooleate | No restriction | Lubricant in PVC-U |
PE wax | (Polymeric additive) | Lubricant in PVC-U |
Stearic acid | No restriction | Lubricant in PVC-P |
White mineral oil | No restriction | Lubricant in PVC-P |
Adipate | Di-2 ethylhexyl adipate = 18 Polymeric = 30 | Plasticiser for PVC-P |
Epoxidised soya bean oil | No restriction | Plasticiser for PVC-P |
Monomers and/or Additives | Specific Migration Limit—SML (mg/kg) According to 2002/72/EC | Function |
---|---|---|
Pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxphenyl)propionate]—antioxidant, commercial name Irganox 1010 | None | Antioxidant |
Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate– antioxidant, commercial name Irganox 1076 | SML = 6 mg/kg | Antioxidant |
White mineral oils | Specification | Processing aids and flow promoters |
Zinc stearate | SML = 25 mg/kg, zinc stearate group, expressed as zinc. | Mold release agent |
PVOH | Casein (Natural Polymer) | Starch (Natural Polymer) | Cellulose (Natural Polymer) | PU (Reactive Adhesive) | PVAc (Dispersions/ Emulsions) | Acrylic Polymers and EVA | Coldseals (latex) | Heatseals | Hotmelt Adhesives | Hotmelt PRESSURE Sensitive Adhesive (PSA) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Flexible packaging | X Paper to foil laminating | X Laminating | X Laminating | X Sealing | X Pharma blister sealing; lidding for dairy products; trays | X Reclosable lidding for trays | |||||
Folding boxes | X | X | X | X | X | ||||||
Three-layer laminates (Substrate 1/Adhesive/Substrate 2) | X Paper/paper | X PA/PE PET/PE | X CB/CB | X Paper/PP Paper/PET CB/CB | X CB/CB | ||||||
Cardboard closing | X | X | |||||||||
Sacks and bags | X | X | X | X | Bag closure | X | X | ||||
Labeling | X | X | In mold labeling | X | X | ||||||
Tissue and towels | X | X | X | X | |||||||
Sealing packaging | X Chocolate bars ice cream | X Lidding on aluminum, glass paper pouches | X | ||||||||
Tapes and PSA labels | X | X |
Plastic | Recycling Codes | Ease of Recycling |
---|---|---|
PET | 1 | Easy |
HDPE | 2 | Easy |
PVC | 3 | Very difficult |
LDPE | 4 | Feasible |
PP | 5 | Feasible |
PS | 6 | Difficult |
Others | 7 | Very difficult |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallejos, S.; Trigo-López, M.; Arnaiz, A.; Miguel, Á.; Muñoz, A.; Mendía, A.; García, J.M. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers 2022, 14, 4954. https://doi.org/10.3390/polym14224954
Vallejos S, Trigo-López M, Arnaiz A, Miguel Á, Muñoz A, Mendía A, García JM. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers. 2022; 14(22):4954. https://doi.org/10.3390/polym14224954
Chicago/Turabian StyleVallejos, Saúl, Miriam Trigo-López, Ana Arnaiz, Álvaro Miguel, Asunción Muñoz, Aránzazu Mendía, and José Miguel García. 2022. "From Classical to Advanced Use of Polymers in Food and Beverage Applications" Polymers 14, no. 22: 4954. https://doi.org/10.3390/polym14224954
APA StyleVallejos, S., Trigo-López, M., Arnaiz, A., Miguel, Á., Muñoz, A., Mendía, A., & García, J. M. (2022). From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers, 14(22), 4954. https://doi.org/10.3390/polym14224954