The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. HRP Purification
2.4. Periodate Oxidation of HRP and HRP-C
2.5. Biomimetic Mineralization Experiments
2.6. Activity Measurements
2.7. Thermal Stability
3. Results
3.1. Purification, Oxidation, and Zeta Potential of HRP Samples
3.2. Biomimetic Mineralization of HRP Samples
3.3. Performance Parameters of Biocomposites
3.4. Thermostability Studies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Welinder, K.G. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur. J. Biochem. 1985, 151, 497–504. [Google Scholar] [CrossRef]
- Klibanov, A.M.; Berman, Z.; Alberti, B.N. Preparative Hydroxylation of Aromatic Compounds Catalyzed by Peroxidase. J. Am. Chem. Soc. 1981, 103, 6263–6264. [Google Scholar] [CrossRef]
- Klibanov, A.M.; Tu, T.M.; Scott, K.P. Peroxidase-Catalyzed Removal of Phenols from Coal-Conversion Waste Waters. Science 1983, 221, 259–261. [Google Scholar] [CrossRef]
- Ghodsi, J.; Rafati, A.A.; Shoja, Y. First Report on Electrocatalytic Oxidation of Oxytetracycline by Horse Radish Peroxidase: Application in Developing a Biosensor to Oxytetracycline Determination. Sens. Actuators B Chem. 2015, 224, 692–699. [Google Scholar] [CrossRef]
- Yang, S.; Yi, X.; Mao, X.; Liu, Y.; Zhang, S.; Li, Y. Integrated Immunoassay-Based Broad Detection of Multi-Class Mycotoxins. Food Agric. Immunol. 2018, 29, 615–624. [Google Scholar] [CrossRef]
- Marquette, C.A.; Blum, L.J. Chemiluminescent enzyme immunoassays: A review of bioanalytical applications. Bioanalysis 2009, 1, 1259–1269. [Google Scholar] [CrossRef]
- Urrea, D.A.M.; Gimenez, A.V.F.; Rodriguez, Y.E.; Contreras, E.M. Immobilization of Horseradish Peroxidase in Ca-Alginate Beads: Evaluation of the Enzyme Leakage on the Overall Removal of an Azo-Dye and Mathematical Modeling. Process. Saf. Environ. Prot. 2021, 156, 134–143. [Google Scholar] [CrossRef]
- Pantić, N.; Spasojević, M.; Stojanović, Ž.; Veljović, Đ.; Krstić, J.; Balaž, A.M.; Prodanović, R.; Prodanović, O. Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. J. Polym. Environ. 2022, 30, 1–16. [Google Scholar] [CrossRef]
- Pantić, N.; Prodanović, R.; Đurđić, K.I.; Polović, N.; Spasojević, M.; Prodanović, O. Optimization of Phenol Removal with Horseradish Peroxidase Encapsulated within Tyramine-Alginate Micro-Beads. Environ. Technol. Innov. 2020, 21, 101211. [Google Scholar] [CrossRef]
- Prodanovic, O.; Spasojevic, D.; Prokopijevic, M.; Radotic, K.; Markovic, N.; Blazic, M.; Prodanovic, R. Tyramine Modified Alginates via Periodate Oxidation for Peroxidase Induced Hydrogel Formation and Immobilization. React. Funct. Polym. 2015, 93, 77–83. [Google Scholar] [CrossRef]
- Wang, L.; Zhi, W.; Lian, D.; Wang, Y.; Han, J.; Wang, Y. HRP@ZIF-8/DNA Hybrids: Functionality Integration of ZIF-8 via Biomineralization and Surface Absorption. ACS Sustain. Chem. Eng. 2019, 7, 14611–14620. [Google Scholar] [CrossRef]
- Liang, W.; Wied, P.; Carraro, F.; Sumby, C.J.; Nidetzky, B.; Tsung, C.-K.; Falcaro, P.; Doonan, C.J. Metal–Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121, 1077–1129. [Google Scholar] [CrossRef] [PubMed]
- Maddigan, N.K.; Tarzia, A.; Huang, D.M.; Sumby, C.J.; Bell, S.G.; Falcaro, P.; Doonan, C.J. Protein Surface Functionalisation as a General Strategy for Facilitating Biomimetic Mineralisation of ZIF-8. Chem. Sci. 2018, 9, 4217–4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanišić, M.D.; Kokar, N.P.; Ristić, P.; Balaž, A.M.; Senćanski, M.; Ognjanović, M.; Ðokić, V.R.; Prodanović, R.; Todorović, T.R. Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. Polymers 2021, 13, 3875. [Google Scholar] [CrossRef]
- Krainer, F.W.; Glieder, A. An updated view on horseradish peroxidases: Recombinant production and biotechnological applications. Appl. Microbiol. Biotechnol. 2015, 99, 1611–1625. [Google Scholar] [CrossRef] [Green Version]
- Hiner, A.N.P.; Hernandez-Ruiz, J.; Rodriguez-Lopez, J.N.; Arnao, M.B.; Varon, R.; Garcia-Canovas, F.; Acosta, M. The inactivation of horseradish peroxidase isoenzyme A2 by hydrogen peroxide: An example of partial resistance due to the formation of a stable enzyme intermediate. J. Biol. Inorg. Chem. 2021, 6, 504–516. [Google Scholar] [CrossRef]
- Hoyle, M.C. High resolution of peroxidase-indoleacetic acid oxidase isoenzymes from horseradish by isoelectric focusing. Plant Physiol. 1977, 60, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Illanes, A.; Fernández-Lafuente, R.; Guisán, J.M.; Wilson, L. Heterogeneous Enzyme Kinetics. In Enzyme Biocatalysis, 1st ed.; Illanes, A., Ed.; Springer: Dordrecht, The Netherlands, 2008; Chapter 4; pp. 155–203. [Google Scholar]
- Shannon, L.M.; Kay, E.; Lew, J.Y. Peroxidase Isozymes from Horseradish Roots: I. Isolation and Physical Properties. J. Biol. Chem. 1966, 241, 2166–2172. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques, 2nd ed.; Elsevier Inc.: London, UK, 2008; pp. 129–130. [Google Scholar]
- Velásquez-Hernández, M.D.J.; Ricco, R.; Carraro, F.; Limpoco, F.T.; Linares-Moreau, M.; Leitner, E.; Wiltsche, H.; Rattenberger, J.; Schröttner, H.; Frühwirt, P.; et al. Degradation of ZIF-8 in Phosphate Buffered Saline Media. CrystEngComm 2019, 21, 4538–4544. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Ricco, R.; Maddigan, N.K.; Dickinson, R.P.; Xu, H.; Li, Q.; Sumby, C.J.; Bell, S.G.; Falcaro, P.; Doonan, C.J. Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. Chem. Mater. 2018, 30, 1069–1077. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Tan, H.; Ma, Y.; Li, Y. In Situ Encapsulation of Horseradish Peroxidase in Zeolitic Imidazolate Framework–8 Enables Catalyzing Luminol Reaction under near-Neutral Conditions for Sensitive Chemiluminescence Determination of Cholesterol. Microchim. Acta 2020, 187, 346. [Google Scholar] [CrossRef]
- Ren, Q.Q.; Yang, F.; Ren, W.; Wang, C.; Jiang, W.S.; Zhao, Z.Y.; Chen, J.; Lu, X.Y.; Yu, Y. Amperometric Biosensor Based on Coimmobilization of Multiwalled Carbon Nanotubes and Horseradish Peroxidase-Gold Nanocluster Bioconjugates for Detecting H2O2. J. Nanomater. 2020, 2020, 627697. [Google Scholar] [CrossRef]
- Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; et al. Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules. Nat. Commun. 2015, 6, 7240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Liang, J.; Mohammad, M.I.B.; Lv, D.; Cao, Y.; Qi, J.; Liang, K.; Ma, J. Biocatalytic Metal–Organic Framework Membrane towards Efficient Aquatic Micropollutants Removal. Chem. Eng. J. 2021, 426, 131861. [Google Scholar] [CrossRef]
- Prodanović, R.M.; Simić, M.B.; Vujčić, Z.M. Immobilization of periodate oxidized invertase by adsorption on sepiolite. J. Serb. Chem. Soc. 2003, 68, 819–82. [Google Scholar] [CrossRef]
Sample | Specific Activity (U/mg) Phosphate Buffer (pH 6.0) | Specific Activity (U/mg) Acetate Buffer (pH 5.5) |
---|---|---|
HRP | 18.83 ± 0.80 | 13.75 ± 0.58 |
ox-HRP (2.5 mM NaIO4) | 2.89 ± 0.21 | 2.17 ± 0.17 |
HRP-C | 81.80 ± 4.42 | 64.42 ± 3.30 |
ox-HRP-C (2.5 mM NaIO4) | 49.52 ± 3.10 | 41.25 ± 2.60 |
Sample | Zeta Potential (mV) |
---|---|
HRP | −26.7 ± 2.6 |
HRP in Zn(II) solution | +2.82 ± 0.75 |
HRP in HmIM solution | −28.1 ± 3.6 |
ox-HRP (2.5 mM NaIO4) | −46.7 ± 4.6 |
ox-HRP (5.0 mM NaIO4) | −40.2 ± 5.9 |
ox-HRP (50.0 mM NaIO4) | −34.4 ± 3.8 |
ox-HRP in Zn(II) solution | +2.72 ± 0.84 |
ox-HRP in HmIM solution | −24.4 ± 3.2 |
HRP-C | −27.3 ± 3.4 |
HRP-C in Zn(II) solution | −2.84 ± 1.15 |
HRP-C in HmIM solution | −29.1 ± 2.6 |
ox-HRP-C | −47.5 ± 5.2 |
ox-HRP-C in Zn(II) solution | +2.84 ± 1.24 |
ox-HRP-C in HmIM solution | −23.8 ± 2.7 |
Parameter | HRP@ZIF-8 | ox-HRP@ZIF-8 | HRP-C@ZIF-8 | ox-HRP-C@ZIF-8 |
---|---|---|---|---|
Yactivity balance | <0.01 | 0.76 ± 0.05 | 0.09 ± 0.05 | 0.97 ± 0.01 |
(<0.01) | (0.75 ± 0.05) | (0.09 ± 0.04) | (0.97 ± 0.01) | |
Yprotein balance | 0.49 ± 0.05 | 0.77 ± 0.06 | 0.23 ± 0.01 | 0.97 ± 0.02 |
(0.27 ± 0.07) | (0.71 ± 0.01) | (0.11 ± 0.08) | (0.54 ± 0.21) | |
Ploading (mg/gcarrier) | 57.52 ± 3.37 | 90.39 ± 6.01 | 27.01 ± 9.51 | 76.10 ± 5.59 |
(38.01 ± 7.70) | (83.11 ± 1.49) | (10.61 ± 6.63) | (43.28 ± 18.19) | |
Specific activity (U/gbiocomposite) | 0.61 ± 0.06 | 125.37 ± 3.06 | 3.48 ± 2.55 | 49.92 ± 13.95 |
(0.40 ± 0.05) | (62.80 ± 5.82) | (2.20 ± 0.33) | (47.16 ± 15.41) | |
Specific activity (U/mgenzyme bound) | <0.01 | 1.39 ± 0.08 | 0.12 ± 0.04 | 0.66 ± 0.21 |
(<0.01) | (0.76 ± 0.04) | (0.26 ± 0.16) | (1.43 ± 1.21) | |
η × 100 (%) | <0.07 | 64.06 ± 4.05 | 0.19 ± 0.05 | 1.60 ± 0.52 |
(<0.07) | (35.02 ± 3.15) | (0.40 ± 0.07) | (3.47 ± 0.32) |
Parameter | HRP@ZIF-8 | ox-HRP@ZIF-8 | HRP-C@ZIF-8 | ox-HRP-C@ZIF-8 |
---|---|---|---|---|
Residual activity (%) of samples washed with water | 64.20 ± 20.34 | 57.61 ± 28.84 | 35.18 ± 12.52 | 102.32 ± 22.07 |
Residual activity (%) of samples washed with water and 1 M NaCl | 55.78 ± 7.94 | 41.71 ± 6.86 | 20.81 ± 2.60 | 119.50 ± 3.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanišić, M.D.; Popović Kokar, N.; Ristić, P.; Balaž, A.M.; Ognjanović, M.; Đokić, V.R.; Prodanović, R.; Todorović, T.R. The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. Polymers 2022, 14, 4834. https://doi.org/10.3390/polym14224834
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Ognjanović M, Đokić VR, Prodanović R, Todorović TR. The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. Polymers. 2022; 14(22):4834. https://doi.org/10.3390/polym14224834
Chicago/Turabian StyleStanišić, Marija D., Nikolina Popović Kokar, Predrag Ristić, Ana Marija Balaž, Miloš Ognjanović, Veljko R. Đokić, Radivoje Prodanović, and Tamara R. Todorović. 2022. "The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance" Polymers 14, no. 22: 4834. https://doi.org/10.3390/polym14224834