Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Compounding
2.2. Vulcanization and Testing
2.2.1. Rheometric Properties
2.2.2. Vulcanization
2.2.3. Crosslink Density
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.2.6. Thermogravimetric Analysis (TGA)
2.2.7. Scanning Electron Microscopy (SEM)
2.2.8. Hardness
2.2.9. Tensile Test
2.2.10. Self-Healing Protocol
3. Results and Discussion
3.1. Novel TPEs Reinforced with Alginate
3.1.1. Optimization of Processing Variables
3.1.2. Effects of the A and ZnO Contents
3.1.3. Mechanical Performance of TPEs Reinforced with A and ZnO
3.2. Effect of the Cation on the Reinforcement Effect of Alginates
Mechanical Performance of TPEs Reinforced with Na-A and Ca-A
3.3. Self-Healing Performance of Reinforced TPEs
Self-Healing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Sphere. Los Plásticos Son Clave Para Alcanzar Los Objetivos de Desarrollo Sostenible (ODS) de Las Naciones Unidas Del Eje Medioambiental. Available online: https://www.sphere-spain.es/los-plasticos-son-clave-para-alcanzar-los-objetivos-de-desarrollo-sostenible-ods-de-las-naciones (accessed on 30 July 2022).
- Ikeda, Y.; Kato, A.; Kohjiya, S.; Nakajima, Y. Rubber Science: A Modern Approach; Springer: Singapore, 2018; pp. 1–220. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Sustainable Mobility: The Route of Tires through the Circular Economy Model. Waste Manag. 2021, 126, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Asaro, L.; Gratton, M.; Seghar, S.; Aït Hocine, N. Recycling of Rubber Wastes by Devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Piskorz, J.; Majerski, P.; Radlein, D.; Wik, T.; Scott, D.S. Recovery of Carbon Black from Scrap Rubber. Energy Fuels 1999, 13, 544–551. [Google Scholar] [CrossRef]
- Lonca, G.; Muggeo, R.; Imbeault-Tetreault, H.; Bernard, S.; Margni, M. Does Material Circularity Rhyme with Environmental Efficiency? Case Studies on Used Tires. J. Clean Prod. 2018, 183, 424–435. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Manzanares, R.V.; Araujo-Morera, J.; González, S.; Verdejo, R.; López-Manchado, M.Á.; Santana, M.H. Understanding the Molecular Dynamics of Dual Crosslinked Networks by Dielectric Spectroscopy. Polymers 2021, 13, 3234. [Google Scholar] [CrossRef]
- Aldhufairi, H.S.; Olatunbosun, O.A. Developments in Tyre Design for Lower Rolling Resistance: A State of the Art Review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1865–1882. [Google Scholar] [CrossRef]
- van Beilen, J.B.; Poirier, Y. Guayule and Russian Dandelion as Alternative Sources of Natural Rubber. Crit. Rev. Biotechnol. 2007, 27, 217–231. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (Gtr)/Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Hernández Santana, M.; Verdejo, R.; López-Manchado, M.A. Design of Rubber Composites with Autonomous Self-Healing Capability. ACS Omega 2020, 5, 1902–1910. [Google Scholar] [CrossRef]
- Wilson, G.O.; Andersson, H.M.; White, S.R.; Sottos, N.R.; Moore, J.S.; Braun, P.V. Self-Healing Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–33. ISBN 9781118633892. [Google Scholar]
- Yang, Y.; Ding, X.; Urban, M.W. Chemical and Physical Aspects of Self-Healing Materials. Prog. Polym. Sci. 2015, 49–50, 34–59. [Google Scholar] [CrossRef]
- Sattar, M.A.; Patnaik, A. Design Principles of Interfacial Dynamic Bonds in Self-Healing Materials: What Are the Parameters? Chem. Asian J. 2020, 15, 4215–4240. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.A.; Georgopoulou, A.; George Thuruthel, T.; Safaei, A.; Ferrentino, P.; et al. A Review on Self-Healing Polymers for Soft Robotics. Mater. Today 2021, 47, 187–205. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers. Int. J. Mol. Sci. 2022, 23, 4757. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Evolution of Self-Healing Elastomers, from Extrinsic to Combined Intrinsic Mechanisms: A Review. Mater. Horiz. 2020, 7, 2882–2902. [Google Scholar] [CrossRef]
- Das, M.; Pal, S.; Naskar, K. Exploring Various Metal-Ligand Coordination Bond Formation in Elastomers: Mechanical Performance and Self-Healing Behavior. Express. Polym. Lett. 2020, 14, 860–880. [Google Scholar] [CrossRef]
- Mandal, S.; Simon, F.; Banerjee, S.S.; Tunnicliffe, L.B.; Nakason, C.; Das, C.; Das, M.; Naskar, K.; Wiessner, S.; Heinrich, G.; et al. Controlled Release of Metal Ion Cross-Linkers and Development of Self-Healable Epoxidized Natural Rubber. ACS Appl. Polym. Mater. 2021, 3, 1190–1202. [Google Scholar] [CrossRef]
- Huang, J.; Cao, L.; Yuan, D.; Chen, Y. Design of Novel Self-Healing Thermoplastic Vulcanizates Utilizing Thermal/Magnetic/Light-Triggered Shape Memory Effects. ACS Appl. Mater. Interfaces 2018, 10, 40996–41002. [Google Scholar] [CrossRef]
- Huang, J.; Gong, Z.; Peng, T.; Cao, L.; Chen, Y. Design of Thermoplastic Vulcanizates Induced by Metal-Ligand Coordination towards Enhanced Mechanical Properties and Shape Memory Behavior. Compos. Commun. 2020, 22, 100444. [Google Scholar] [CrossRef]
- Lai, S.M.; Liu, J.L.; Huang, Y.H. Preparation of Self-Healing Natural Rubber/Polycaprolactone (NR/PCL) Blends. J. Macromol. Sci. Part B Phys. 2020, 59, 587–607. [Google Scholar] [CrossRef]
- Huang, J.; Gong, Z.; Chen, Y. A Stretchable Elastomer with Recyclability and Shape Memory Assisted Self-Healing Capabilities Based on Dynamic Disulfide Bonds. Polymer 2022, 242, 124569. [Google Scholar] [CrossRef]
- Liang, P.; Yang, S.; Ouyang, X.; Hong, H.; Jiao, Y. Improvement in Mechanical Properties of NBR/AO60/MMT Composites by Surface Hydrogen Bond. Polym. Compos. 2020, 41, 2169–2180. [Google Scholar] [CrossRef]
- AlKhatib, H.S.; Taha, M.O.; Aiedeh, K.M.; Bustanji, Y.; Sweileh, B. Synthesis and in Vitro Behavior of Iron-Crosslinked N-Methyl and N-Benzyl Hydroxamated Derivatives of Alginic Acid as Controlled Release Carriers. Eur. Polym. J. 2006, 42, 2464–2474. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, X.Z. Thermal Decomposition Analysis of Co2+ Content Alginic Acid Cross-Linked Structure for the Synthesis of Cobalt Oxides. Mater. Today Commun. 2021, 29, 102879. [Google Scholar] [CrossRef]
- Ibarra, L.; Alzorriz, M. Ionic Elastomers Based on Carboxylated Nitrile Rubber and Calcium Oxide. J. Appl. Polym. Sci. 2003, 87, 805–813. [Google Scholar] [CrossRef]
- González-Jiménez, A.; Malmierca, M.A.; Bernal-Ortega, P.; Posadas, P.; Pérez-Aparicio, R.; Marcos-Fernández, Á.; Mather, P.T.; Valentín, J.L. The Shape-Memory Effect in Ionic Elastomers: Fixation through Ionic Interactions. Soft Matter 2017, 13, 2983–2994. [Google Scholar] [CrossRef]
- Bornstein, D.; Pazur, R.J. The Sulfur Reversion Process in Natural Rubber in Terms of Crosslink Density and Crosslink Density Distribution. Polym. Test. 2020, 88, 106524. [Google Scholar] [CrossRef]
- Jacob, M.; Thomas, S.; Varughese, K.T. Mechanical Properties of Sisal/Oil Palm Hybrid Fiber Reinforced Natural Rubber Composites. Compos. Sci. Technol. 2004, 64, 955–965. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; ISBN 0470093072. [Google Scholar]
- Sabater i Serra, R.; Molina-Mateo, J.; Torregrosa-Cabanilles, C.; Andrio-Balado, A.; Dueñas, J.M.M.; Serrano-Aroca, Á. Bio-Nanocomposite Hydrogel Based on Zinc Alginate/Graphene Oxide: Morphology, Structural Conformation, Thermal Behavior/Degradation, and Dielectric Properties. Polymers 2020, 12, 702. [Google Scholar] [CrossRef]
- Cao, L.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Egg-Box Model-Based Gelation of Alginate and Pectin: A Review. Carbohydr. Polym. 2020, 242, 116389. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.M.; Pal, R.; Moon, G.Y. Characteristics of Sodium Alginate Membranes for the Pervaporation Dehydration of Ethanol–Water and Isopropanol–Water Mixtures. J. Membr. Sci. 1999, 160, 101–113. [Google Scholar] [CrossRef]
- Straccia, M.C.; D’Ayala, G.G.; Romano, I.; Laurienzo, P. Novel Zinc Alginate Hydrogels Prepared by Internal Setting Method with Intrinsic Antibacterial Activity. Carbohydr. Polym. 2015, 125, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Utrera-Barrios, S.; Araujo-Morera, J.; Pulido de Los Reyes, L.; Verdugo Manzanares, R.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. An Effective and Sustainable Approach for Achieving Self-Healing in Nitrile Rubber. Eur. Polym. J. 2020, 139, 110032. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Utrera-Barrios, S.; Olivares, R.D.; Verdugo Manzanares, R.; López-Manchado, M.Á.; Verdejo, R.; Hernández Santana, M. Solving the Dichotomy between Self-Healing and Mechanical Properties in Rubber Composites by Combining Reinforcing and Sustainable Fillers. Macromol. Mater. Eng. 2022, 307, 2200261. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, B.L.; Li, R.W.; Zhang, Q. Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 2021, 6, 9319–9333. [Google Scholar] [CrossRef]
- Wemyss, A.M.; Bowen, C.; Plesse, C.; Vancaeyzeele, C.; Nguyen, G.T.M.; Vidal, F.; Wan, C. Dynamic Crosslinked Rubbers for a Green Future: A Material Perspective. Mater. Sci. Eng. R Rep. 2020, 141, 100561. [Google Scholar] [CrossRef]
- Tierney, N.K.; Register, R.A. Ion Hopping in Ethylene-Methacrylic Acid Ionomer Melts as Probed by Rheometry and Cation Diffusion Measurements. Macromolecules 2002, 35, 2358–2364. [Google Scholar] [CrossRef]
- Miwa, Y.; Kurachi, J.; Sugino, Y.; Udagawa, T.; Kutsumizu, S. Toward Strong Self-Healing Polyisoprene Elastomers with Dynamic Ionic Crosslinks. Soft Matter 2020, 16, 3384–3394. [Google Scholar] [CrossRef]
Ingredients | A0 | A10 | A10Z2 | A10Z3 | A10Z5 |
---|---|---|---|---|---|
ENR 25 | 100 | 100 | 100 | 100 | 100 |
PCL | 42.86 | 42.86 | 42.86 | 42.86 | 42.86 |
A | 0 | 10 | 10 | 10 | 10 |
ZnO | 0 | 0 | 2 | 3 | 5 |
DCP | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Ingredients | A0Z5 | A2.5Z5 | A5Z5 | A10Z5 |
---|---|---|---|---|
ENR 25 | 100 | 100 | 100 | 100 |
PCL | 42.86 | 42.86 | 42.86 | 42.86 |
A | 0 | 2.5 | 5 | 10 |
ZnO | 5 | 5 | 5 | 5 |
DCP | 0.8 | 0.8 | 0.8 | 0.8 |
Ingredients | X2.5 | X5 | X10 | X15 | X20 |
---|---|---|---|---|---|
ENR 25 | 100 | 100 | 100 | 100 | 100 |
PCL | 42.86 | 42.86 | 42.86 | 42.86 | 42.86 |
Na-A/Ca-A (X) | 2.5 | 5 | 10 | 15 | 20 |
DCP | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utrera-Barrios, S.; Ricciardi, O.; González, S.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers 2022, 14, 4607. https://doi.org/10.3390/polym14214607
Utrera-Barrios S, Ricciardi O, González S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers. 2022; 14(21):4607. https://doi.org/10.3390/polym14214607
Chicago/Turabian StyleUtrera-Barrios, Saul, Ornella Ricciardi, Sergio González, Raquel Verdejo, Miguel Ángel López-Manchado, and Marianella Hernández Santana. 2022. "Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates" Polymers 14, no. 21: 4607. https://doi.org/10.3390/polym14214607
APA StyleUtrera-Barrios, S., Ricciardi, O., González, S., Verdejo, R., López-Manchado, M. Á., & Hernández Santana, M. (2022). Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers, 14(21), 4607. https://doi.org/10.3390/polym14214607