Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review
Abstract
:1. Introduction
2. Post-Agricultural Waste Powder Material Filled Epoxy Composites (Seed and Fruits)
3. Grass Fiber-Based Epoxy Composites
4. Bast and Leaf Fibers Modified Epoxy Composite
5. Other Natural Fillers Reinforced Epoxy Composites
6. Hybrid Composites
7. Current Challenges and Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parameswaranpillai, J.; Pulikkalparambil, H.; Rangappa, S.M.; Siengchin, S. Epoxy Composites; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Azman, N.N.; Siddiqui, S.; Low, I. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays. Mater. Sci. Eng. C 2013, 33, 4952–4957. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.; Xiao, F. Applications of epoxy materials in pavement engineering. Constr. Build. Mater. 2019, 235, 117529. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C.; Hong, B. Effects of rod size and fiber hybrid mode on the interface shear strength of car-bon/glass fiber composite rods exposed to freezing-thawing and outdoor environments. J. Mater. Res. Technol. 2021, 14, 2812–2831. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Guimarães, J.L.; Wypych, F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos. Part A Appl. Sci. Manufact. 2007, 38, 1694–1709. [Google Scholar] [CrossRef]
- Ashori, A. Wood–plastic composites as promising green-composites for automotive industries! Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef]
- Abhiram, Y.; Das, A.; Sharma, K.K. Green composites for structural and non-structural applications: A review. Mater. Today Proc. 2021, 44, 2658–2664. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Kopparthy, S.D.S.; Netravali, A.N. Review: Green composites for structural applications. Compos. Part C Open Acc. 2021, 6, 100169. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2021. [Google Scholar] [CrossRef]
- Dittenber, D.B.; GangaRao, H.V. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Shah, D.U. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Thomas, S.K.; Parameswaranpillai, J.; Krishnasamy, S.; Begum, P.S.; Nandi, D.; Siengchin, S.; George, J.J.; Hameed, N.; Salim, N.; Sienkiewicz, N. A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydr. Polym. Technol. Appl. 2021, 2, 100095. [Google Scholar] [CrossRef]
- Das, P.P.; Chaudhary, V. Moving towards the era of bio fibre based polymer composites. Clean. Eng. Technol. 2021, 4, 100182. [Google Scholar] [CrossRef]
- Petroudy, S.D. Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction; Woodhead Publishing: Cambridge, UK, 2017; pp. 59–83. [Google Scholar]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Progress Report on Natural Fiber Reinforced Composites. Macromol. Mater. Eng. 2013, 299, 9–26. [Google Scholar] [CrossRef]
- Thomas, B.; Raj, M.C.; Athira, K.B.; Rubiah, M.H.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 2018, 118, 11575–11625. [Google Scholar] [CrossRef] [PubMed]
- Sarki, J.; Hassan, S.; Aigbodion, V.; Oghenevweta, J. Potential of using coconut shell particle fillers in eco-composite materials. J. Alloys Compd. 2011, 509, 2381–2385. [Google Scholar] [CrossRef]
- Dinesh, S.; Kumaran, P.; Mohanamurugan, S.; Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Bhat, K.S. Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J. Polym. Res. 2020, 27, 9. [Google Scholar] [CrossRef]
- Kumar, S.; Mer, K.K.S.; Gangil, B.; Patel, V.K. Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites. J. Mater. Res. Technol. 2019, 8, 2070–2082. [Google Scholar] [CrossRef]
- Machado, J.S.; Knapic, S. Short term and long-term properties of natural fibre composites. In Advanced High Strength Natural Fibre Composites in Construction; Woodhead Publishing: Cambridge, UK, 2017; pp. 447–458. [Google Scholar]
- Vladkova, T.G.; Dineff, P.D.; Gospodinova, D.N. Wood flour: A new filler for the rubber processing industry. II. Cure characteristics and mechanical properties of NBR compounds filled with corona-treated wood flour. J. Appl. Polym. Sci. 2004, 91, 883–889. [Google Scholar] [CrossRef]
- Chanda, A.K.; Neogi, S.; Neogi, S. Optimization of plasma treatment for enhanced filler matrix adhesion in manufacturing green composites with rice husk. Ind. Chem. Eng. 2013, 55, 177–188. [Google Scholar] [CrossRef]
- Alshammari, B.A.; Saba, N.; Alotaibi, M.D.; Alotibi, M.F.; Jawaid, M.; Alothman, O.Y. Evaluation of Mechanical, Physical, and Morphological Properties of Epoxy Composites Reinforced with Different Date Palm Fillers. Materials 2019, 12, 2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narendar, R.; Dasan, K.P. Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Compos. Part B Eng. 2014, 56, 770–779. [Google Scholar] [CrossRef]
- Chun, K.S.; Husseinsyah, S. Agrowaste-based composites from cocoa pod husk and polypropylene: Effect of filler content and chemical treatment. J. Thermoplast. Compos. Mater. 2016, 29, 1332–1351. [Google Scholar] [CrossRef]
- Gouda, K.; Bhowmik, S.; Das, B. Thermomechanical behavior of graphene nanoplatelets and bamboo micro filler incorporated epoxy hybrid composites. Mater. Res. Express 2020, 7, 015328. [Google Scholar] [CrossRef]
- Joseph, S.; Appukuttan, S.P.; Kenny, J.M.; Puglia, D.; Thomas, S.; Joseph, K. Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites. J. Appl. Polym. Sci. 2010, 117, 1298–1308. [Google Scholar] [CrossRef]
- Suthan, R.; Jayakumar, V.; Gokuldass, R. Role of Silicon Coupling Grafted Natural Fillers on Visco-Elastic, Tensile-Fatigue and Water Absorption Behavior of Epoxy Resin Composite. Silicon 2020, 13, 1199–1207. [Google Scholar] [CrossRef]
- Singh, A.S.; Halder, S.; Kumar, A.; Chen, P. Tannic acid functionalization of bamboo micron fibes: Its capability to toughen epoxy based biocomposites. Mater. Chem. Phys. 2019, 243, 122112. [Google Scholar] [CrossRef]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. The Effect of Accelerated Weathering on the Mechanical Properties of Alkali Treated Hemp Fibre/Epoxy Composites. J. Adhes. Sci. Technol. 2011, 25, 1947–1959. [Google Scholar] [CrossRef]
- Das, M.; Prasad, V.; Chakrabarty, D. Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polym. Compos. 2009, 30, 1408–1416. [Google Scholar] [CrossRef]
- Vedrtnam, A.; Gunwant, D. Modeling improved fatigue behavior of sugarcane fiber reinforced epoxy composite using novel treatment method. Compos. Part B Eng. 2019, 175, 107089. [Google Scholar] [CrossRef]
- Wang, X.; Petrů, M.; Yu, H. The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Build. Mater. 2019, 208, 220–227. [Google Scholar] [CrossRef]
- Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites—A review. Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar] [CrossRef]
- Jaafar, C.A.; Zainol, I.; Ishak, N.; Ilyas, R.; Sapuan, S. Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. J. Mater. Res. Technol. 2021, 12, 1026–1038. [Google Scholar] [CrossRef]
- Baig, W.; Mushtaq, M. Investigation of mechanical properties and water absorption behaviour on tamarind shell fiber—reinforced epoxy composite laminates. Mater. Today Proc. 2021, 45, 440–446. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Shah, A.U.R.; Rao, K.C.; Song, J.-I. Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers Polym. 2015, 16, 1119–1124. [Google Scholar] [CrossRef]
- Salasinska, K.; Barczewski, M.; Górny, R.; Kloziński, A. Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym. Bull. 2017, 75, 2511–2528. [Google Scholar] [CrossRef] [Green Version]
- Albaker, R.I.B.; Kocaman, S.; Marti, M.E.; Ahmetli, G. Application of various carboxylic acids modified walnut shell waste as natural filler for epoxy-based composites. J. Appl. Polym. Sci. 2021, 138, 50770. [Google Scholar] [CrossRef]
- Barczewski, M.; Sałasińska, K.; Szulc, J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test. 2019, 75, 1–11. [Google Scholar] [CrossRef]
- Sathishkumar, T.; Kumar, S.A.; Navaneethakrishnan, P.; Siva, I.; Rajini, N. Synergy of cashew nut shell filler on tribological behaviors of natural-fiber-reinforced epoxy composite. Sci. Eng. Compos. Mater. 2017, 25, 761–772. [Google Scholar] [CrossRef]
- Shakuntala, O.; Raghavendra, G.; Kumar, A.S. Effect of Filler Loading on Mechanical and Tribological Properties of Wood Apple Shell Reinforced Epoxy Composite. Adv. Mater. Sci. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Soumyalata, D.B.A.; Latheef, A.; Mathew, A.J. Fabrication and Comparative Study on the Mechanical Properties of Epoxy based Polymer Composites with Coconut Shell Powder and Rice Husk Powder as Filler Materials. Int. J. Eng. Res. 2020, 9, IJERTV9IS070096. [Google Scholar] [CrossRef]
- Salleh, M.M.B.H.; Salleh, Z.; Rosdi, M.S.; Sapuan, S.M. Mechanical Properties of Coconut Carbon Fibre/Epoxy Composite Material. Int. J. Mech. Eng. 2013, 2, 55–62. [Google Scholar]
- Uthaman, A.; Xian, G.; Thomas, S.; Wang, Y.; Zheng, Q.; Liu, X. Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers 2020, 12, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kommula, V.P.; Reddy, K.O.; Shukla, M.; Marwala, T.; Rajulu, A.V. Mechanical properties, water absorption, and chemical resistance of Napier grass fiber strand–reinforced epoxy resin composites. Int. J. Polym. Analys. Character 2014, 19, 693–708. [Google Scholar] [CrossRef]
- Liu, S.-H.; Ke, C.-Y.; Chiang, C.-L. Thermal Stability, Smoke Density, and Flame Retardance of Ecotype Bio-Based Flame Retardant Agricultural Waste Bagasse/Epoxy Composites. Polymers 2021, 13, 2977. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Vitale, G.; Valenza, A. Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater. Des. 2014, 57, 456–464. [Google Scholar] [CrossRef]
- Kumar, R.; Bhowmik, S.; Kumar, K. Establishment and Effect of Constraint on Different Mechanical Properties of Bamboo Filler Reinforced Epoxy Composite. Int. Polym. Process. 2017, 32, 308–315. [Google Scholar] [CrossRef]
- Maleque, M.A.; Belal, F.Y.; Sapuan, S.M. Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite. Arab. J. Sci. Eng. 2007, 32, 359–364. [Google Scholar]
- Masiewicz, J.; Roszowska-Jarosz, M.; Kostrzewa, M.; Jasik, A.; Krawczyk, P. The modification of an epoxy resin by natural plant materials. Environ. Proct. Nat. Res. 2020, 31, 14–20. [Google Scholar] [CrossRef]
- Ridzuan, M.; Majid, M.S.A.; Khasri, A.; Gan, E.; Razlan, Z.; Syahrullail, S. Effect of pineapple leaf (PALF), napier, and hemp fibres as filler on the scratch resistance of epoxy composites. J. Mater. Res. Technol. 2019, 8, 5384–5395. [Google Scholar] [CrossRef]
- Ridzuan, M.; Majid, M.A.; Khasri, A.; Cheng, E.; Razlan, Z. Effect of natural filler loading, multi-walled carbon nanotubes (MWCNTs), and moisture absorption on the dielectric constant of natural filled epoxy composites. Mater. Sci. Eng. B 2020, 262, 114744. [Google Scholar] [CrossRef]
- Shah, A.H.; Li, X.; Xu, X.; Dayo, A.Q.; Liu, W.-B.; Bai, J.; Wang, J. Evaluation of mechanical and thermal properties of modified epoxy resin by using acacia catechu particles. Mater. Chem. Phys. 2019, 225, 239–246. [Google Scholar] [CrossRef]
- Gargol, M.; Klepka, T.; Klapiszewski, Ł.; Podkościelna, B. Synthesis and Thermo-Mechanical Study of Epoxy Resin-Based Composites with Waste Fibers of Hemp as an Eco-Friendly Filler. Polymers 2021, 13, 503. [Google Scholar] [CrossRef]
- Maleki, H.R.; Hamedi, M.; Kubouchi, M.; Arao, Y. Experimental investigation on drilling of natural flax fiber-reinforced composites. Mater. Manuf. Process. 2018, 34, 283–292. [Google Scholar] [CrossRef]
- Khalil, H.A.; Fizree, H.; Bhat, A.; Jawaid, M.; Abdullah, C. Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Compos. Part B Eng. 2013, 53, 324–333. [Google Scholar] [CrossRef]
- Kurien, R.A.; Biju, A.; Raj, K.A.; Chacko, A.; Joseph, B.; Koshy, C.P. Chicken feather fiber reinforced composites for sustainable applications. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Azman, N.A.N.; Islam, M.R.; Parimalam, M.; Rashidi, N.M.; Mupit, M. Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles. Polym. Bull. 2019, 77, 805–821. [Google Scholar] [CrossRef]
- Bessa, J.; Souza, J.; Lopes, J.; Sampaio, J.; Mota, C.; Cunha, F.; Fangueiro, R. Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Eng. 2017, 200, 472–479. [Google Scholar] [CrossRef]
- Vijayan, P.P.; Bhanu, A.A.; Archana, S.; Babu, A.; Siengchin, S.; Parameswaranpillai, J. Development of chicken feather fiber filled epoxy protective coating for metals. Mater. Today Proc. 2020, 41, 468–472. [Google Scholar] [CrossRef]
- Abdelmalik, A.A.; Ogbodo, M.O.; Momoh, G.E. Investigating the mechanical and insulation performance of waste eggshell powder/epoxy polymer for power insulation application. SN Appl. Sci. 2019, 1, 1238. [Google Scholar] [CrossRef] [Green Version]
- Fombuena, V.; Bernardi, L.; Fenollar, O.; Boronat, T.; Balart, R. Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Mater. Des. 2014, 57, 168–174. [Google Scholar] [CrossRef]
- Shahzad, A.; Nasir, S.U. Mechanical Properties of Natural Fiber/Synthetic Fiber Reinforced Polymer Hybrid Composites; Springer: Berlin/Heidelberg, Germany, 2016; pp. 355–396. [Google Scholar] [CrossRef]
- Das, S.C.; Paul, D.; Grammatikos, S.A.; Siddiquee, A.; Papatzani, S.; Koralli, P.; Islam, J.M.; Khan, M.A.; Shauddin, S.; Khan, R.A.; et al. Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates. Compos. Struct. 2021, 276, 114525. [Google Scholar] [CrossRef]
- Maciel, N.D.O.R.; Ferreira, J.B.; Vieira, J.D.S.; Ribeiro, C.G.D.; Lopes, F.P.D.; Margem, F.M.; Monteiro, S.N.; Vieira, C.M.F.; da Silva, L.C. Comparative tensile strength analysis between epoxy composites reinforced with curaua fiber and glass fiber. J. Mater. Res. Technol. 2018, 7, 561–565. [Google Scholar] [CrossRef]
- Vedrtnam, A. Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite. Compos. Part B Eng. 2018, 157, 305–321. [Google Scholar] [CrossRef]
- Hong, B.; Xian, G.; Wang, Z. Durability study of pultruded carbon fiber reinforced polymer plates subjected to water immersion. Adv. Struct. Eng. 2017, 21, 571–579. [Google Scholar] [CrossRef]
- Khosravani, M.R. Composite Materials Manufacturing Processes. Appl. Mech. Mater. 2011, 110–116, 1361–1367. [Google Scholar] [CrossRef]
- Wang, A.; Wang, X.; Xian, G. The influence of stacking sequence on the low-velocity impact response and damping behavior of carbon and flax fabric reinforced hybrid composites. Polym. Test. 2021, 104, 107384. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2021, 281, 115060. [Google Scholar] [CrossRef]
- Prabhu, L.; Krishnaraj, V.; Gokulkumar, S.; Sathish, S.; Ramesh, M. Mechanical, chemical and acoustical behavior of sisal–tea waste–glass Fiber reinforced epoxy-based hybrid polymer composites. Mater. Today Proc. 2019, 16, 653–660. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Wu, H. Study on mechanical and thermomechanical properties of flax/glass fiber hybrid-reinforced epoxy composites. Polym. Compos. 2020, 42, 714–723. [Google Scholar] [CrossRef]
- Fatinah, T.S.; Majid, M.S.A.; Ridzuan, M.J.M.; Hong, T.W.; Amin, N.A.M.; Afendi, M. Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites. J. Phys. Conf. Ser. 2017, 908, 012013. [Google Scholar] [CrossRef] [Green Version]
- Mansor, M.; Sapuan, S.; Zainudin, E.; Nuraini, A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Elkhouly, H.I.; Abdel-Magied, R.K.; Aly, M.F. Date palm seed as suitable filler material in glass–epoxy composites. Iran. Polym. J. 2018, 28, 65–73. [Google Scholar] [CrossRef]
- Zhan, M.; Wool, R.P. Mechanical properties of composites with chicken feather and glass fibers. J. Appl. Polym. Sci. 2016, 133, 44013. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Vadivel, M.; Shobana, S.; Arvindnarayan, S.; Dharmaraja, J.; Priya, R.K.; Nguyen-Tri, P.; Kumar, G.; Chang, S.W. Fabrication and modeling of prototype bike silencer using hybrid glass and chicken feather fiber/hydroxyapatite reinforced epoxy composites. Prog. Org. Coat. 2020, 148, 105871. [Google Scholar] [CrossRef]
- Kocaman, S.; Ahmetli, G. Eco-friendly natural filler based epoxy composites. Int. J. Chem. Molec. Eng. 2016, 10, 471–474. [Google Scholar]
- Ozkur, S.; Sezgin, H.; Akay, E.; Yalcin-Enis, I. Hybrid bio-based composites from blends of epoxy and soybean oil resins reinforced with jute woven fabrics. Mater. Res. Express 2020, 7, 015335. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M. Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry. Polymers 2018, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Le Duigou, A.; Davies, P.; Baley, C. Exploring durability of interfaces in flax fibre/epoxy micro-composites. Compos. Part A Appl. Sci. Manuf. 2013, 48, 121–128. [Google Scholar] [CrossRef] [Green Version]
Fiber Source | World Production (103 ton) | Cellulose (wt%) | Hemicellulose (wt%) | Lignin (wt%) | Waxes (wt%) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation at Break (%) | Density [g/cm3] |
---|---|---|---|---|---|---|---|---|---|
Bamboo | 30,000 | 26–43 | 30 | 21–31 | 140–230 | 11–17 | 0.6–1.1 | ||
Bagasse | 75,000 | 55.2 | 16.8 | 25.3 | - | 290 | 17 | 1.25 | |
Coir | 100 | 32–43 | 0.15–0.25 | 40–45 | 175 | 4–6 | 30 | 1.2 | |
Pineapple | |||||||||
Ramie | 100 | 68.6–76.2 | 13–16 | 0.6–0.7 | 0.3 | 560 | 24.5 | 2.5 | 1.5 |
Abaca | 70 | 56–63 | 20–25 | 7–9 | 3 | 400 | 12 | 3–10 | 1.5 |
Flax | 830 | 71 | 18.6–20.6 | 2.2 | 1.5 | 345–1035 | 27.6 | 2.7–3.2 | 1.5 |
Jute | 2300 | 61–71 | 14–20 | 12–13 | 0.5 | 393–773 | 26.5 | 1.5–1.8 | 1.3 |
Hemp | 214 | 68 | 15 | 10 | 0.8 | 690 | 70 | 1.6 | 1.48 |
Sisal | 378 | 65 | 12 | 9.9 | 2 | 511–635 | 9.4–22 | 2.0–2.5 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sienkiewicz, N.; Dominic, M.; Parameswaranpillai, J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers 2022, 14, 265. https://doi.org/10.3390/polym14020265
Sienkiewicz N, Dominic M, Parameswaranpillai J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers. 2022; 14(2):265. https://doi.org/10.3390/polym14020265
Chicago/Turabian StyleSienkiewicz, Natalia, Midhun Dominic, and Jyotishkumar Parameswaranpillai. 2022. "Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review" Polymers 14, no. 2: 265. https://doi.org/10.3390/polym14020265