New Method for a SEM-Based Characterization of Helical-Fiber Nonwovens
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Solution Preparation
2.2. Co-Electrospinning
3. Image Processing-Methodology
3.1. Image Acquisition
3.2. Image Vectorization
3.3. Fiber Diameter, Length, and Orientation
3.4. Helix Diameter and Curvature
a2 = −0.6606 b2 = −0.7522
a3 = −1.465 b3 = −2.75
a4 = −0.4519 b4 = −18.24
a5 = −0.3821 b5 = 2.303
a6 = −0.166 b6 = −0.02012
a7 = −0.8761 b7 = −0.1932
a8 = −2.499 b8 = 1.339
4. Characterization Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2013, 1, 7290–7305. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. 2004, 116, 4438–4441. [Google Scholar] [CrossRef]
- Ceylan, H.; Urel, M.; Erkal, T.S.; Tekinay, A.B.; Dana, A.; Guler, M.O. Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network. Adv. Funct. Mater. 2013, 23, 2081–2090. [Google Scholar] [CrossRef]
- Lin, T.; Wang, H.X.; Wang, X.G. Self-crimping bicomponent nanoribers efectrospun from polyacrylonitrile and elastomeric polyurethane. Adv. Mater. 2005, 17, 2699–2703. [Google Scholar] [CrossRef]
- Chen, S.; Hou, H.; Hu, P.; Wendorff, J.H.; Greiner, A.; Agarwal, S. Effect of different bicomponent electrospinning techniques on the formation of polymeric nanosprings. Macromol. Mater. Eng. 2009, 294, 781–786. [Google Scholar] [CrossRef]
- Chen, S.; Hou, H.; Hu, P.; Wendorff, J.H.; Greiner, A.; Agarwal, S. Polymeric nanosprings by bicomponent electrospinning. Macromol. Mater. Eng. 2009, 294, 265–271. [Google Scholar] [CrossRef]
- Wu, H.H.; Zheng, Y.S.; Zeng, Y.C. Fabrication of Helical Nanofibers via Co-Electrospinning. Ind. Eng. Chem. Res. 2015, 54, 987–993. [Google Scholar] [CrossRef]
- Iacob, A.-T.; Drăgan, M.; Ionescu, O.-M.; Profire, L.; Ficai, A.; Andronescu, E.; Confederat, L.G.; Lupașcu, D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020, 12, 983. [Google Scholar] [CrossRef]
- Smith, S.A.; Park, J.H.; Williams, B.P.; Joo, Y.L. Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithiumion battery performance. J. Mater. Sci. 2017, 52, 3657–3669. [Google Scholar] [CrossRef]
- Gao, J.; Li, B.; Wang, L.; Huang, X.; Xue, H. Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation. J. Ind. Eng. Chem. 2018, 68, 416–424. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Yu, D.-G.; Wang, G.; Williams, G.R.; Zhang, Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohyd. Polym. 2019, 203, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.N.; Zheng, Y.S.; Zhang, X.M.; Teng, D.F.; Xu, Y.Q.; Zeng, Y.C. Design of helical groove/hollow nanofibers via tri-fluid electrospinning. Mater. Des. 2021, 205, 109705. [Google Scholar] [CrossRef]
- Yoon, J.; Yang, H.-S.; Lee, B.-S.; Yu, W.-R. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. Adv. Mater. 2018, 30, 1704765. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Xu, Y.; He, S.; Sun, X.; Pan, S.; Deng, J.; Chen, D.; Peng, H. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 2015, 10, 1077–1083. [Google Scholar] [CrossRef]
- Fleischer, S.; Feiner, R.; Shapira, A.; Ji, J.; Sui, X.; Wagner, H.D.; Dvira, T. Spring-like fibers for cardiac tissue engineering—ScienceDirect. Biomaterials 2013, 34, 8599–8606. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Miao, X.R.; Lin, J.Y.; Li, X.H.; Bian, F.G.; Wang, J.; Zhang, X.Z.; Yue, B.H. Coiled Plant Tendril Bioinspired Fabrication of Helical Porous Microfibers for Crude Oil Cleanup. Glob. Chall. 2017, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Sim, H.J.; Jang, Y.; Kim, H.; Choi, J.G.; Park, J.W.; Lee, D.Y.; Kim, S.J. Self-helical fiber for glucose-responsive artificial muscle. ACS Appl. Mater. Interfaces 2020, 12, 20228–20233. [Google Scholar] [CrossRef] [PubMed]
- Pourdeyhimi, B.; Ramanathan, R.; Dent, R. Measuring fiber orientation in nonwovens .1. Simulation. Text. Res. J. 1996, 66, 713–722. [Google Scholar] [CrossRef]
- Pourdeyhimi, B.; Kim, H.S. Measuring fiber orientation in nonwovens: The Hough transform. Text. Res. J. 2002, 72, 803–809. [Google Scholar] [CrossRef]
- Hou, J.; Xu, B.; Gao, H.; Wang, R. Measuring fiber orientations in nonwoven web images using corner detection by Bézier fitting curves. Text. Res. J. 2017, 88, 2120–2131. [Google Scholar] [CrossRef]
- Moll, P.; Wang, S.F.; Coutandin, S.; Fleischer, J. Fiber orientation measurement of fiber injection molded nonwovens by image analysis. Text. Res. J. 2021, 91, 664–680. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Zeng, Y. Morphology development of helical structure in bicomponent fibers during spinning process. Polymer 2020, 201, 122609. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Wilson, J.N.; Ritter, G.X. Handbook of Computer Vision Algorithms in Image Algebra; CRC press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Prasad, D.K.; Quek, C.; Leung, M.K.; Cho, S.Y. A Parameter Independent Line Fitting Method. In Proceedings of the 1st Asian Conference on Pattern Recognition (ACPR), Beijing, China, 28–28 November 2011; pp. 441–445. [Google Scholar]
- Prasad, D.K.; Leung, M.K.H.; Quek, C.; Cho, S.-Y. A novel framework for making dominant point detection methods non-parametric. Image Vis. Comput. 2012, 30, 843–859. [Google Scholar] [CrossRef]
- Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 2015, 61, 327–338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cui, G.; Zeng, Y. New Method for a SEM-Based Characterization of Helical-Fiber Nonwovens. Polymers 2022, 14, 3370. https://doi.org/10.3390/polym14163370
Li Y, Cui G, Zeng Y. New Method for a SEM-Based Characterization of Helical-Fiber Nonwovens. Polymers. 2022; 14(16):3370. https://doi.org/10.3390/polym14163370
Chicago/Turabian StyleLi, Ying, Guixin Cui, and Yongchun Zeng. 2022. "New Method for a SEM-Based Characterization of Helical-Fiber Nonwovens" Polymers 14, no. 16: 3370. https://doi.org/10.3390/polym14163370
APA StyleLi, Y., Cui, G., & Zeng, Y. (2022). New Method for a SEM-Based Characterization of Helical-Fiber Nonwovens. Polymers, 14(16), 3370. https://doi.org/10.3390/polym14163370