Humic Acid-Coated Fe3O4 Nanoparticles Confer Resistance to Acremonium Wilt Disease and Improve Physiological and Morphological Attributes of Grain Sorghum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparations and Characterization of Coated Fe3O4/HA
2.2. Source and Inoculum Preparation of A. strictum
2.3. Effect of Fe3O4/HA Nanoparticles on the Mycelial Growth of A. strictum
2.4. Reaction of Twenty-One Genotypes of Grain Sorghum to A. strictum under Field Conditions
2.5. Effect of Fe3O4/HA Nanoparticels on A. strictum under Field Conditions
2.6. Gibberellic Acid Assay
2.7. Assessment of Growth and Yield Parameters
2.8. Enzyme Assays
2.9. Potential Toxicity of Fe3O4/HA NPs on Rats
2.10. Histopathological Examination
2.11. Data Analysis
3. Results
3.1. Morphology and Size Distribution of Fe3O4/HA NPs
3.2. Inhibitory Effect of Fe3O4/HA NPs on the Mycelial Growth of A. striticum
3.3. Reaction of Grain Sorghum Genotypes to Acremonium Wilt Disease
3.4. Effect of Fe3O4/HA NPs on Controlling Acremonium Wilt under Field Conditions
3.5. Effect of Fe3O4/HA NPs on the Growth and Yield of Grain Sorghum
3.6. Effect of Fe3O4/HA NPs on the Level of Gibberillic Acid in Grain Sorghum Genotypes
3.7. Effect of Fe3O4/HA NPs on the Activity of Peroxidase and Catalase Enzymes in Grain Sorghum
3.8. Potential Toxicity of Fe3O4/HA NPs in Rats
Histopathological Examination
4. Discussion
5. Conclusions and Further Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faostat. Food and Agriculture Organization of the United Nations Statistics Division. Available online: http://faostat3.fao.org/home/E (accessed on 4 May 2022).
- Cooke, W.B. Cephalosporium-artige schimmelpilze (hyphomycetes). Mycologia 1973, 65, 253–257. [Google Scholar] [CrossRef]
- El-Shafey, H.; Abd-El-Rahim, M.; Refaat, M. A New Cephalosporium-Wilt Disease of Grain Sorghum in Egypt. In Proceedings of the Egyptian Phytopathology Congress, Cairo, Egypt, 26–29 November 1979; The Egyptian Phytopathology Society: Cairo, Egypt, 1980. [Google Scholar]
- Rodrigues, R.T.; de Souza Silva, M.M.; de Oliveira, D.M.; Simplício, J.B.; Costa, C.M.C.; de Siqueira, V.M. Endophytic fungi from Sorghum bicolor (L.) moench: Influence of genotypes and crop systems and evaluation of antimicrobial activity. J. Agric. Sci. Technol. 2018, 8, 267–277. [Google Scholar]
- Natural, M.; Frederiksen, R.; Rosenow, D. Acremonium wilt of sorghum [Sorghum bicolor, Acremonium strictum]. Plant Dis. 1982, 66, 863–865. [Google Scholar] [CrossRef]
- Ali, M.; Osman, E.; Ibrahim, T.; Khalafalla, G.; Amin, G. In vitro antagonism between soilrhizosphere microorganisms and acremonium strictum the causal fungus of acremonium wilt in grain sorghum. J. Agric. Sci. Mansoura Univ. 2004, 29, 5821–5833. [Google Scholar] [CrossRef]
- Salama, S. Investigations of the major stalk, foliar and grain disease of sorghum (Sorghum bicolor) including studies on the genetic mature of resistance. Ann. Rep. Public Law 1976, 63, 1–17. [Google Scholar]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 01014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Beltagi, H.S.; Ali, M.R.; Ramadan, K.M.A.; Anwar, R.; Shalaby, T.A.; Rezk, A.A.; El-Ganainy, S.M.; Mahmoud, S.F.; Alkafafy, M.; El-Mogy, M.M. Exogenous postharvest application of calcium chloride and salicylic acid to maintain the quality of broccoli florets. Plants 2022, 11, 1513. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127. [Google Scholar] [CrossRef]
- Khatoon, U.T.; Rao, G.N.; Mohan, K.M.; Ramanaviciene, A.; Ramanavicius, A. Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum 2017, 146, 259–265. [Google Scholar] [CrossRef]
- Khatoon, U.T.; Rao, G.N.; Mohan, M.K.; Ramanaviciene, A.; Ramanavicius, A. Comparative study of antifungal activity of silver and gold nanoparticles synthesized by facile chemical approach. J. Environ. Chem. Eng. 2018, 6, 5837–5844. [Google Scholar] [CrossRef]
- El-Gazzar, N.; Ismail, A.M. The potential use of titanium, silver and selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatal. Agric. Biotechnol. 2020, 27, 101708. [Google Scholar] [CrossRef]
- Ismail, A.M. Efficacy of copper oxide and magnesium oxide nanoparticles on controlling black scurf disease on potato. Egypt. J. Phytopathol. 2021, 49, 116–130. [Google Scholar] [CrossRef]
- Ismail, A.M.; El-Gawad, A.; Mona, E. Antifungal activity of mgo and zno nanoparticles against powdery mildew of pepper under greenhouse conditions. Egypt. J. Agric. Res. 2021, 99, 421–434. [Google Scholar]
- Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940–13941. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Kumar, V.; Prasad, K.S. Nanotechnology in sustainable agriculture: Present concerns and future aspects. Afr. J. Biotechnol. 2014, 13, 705–713. [Google Scholar]
- Prasad, R.; Gupta, N.; Kumar, M.; Kumar, V.; Wang, S.; Abd-Elsalam, K.A. Nanomaterials act as plant defense mechanism. In Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 253–269. [Google Scholar]
- Mohapatra, M.; Anand, S. Synthesis and applications of nano-structured iron oxides/hydroxides—A review. Int. J. Eng. Technol. 2010, 2, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Tuharin, K.; Turek, Z.; Zanáška, M.; Kudrna, P.; Tichý, M. Iron oxide and iron sulfide films prepared for dye-sensitized solar cells. Materials 2020, 13, 1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Ma, Y.; Liu, L.; Yao, S.; Wu, W.; Wang, Z.; Lv, P.; Zheng, J.; Yu, K.; Wei, W. Plasma enabled Fe2O3/Fe3O4 nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries. Nanomaterials 2020, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Cichello, S.A. Oxygen absorbers in food preservation: A review. J. Food Sci. Technol. 2015, 52, 1889–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, M.; Baratella, D.; Bonaiuto, E.; de A. Roger, J.; Vianello, F. New perspectives on biomedical applications of iron oxide nanoparticles. Curr. Med. Chem. 2018, 25, 540–555. [Google Scholar] [CrossRef]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 2016, 7, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noqta, O.A.; Aziz, A.A.; Usman, I.A.; Bououdina, M. Recent advances in iron oxide nanoparticles (ionps): Synthesis and surface modification for biomedical applications. J. Supercond. Nov. Magn. J. 2019, 32, 779–795. [Google Scholar] [CrossRef]
- Suturin, S.; Kaveev, A.; Korovin, A.; Fedorov, V.; Sawada, M.; Sokolov, N. Structural transformations and interfacial iron reduction in heterostructures with epitaxial layers of 3d metals and ferrimagnetic oxides. J. Appl. Crystallogr. 2018, 51, 1069–1081. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Maiorov, M.; Krumina, A.; Skaudžius, R.; Zarkov, A.; Kareiva, A.; Popov, A.I. Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method. Materials 2020, 13, 4147. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Wang, J.; Wu, C.; Meng, F.; Shi, Z.; Lian, J.; Feng, J.; Meng, J. Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe3O4 nanocrystals: Their high saturation magnetizations and excellent water treatment properties. CrystEngComm 2012, 14, 5741–5744. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Mosleh, A.M.; Abd Elghany, A.; Shams-Eldin, E.; Serea, E.S.A.; Ali, S.A.; Shalan, A.E. Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties. RSC Adv. 2019, 9, 20118–20136. [Google Scholar] [CrossRef] [Green Version]
- Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.d.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-F.; Zhao, Z.-S.; Jiang, G.-B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42, 6949–6954. [Google Scholar] [CrossRef] [PubMed]
- Illés, E.; Tombácz, E. The effect of humic acid adsorption on ph-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 2006, 295, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Chekli, L.; Phuntsho, S.; Roy, M.; Shon, H.K. Characterisation of Fe-oxide nanoparticles coated with humic acid and suwannee river natural organic matter. Sci. Total Environ. 2013, 461, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 2011, 65, 1882–1884. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid. Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koesnarpadi, S.; Santosa, S.J.; Siswanta, D.; Rusdiarso, B. Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/ha). Procedia Environ. Sci. 2015, 30, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, L.; Seabra, A.B.; Pelegrino, M.T.; De Araujo, D.; Bernardes, J.S.; Haddad, P.S. Superparamagnetic iron oxide nanoparticles dispersed in pluronic f127 hydrogel: Potential uses in topical applications. RSC Adv. 2017, 7, 14496–14503. [Google Scholar] [CrossRef] [Green Version]
- Enneffati, M.; Rasheed, M.; Louati, B.; Guidara, K.; Barillé, R. Morphology, uv–visible and ellipsometric studies of sodium lithium orthovanadate. Opt. Quant. Electron. 2019, 51, 1–19. [Google Scholar] [CrossRef]
- Grover, R.; Moore, J. Toximetric studies of fungicides against brown rot organisms, Sclerotinia fructicola and S. Laxa. Phytopathology 1962, 52, 876–879. [Google Scholar]
- Karunakar, R.; Pande, S.; Satyaprasad, K.; Ramarao, P. Varietal reaction of non-senescent sorghums to the pathogens causing root and stalk rot of sorghum in india. Int. J. Pest Manag. 1993, 39, 343–346. [Google Scholar] [CrossRef] [Green Version]
- Azzam, C.R.; Atta, A.; Ismail, M. Development of molecular genetic markers for acremonium wilt disease resistance in grain sorghum. Egypt. J. Plant Breed. 2010, 14, 299–319. [Google Scholar]
- Okamoto, M.; Hanada, A.; Kamiya, Y.; Yamaguchi, S.; Nambara, E. Measurement of abscisic acid and gibberellins by gas chromatography/mass spectrometry. In Plant Hormones; Springer: Berlin/Heidelberg, Germany, 2009; pp. 53–60. [Google Scholar]
- Allam, A.; Hollis, J. Sulfide inhibition of oxidases in rice roots. Phytopathology 1972, 62, 634–639. [Google Scholar] [CrossRef]
- Pereira, G.; Molina, S.; Lea, P.; Azevedo, R. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 2002, 239, 123–132. [Google Scholar] [CrossRef]
- Mills, K.L.; Morton, R.; Page, G. Textbook of Clinical Pathology; Williams & Wilkins: Philadelphia, PA, USA, 1971. [Google Scholar]
- Jain, N.C. Schalm’s Veterinary Hematology; Lea and Febiger: Palo Alto, CA, USA, 1986. [Google Scholar]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing kidney function—Measured and estimated glomerular filtration rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Snedecor, G.; Cochran, W. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1980. [Google Scholar]
- Haydar, M.S.; Ghosh, S.; Mandal, P. Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation. J. Plant Growth Regul. 2021, 41, 1726–1746. [Google Scholar] [CrossRef]
- Chandrasekar, N.; Kumar, K.; Balasubramnian, K.S.; Karunamurthy, K.; Varadharajan, R. Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their anti microbial activity, free radicle scavenginging activity and antioxidant assay. Dig. J. Namomater. Bios. 2013, 8, 765–775. [Google Scholar]
- Parveen, S.; Wani, A.H.; Shah, M.A.; Devi, H.S.; Bhat, M.Y.; Koka, J.A. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 2018, 115, 287–292. [Google Scholar] [CrossRef]
- Nehra, P.; Chauhan, R.; Garg, N.; Verma, K. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci. 2018, 75, 13–18. [Google Scholar] [CrossRef]
- Win, T.T.; Khan, S.; Bo, B.; Zada, S.; Fu, P. Green synthesis and characterization of Fe3O4 nanoparticles using chlorella-k01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.-H.; Tsai, P.-H.; Lin, K.-S.; Ke, W.-J.; Chiang, C.-L. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive bacillus strains and gram-negative Escherichia coli strains. J. Nanobiotechnol. 2017, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Olivares, F.L.; Malcher, D.J.d.P.; Sánchez-Monedero, M.A.; Kempenaar, C.; Canellas, L.P. From lab to field: Role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Front. Plant Sci. 2020, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Tomke, P.D.; Rathod, V.K. Facile fabrication of silver on magnetic nanocomposite (Fe3O4@ chitosan–agnp nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. Int. J. Biol. Macromol. 2020, 149, 989–999. [Google Scholar] [CrossRef]
- Ali, M.; Haroon, U.; Khizar, M.; Chaudhary, H.J.; Munis, M.F.H. Facile single step preparations of phyto-nanoparticles of iron in Calotropis procera leaf extract to evaluate their antifungal potential against Alternaria alternata. Curr. Plant Biol. 2020, 23, 100157. [Google Scholar] [CrossRef]
- Devi, H.S.; Boda, M.A.; Shah, M.A.; Parveen, S.; Wani, A.H. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process. Synth. 2019, 8, 38–45. [Google Scholar] [CrossRef]
- Crecchio, C.; Stotzky, G. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. Kurstaki bound to humic acids from soil. Soil Biol. Biochem. 1998, 30, 463–470. [Google Scholar]
- Wu, M.; Song, M.; Liu, M.; Jiang, C.; Li, Z. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci. Rep. 2016, 6, 32858. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, Y.; Cui, Z.; Beattie, D.; Gu, Y.; Wang, Q. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, S.; Isaac, R.R.; Geo, S.; Sornalekshmi, S.; Rose, A.; Praseetha, P. Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed. Eng. 2013, 5, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.S.; Patra, J.K.; Pramanik, K.; Panda, N.; Thatoi, H. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J. Nano Sci. Eng. 2012, 2, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-J.; Kim, J.Y.; Kim, J.; Lee, J.-H.; Hahn, J.-S.; Gu, M.B.; Yoon, J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009, 43, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Keenan, C.R.; Sedlak, D.L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dick, W.; Hoitink, H. Compost-induced systemic acquired resistance in cucumber to pythium root rot and anthracnose. Phytopathology 1996, 86, 1066–1070. [Google Scholar] [CrossRef]
- Loffredo, E.; Berloco, M.; Casulli, F.; Senesi, N. In vitro assessment of the inhibition of humic substances on the growth of two strains of Fusarium oxysporum. Biol. Fertil. Soils 2007, 43, 759–769. [Google Scholar] [CrossRef]
- Ali, M.; Osman, E.A.; Dawoud, E.I.; Ibrahim, T.F.; Amin, G. Optimization of the bioagent Bacillus subtilis biomass production and antibosis against Acremonium strictum. J. Soil Sci. Agric. Eng. 2007, 32, 4075–4090. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Y.; Li, H.; Lu, J.; Zhao, H.; Liu, M.; Nechitaylo, G.S.; Glushchenko, N.N. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci. Rep. 2018, 8, 3228. [Google Scholar] [CrossRef] [PubMed]
- Elanchezhian, R.; Kumar, D.; Ramesh, K.; Biswas, A.K.; Guhey, A.; Patra, A.K. Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. J. Plant Nutr. 2017, 40, 1969–1977. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Xie, Y. Stimulatory effect of Fe3O4 nanoparticles on the growth and yield of Pseudostellaria heterophylla via improved photosynthetic performance. HortScience 2021, 56, 753–761. [Google Scholar] [CrossRef]
- Bystrzejewska-Piotrowska, G.; Asztemborska, M.; Stęborowski, R.; Polkowska-Motrenko, H.; Danko, B.; Ryniewicz, J. Application of neutron activation for investigation of Fe3O4 nanoparticles accumulation by plants. Nukleonika 2012, 57, 427–430. [Google Scholar]
- Yigit, V.; Dikilitaş, M. Effect of humic acid applications on the root-rot diseases caused by Fusarium spp. on tomato plants. Plant Pathol. J. 2008, 7, 179–182. [Google Scholar] [CrossRef]
- Abd-El-Kareem, F.; Abd-El-Latif, F.M.; Fotouh, Y. Integrated treatments between humic acid and sulfur for controlling early blight disease of potato plants under field infection. Res. J. Agric. Biol. Sci. 2009, 5, 1039–1045. [Google Scholar]
- Ali, E.; Abd El-Rahman, K.; El-Far, I.; Mohamed, A. Response of some grain sorghum genotypes to foliar spray by humic acid. Assiut J. Agric. Sci. 2020, 51, 54–63. [Google Scholar]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Penel, C.; Gaspar, T.; Greppin, H. Plant Peroxidases, 1980–1990: Topics and Detailed Literature on Molecular, Biochemical, and Physiological Aspects; University of Geneva: Geneva, Switzerland, 1992. [Google Scholar]
- Ramanaviciene, A.; Acaite, J.; Ramanavicius, A.; Ramanavicius, A. Chronic caffeine intake affects lysozyme activity and immune cells in mice. J. Pharm. Pharmocol. 2004, 56, 671–676. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Liu, R. Superparamagnetic α-Fe2O3/Fe3O4 heterogeneous nanoparticles with enhanced biocompatibility. Nanomaterials 2021, 11, 834. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J. Pharm. Pharmocol. 2007, 59, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Parivar, K.; Malekvand Fard, F.; Bayat, M.; Alavian, S.M.; Motavaf, M. Evaluation of iron oxide nanoparticles toxicity on liver cells of balb/c rats. Iran. Red Crescent Med. J. 2016, 18, e28939. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Yoon, T.-J.; Yu, K.N.; Kim, B.G.; Park, S.J.; Kim, H.W.; Lee, K.H.; Park, S.B.; Lee, J.-K.; Cho, M.H. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 2006, 89, 338–347. [Google Scholar] [CrossRef]
- Salehi, M.; Fatahian, S.; Shahanipour, K. Effect of iron oxide nanoparticles coated with chitosan on renal functional indeces in rats. J. Gorgan. Univ. Med. Sci. 2017, 19, 14–19. [Google Scholar]
- Battis, G.N., Jr. The enigma of liver enzymes: Transferases. J. Insur. Med. 1988, 20, 17–20. [Google Scholar]
- Vozarova, B.; Stefan, N.; Lindsay, R.S.; Saremi, A.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51, 1889–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, L.; Tanwir, F.; Babadi, V.Y. In vitro toxicity of iron oxide nanoparticle: Oxidative damages on hep g2 cells. Exp. Toxicol. Pathol. 2015, 67, 197–203. [Google Scholar] [CrossRef] [PubMed]
Numerical Grade | Degree of Infection |
---|---|
0.1 | Minimal reaction, indistinguishable from that to a sterile toothpick. |
0.2 | Discoloration centered around the wound, progressing in the superficial parts of the stalk, but not reaching either node. |
0.5 | Extensive discoloration progressing in the central part of the stalk. |
0.8 | Discoloration reaching one or both nodes superficially or forming a cylinder. |
1.0 | Most or all of one internode discolored with no penetration of nodal areas. |
1.1 | Slight penetration of one or both nodes. |
1.2 | Nearly complete penetration of one or both nodes, |
1.5 | Penetration of one node and slight invasion of next internode. |
2.0 | More than one internode but not more than two affected; infection must have spread through at least one internode. |
2.5 | Penetration of two nodes and slight invasion of distal internode. |
3.0 | Infection passed through two or more internodes. |
4.0 | Extensive invasion of plant but not killed. |
5.0 | Death of plant due to stalk-rot. |
No. | Category Numerical | Level of Infection |
---|---|---|
1 | 0.0–0.5 | Highly resistant |
2 | 0.6–1.0 | Resistant |
3 | 1.1–1.5 | Moderately resistant |
4 | 1.6–3.0 | Moderately susceptible |
5 | 3.1–4.0 | Susceptible |
6 | 4.1–5.0 | Highly Susceptible |
No. | Genotypes | DR ± St.Dev. | Group Type |
---|---|---|---|
1 | LG 13 | 0.17 ± 0.03 | HR |
2 | Assuit 14 | 0.67 ± 0.10 | R |
3 | Line c | 1.11 ± 0.10 | MR |
4 | Local 119 | 0.52 ± 0.08 | HR |
5 | Local 245 | 0.72 ± 0.04 | R |
6 | Dorado | 0.39 ± 0.01 | HR |
7 | LG 23 | 0.46 ± 0.07 | HR |
8 | Sel 1007 | 0.83 ± 0.04 | R |
9 | LG 35 | 0.89 ± 0.10 | R |
10 | LG 47 | 0.73 ± 0.03 | R |
11 | H sh 1 | 0.72 ± 0.05 | R |
12 | H 301 | 1.25 ± 0.06 | MR |
13 | H 305 | 0.90 ± 0.04 | R |
14 | H 306 | 0.93 ± 0.02 | R |
15 | LG 1 | 4.12 ± 0.11 | HS |
16 | Giza 3 | 3.45 ± 0.22 | S |
17 | Giza 113 | 3.06 ± 0.13 | S |
18 | Local 129 | 1.29 ± 0.08 | MR |
19 | ICSR 92003 | 1.02 ± 0.08 | R |
20 | ICSR 93002 | 1.08 ±0.08 | MR |
21 | LG 3 | 2.03 ± 0.06 | MS |
Average | 1.25 | ||
LSD 0.05 | 0.14 |
Genotypes | Concentration (mg L−1) | Season 2020 | Season 2021 | ||
---|---|---|---|---|---|
DR ± St.Dev. | Efficacy (%) | DR ± St.Dev. | Efficacy (%) | ||
Giza 113 | 10 | 3.2 ± 0.20 | 17.3 | 3.53 ± 0.15 | 7.8 |
40 | 1.8 ± 0.10 | 53.49 | 1.87 ± 0.25 | 51.17 | |
80 | 1.53 ±0.06 | 60.47 | 1.5 ± 0.30 | 60.84 | |
Control | 3.87 ± 0.15 | - | 3.83 ± 0.21 | - | |
LG 1 | 10 | 3.3 ± 0.20 | 22.72 | 3.37 ± 0.31 | 22.25 |
40 | 1.73 ± 0.15 | 59.48 | 1.83 ± 0.06 | 57.74 | |
80 | 1.2 ± 0.10 | 71.9 | 1.23 ± 0.06 | 71.59 | |
Control | 4.27 ± 0.06 | - | 4.33 ± 0.25 | - | |
LG 3 | 10 | 2.03 ± 0.06 | 2.4 | 2.5 ± 0.20 | 8.42 |
40 | 1.3 ± 0.10 | 37.2 | 1.23 ±0.06 | 54.95 | |
80 | 0.97 ± 0.21 | 53.14 | 0.9 ± 0.17 | 67.03 | |
Control | 2.07 ± 0.31 | - | 2.73 ± 0.31 | - | |
Giza 3 | 10 | 2.93 ± 0.12 | 14.0 | 2.77 ± 0.21 | 20.17 |
40 | 1.47 ± 0.06 | 58.82 | 1.4 ± 0.10 | 59.65 | |
80 | 1.1 ± 0.20 | 69.19 | 0.97 ± 0.12 | 72.04 | |
Control | 3.57 ± 0.25 | - | 3.47 ± 0.15 | - | |
Local 119 | 10 | 0.37 ± 0.06 | 26.0 | 0.4 ± 0.10 | 20.0 |
40 | 0.13 ± 0.06 | 74.0 | 0.13 ± 0.06 | 74.0 | |
80 | 0.1 ± 0.00 | 80.0 | 0.1 ± 0.00 | 80.0 | |
Control | 0.5 ± 0.10 | - | 0.5 ± 0.00 | - | |
LSD of treatments | 0.11 | 0.48 | |||
LSD of genotypes | 0.18 | 0.53 |
Plant Height (cm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg L−1) | Season 2020 | Season 2021 | ||||||||||
Giza 113 | LG 1 | LG 3 | Giza 3 | Local119 | Mean | Giza 113 | LG 1 | LG 3 | Giza 3 | Local119 | Mean | |
10 | 370.33 | 363.00 | 355.33 | 375.00 | 376.67 | 368.07 | 371.67 | 362.67 | 353.50 | 373.44 | 375.67 | 367.39 |
40 | 386.00 | 377.00 | 371.33 | 388.67 | 390.33 | 382.67 | 382.67 | 370.00 | 360.00 | 381.33 | 392.33 | 377.27 |
80 | 311.00 | 307.33 | 297.33 | 318.67 | 325.67 | 312.00 | 309.37 | 300.14 | 291.33 | 315.47 | 324.67 | 308.20 |
Control | 370.33 | 360.33 | 353.33 | 371.33 | 375.33 | 366.13 | 370.67 | 361.44 | 350.00 | 372.00 | 375.00 | 365.82 |
Mean | 359.42 | 351.92 | 344.33 | 363.42 | 367.00 | 357.22 | 358.59 | 348.56 | 338.71 | 360.56 | 366.92 | 354.67 |
F test | LSD at 0.05 | F test | LSD at 0.05 | |||||||||
Treatments | ** | 3.17 | ** | 3.57 | ||||||||
Genotypes | ** | 2.00 | ** | 2.71 | ||||||||
Interaction | NS | NS |
1000-Grain Weight (g) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg L−1) | Season 2020 | Season 2021 | ||||||||||
Giza 113 | LG 1 | LG 3 | Giza 3 | Local119 | Mean | Giza 113 | LG 1 | LG 3 | Giza 3 | Local119 | Mean | |
10 | 42.45 | 36.60 | 38.55 | 40.47 | 41.74 | 39.96 | 40.78 | 36.00 | 39.89 | 42.89 | 41.90 | 40.29 |
40 | 45.31 | 38.07 | 40.55 | 43.27 | 44.32 | 42.31 | 43.35 | 38.30 | 42.60 | 44.34 | 45.08 | 42.73 |
80 | 32.86 | 27.82 | 30.39 | 31.69 | 34.91 | 31.53 | 32.29 | 26.43 | 30.26 | 31.29 | 33.05 | 30.66 |
Control | 42.22 | 36.20 | 38.27 | 40.26 | 41.50 | 39.69 | 40.50 | 35.73 | 39.03 | 42.75 | 41.34 | 39.87 |
Mean | 40.71 | 34.67 | 36.94 | 38.92 | 40.62 | 38.37 | 39.23 | 34.12 | 37.95 | 40.32 | 40.34 | 38.39 |
F test | LSD at 0.05 | F test | LSD at 0.05 | |||||||||
Treatments | ** | 1.3 | ** | 0.84 | ||||||||
Genotypes | ** | 1.08 | ** | 0.6 | ||||||||
Interaction | NS | 1.2 |
Grain Yield/Plant (g) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg L−1) | Season 2020 | Season 2021 | ||||||||||
Giza 113 | LG 1 | LG 3 | Giza 3 | Local119 | Mean | Giza 113 | LG 1 | LG 3 | Giza 3 | Local119 | Mean | |
10 | 79.41 | 71.51 | 73.05 | 74.81 | 80.93 | 75.94 | 78.71 | 71.89 | 72.68 | 75.51 | 81.86 | 76.13 |
40 | 84.10 | 74.44 | 75.64 | 76.59 | 83.96 | 78.95 | 83.25 | 73.67 | 75.91 | 79.04 | 85.54 | 79.48 |
80 | 70.81 | 62.54 | 60.88 | 65.01 | 71.82 | 66.21 | 67.72 | 62.16 | 59.61 | 61.69 | 70.57 | 64.35 |
Control | 79.09 | 71.30 | 73.17 | 74.18 | 80.29 | 75.60 | 78.36 | 71.67 | 72.49 | 75.16 | 81.48 | 75.83 |
Mean | 78.35 | 69.95 | 70.68 | 72.65 | 79.25 | 74.18 | 77.01 | 69.85 | 70.17 | 72.85 | 79.86 | 73.95 |
F test | LSD at 0.05 | F test | LSD at 0.05 | |||||||||
Treatments | ** | 0.77 | ** | 0.98 | ||||||||
Genotypes | ** | 1.11 | ** | 0.62 | ||||||||
Interaction | NS | 1.25 |
Days after Feeding | Concentration (mg L−1) | CBC Analysis | ||
---|---|---|---|---|
RBCs (106) | WBCs (103) | Hb (mg dL−1) | ||
21 | 10 | 7.63 | 6.83 | 14. 2 |
40 | 7.47 | 7.43 | 14. 1 | |
80 | 7.5 | 7.6 | 14.5 | |
Control | 7.42 | 7.57 | 14.1 | |
36 | 10 | 7.52 | 7.32 | 14.63 |
40 | 7.72 | 7.83 | 14.78 | |
80 | 7.8 | 7.6 | 15 | |
Control | 7.38 | 7.08 | 14.5 | |
51 | 10 | 7.87 | 7.15 | 14.49 |
40 | 8.29 | 7 | 15.3 | |
80 | 8.88 | 7.5 | 16.1 | |
Control | 7.49 | 7.25 | 14.4 | |
LSD 0.05 Treatment | 0.54 | 0.52 | 0.4 | |
LSD 0.05 Days of feed | 0.47 | 0.45 | 0.35 |
Days after Feeding | Concentration (mg L−1) | Blood Chemistry | ||
---|---|---|---|---|
AST (u L−1) | ALT (u L−1) | Creatinine (mg dL−1) | ||
21 | 10 | 79 | 34.4 | 0.57 |
40 | 83 | 36.7 | 0.57 | |
80 | 86 | 57.2 | 0.6 | |
Control | 80 | 33.5 | 0.58 | |
36 | 10 | 85 | 35 | 0.6 |
40 | 84.6 | 38 | 0.59 | |
80 | 86 | 65.7 | 0.61 | |
Control | 84 | 34.5 | 0.6 | |
51 | 10 | 83.8 | 35 | 0.67 |
40 | 84.3 | 40.7 | 0.69 | |
80 | 85 | 80.3 | 0.88 | |
Control | 83 | 35 | 0.66 | |
LSD 0.05 Treatment | 0.88 | 0.88 | 0.07 | |
LSD 0.05 Days of feed | 0.76 | 0.76 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ganainy, S.M.; El-Bakery, A.M.; Hafez, H.M.; Ismail, A.M.; El-Abdeen, A.Z.; Ata, A.A.E.; Elraheem, O.A.Y.A.; El Kady, Y.M.Y.; Hamouda, A.F.; El-Beltagi, H.S.; et al. Humic Acid-Coated Fe3O4 Nanoparticles Confer Resistance to Acremonium Wilt Disease and Improve Physiological and Morphological Attributes of Grain Sorghum. Polymers 2022, 14, 3099. https://doi.org/10.3390/polym14153099
El-Ganainy SM, El-Bakery AM, Hafez HM, Ismail AM, El-Abdeen AZ, Ata AAE, Elraheem OAYA, El Kady YMY, Hamouda AF, El-Beltagi HS, et al. Humic Acid-Coated Fe3O4 Nanoparticles Confer Resistance to Acremonium Wilt Disease and Improve Physiological and Morphological Attributes of Grain Sorghum. Polymers. 2022; 14(15):3099. https://doi.org/10.3390/polym14153099
Chicago/Turabian StyleEl-Ganainy, Sherif Mohamed, Amal M. El-Bakery, Heba M. Hafez, Ahmed Mahmoud Ismail, Ali Zein El-Abdeen, Abed Abd Elgalel Ata, Omar A. Y. Abd Elraheem, Yousef M. Y. El Kady, Ahlam F. Hamouda, Hossam S. El-Beltagi, and et al. 2022. "Humic Acid-Coated Fe3O4 Nanoparticles Confer Resistance to Acremonium Wilt Disease and Improve Physiological and Morphological Attributes of Grain Sorghum" Polymers 14, no. 15: 3099. https://doi.org/10.3390/polym14153099
APA StyleEl-Ganainy, S. M., El-Bakery, A. M., Hafez, H. M., Ismail, A. M., El-Abdeen, A. Z., Ata, A. A. E., Elraheem, O. A. Y. A., El Kady, Y. M. Y., Hamouda, A. F., El-Beltagi, H. S., Shehata, W. F., Shalaby, T. A., Abbas, A. O., Almaghsla, M. I., Sattar, M. N., & Iqbal, Z. (2022). Humic Acid-Coated Fe3O4 Nanoparticles Confer Resistance to Acremonium Wilt Disease and Improve Physiological and Morphological Attributes of Grain Sorghum. Polymers, 14(15), 3099. https://doi.org/10.3390/polym14153099