Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biopolymer Electrolyte Formation
2.2. Biopolymer Electrolyte Characterization
3. Results
3.1. FTIR Analysis
3.2. XRD Analysis
3.3. Impedance Analysis
3.4. Ionic Conductivity Analysis
3.5. Dielectric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jose, A.A.; Hazeena, S.H.; Lakshmi, N.M.; Arun, K.B.; Madhavan, A.; Sirohi, R.; Tarafdar, A.; Sindhu, R.; Awasthi, M.K.; Pandey, A.; et al. Bacterial biopolymers: From production to applications in biomedicine. Sustain. Chem. Pharm. 2022, 25, 100582. [Google Scholar] [CrossRef]
- Pinto, L.; Bonifacio, M.A.; de Giglio, E.; Santovito, E.; Cometa, S.; Bevilacqua, A.; Baruzzi, F. Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag. Shelf Life 2021, 28, 100676. [Google Scholar] [CrossRef]
- Logan, K.G.; Nelson, J.D.; Lu, X.; Hastings, A. UK and China: Will electric vehicle integration meet Paris Agreement Targets? Transp. Res. Interdiscip. Perspect. 2020, 8, 100245. [Google Scholar] [CrossRef]
- Sohaimy, M.I.H.; Fauzi, M.J.; Isa, M.I.N. Electrical Behavior of Ethylene Carbonate-Plasticized Cellulose Biopolymer Electrolyte Films. Malays. J. Chem. 2020, 22, 22–28. [Google Scholar]
- Ding, P.; Lin, Z.; Guo, X.; Wu, L.; Wang, Y.; Guo, H.; Li, L.; Yu, H. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 2021, 51, 449–474. [Google Scholar] [CrossRef]
- Wright, P.V. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 1975, 7, 319–327. [Google Scholar] [CrossRef]
- Vinodh, R.; Sasikumar, Y.; Kim, H.J.; Atchudan, R.; Yi, M. Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review. J. Ind. Eng. Chem. 2021, 104, 155–171. [Google Scholar] [CrossRef]
- Tiago, G.A.O.; Matias, I.A.S.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules 2020, 25, 5812. [Google Scholar] [CrossRef]
- Hafiza, M.N.; Isa, M.I.N. Conduction mechanism via correlated barrier hopping in EC-plasticized 2-hydroxyehyl cellulose-ammonium nitrate solid polymer electrolyte. IOP Conf. Ser. Mater. Sci. Eng. 2018, 440, 012039. [Google Scholar] [CrossRef]
- Hafiza, M.N.; Isa, M.I.N. Studies of Ionic Conductivity and A.C. Conduction Mechanism Of 2-Hydroxyethyl Cellulose Based Solid Polymer Electrolytes. J. Sustain. Sci. Manag. 2017, (Special Issue 2), 65–70. [Google Scholar]
- Sundaramahalingam, K.; Nallamuthu, N.; Manikandan, A.; Vanitha, D.; Muthuvinayagam, M. Studies on sodium nitrate based polyethylene oxide/polyvinyl pyrrolidone polymer blend electrolytes. Phys. B Condens. Matter 2018, 547, 55–63. [Google Scholar] [CrossRef]
- Perumal, P.; Christopher Selvin, P.; Selvasekarapandian, S.; Sivaraj, P. Structural and Electrical Properties of Bio-polymer Pectin with LiClO4 Solid Electrolytes for Lithium Ion Polymer Batteries. Mater. Today Proc. 2019, 8, 196–202. [Google Scholar] [CrossRef]
- Sohaimy, M.I.H.; Isa, M.I.N.M. Natural Inspired Carboxymethyl Cellulose (CMC) Doped with Ammonium Carbonate (AC) as Biopolymer Electrolyte. Polymers 2020, 12, 2487. [Google Scholar] [CrossRef]
- Abdullah, A.M.; Aziz, S.B.; Saeed, S.R. Structural and electrical properties of polyvinyl alcohol (PVA): Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt. Arab. J. Chem. 2021, 14, 103388. [Google Scholar] [CrossRef]
- Brza, M.A.; Aziz, S.B.; Nofal, M.M.; Saeed, S.R.; Al-Zangana, S.; Karim, W.O.; Hussen, S.A.; Abdulwahid, R.T.; Kadir, M.F.Z. Drawbacks of Low Lattice Energy Ammonium Salts for Ion-Conducting Polymer Electrolyte Preparation: Structural, Morphological and Electrical Characteristics of CS: PEO: NH4BF4-Based Polymer Blend Electrolytes. Polymers 2020, 12, 1885. [Google Scholar] [CrossRef] [PubMed]
- Kapustinskii, A.F. Lattice energy of ionic crystals. Q. Rev. Chem. Soc. 1956, 10, 283–294. [Google Scholar] [CrossRef]
- Moniha, V.; Alagar, M.; Selvasekarapandian, S.; Sundaresan, B.; Hemalatha, R. Development and Characterization of Bio-Polymer Electrolyte iota-carrageenan with Ammonium Salt for: Electrochemical application. Mater. Today Proc. 2019, 8, 449–455. [Google Scholar] [CrossRef]
- Muthukrishnan, M.; Shanthi, C.; Selvasekarapandian, S.; Shanthi, G.; Sampathkumar, L.; Maheshwari, T. Impact of ammonium formate (AF) and ethylene carbonate (EC) on the structural, electrical, transport and electrochemical properties of pectin-based biopolymer membranes. Ionics 2021, 27, 3443–3459. [Google Scholar] [CrossRef]
- Vanitha, N.; Shanmugapriya, C.; Selvasekarapandian, S.; Naachiyar, R.M.; Krishna, M.V.; Aafrin Hazaana, S.; Nandhini, K.; Ramaswamy, M. Effect of graphene quantum dot on sodium alginate with ammonium formate (NH4HCO2) biopolymer electrolytes for the application of electrochemical devices. Ionics 2020, 28, 2731–2749. [Google Scholar] [CrossRef]
- Modica, P.; Palumbo, M.E. Formation of methyl formate after cosmic ion irradiation of icy grain mantles. Astron. Astrophys. 2010, 519, A22. [Google Scholar] [CrossRef] [Green Version]
- Vinogradoff, V.; Duvernay, F.; Danger, G.; Theulé, P.; Chiavassa, T. New insight into the formation of hexamethylenetetramine (HMT) in interstellar and cometary ice analogs. Astron. Astrophys. 2011, 530, A128. [Google Scholar] [CrossRef]
- Hellebust, S.; O’Riordan, B.; Sodeau, J. Cirrus cloud mimics in the laboratory: An infrared spectroscopy study of thin films of mixed ice of water with organic acids and ammonia. J. Chem. Phys. 2007, 126, 084702. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.I.N.; Sohaimy, M.I.H.; Ahmad, N. Carboxymethyl cellulose plasticized polymer application as bio-material in solid-state hydrogen ionic cell. Int. J. Hydrogen Energy 2021, 46, 8030–8039. [Google Scholar] [CrossRef]
- Moreno, M.A.; Gálvez, O.; Maté, B.; Herrero, V.J.; Escribano, R. Formate Ion: Structure and Spectroscopic Properties. J. Phys. Chem. A 2010, 115, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Ramlli, M.A.; Maksud, M.A.; Isa, M.I.N. Characterization of polyethylene glycol plasticized carboxymethyl cellulose-ammonium fluoride solid biopolymer electrolytes. AIP Conf. Proc. 2017, 1826, 020001. [Google Scholar] [CrossRef] [Green Version]
- Kaewprachu, P.; Jaisan, C.; Rawdkuen, S.; Tongdeesoontorn, W.; Klunklin, W. Carboxymethyl cellulose from Young Palmyra palm fruit husk: Synthesis, characterization, and film properties. Food Hydrocoll. 2022, 124, 107277. [Google Scholar] [CrossRef]
- Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. [Google Scholar] [CrossRef]
- Yang, H.R.; Li, S.S.; An, Q.D.; Zhai, S.R.; Xiao, Z.Y.; Zhang, L.P. Facile transformation of carboxymethyl cellulose beads into hollow composites for dye adsorption. Int. J. Biol. Macromol. 2021, 190, 919–926. [Google Scholar] [CrossRef]
- Yu, J.; Wang, L.; Zhao, Y.; Zhou, C. Preparation, characterization, and antibacterial property of carboxymethyl cellulose derivatives bearing tetrabutylammonium salt. Int. J. Biol. Macromol. 2021, 176, 72–77. [Google Scholar] [CrossRef]
- Rasali, N.M.J.; Saadiah, M.A.; Zainuddin, N.K.; Nagao, Y.; Samsudin, A.S. Ionic transport studies of solid bio-polymer electrolytes based on carboxymethyl cellulose doped with ammonium acetate and its potential application as an electrical double layer capacitor. Express Polym. Lett. 2020, 14, 619–637. [Google Scholar] [CrossRef]
- Shenbagavalli, S.; Muthuvinayagam, M.; Revathy, M. Preparation and characterization of proton (H+) conducting solid blend polymer electrolytes based on PEO/P(VdF-HFP) incorporated with NH4SCN. J. Non-Cryst. Solids 2022, 579, 121368. [Google Scholar] [CrossRef]
- Fahad, M.; Khan, M.A.; Gilbert, M. Investigation of Thermal Gel Formation of Methylcellulose in Glycols Using DSC and XRD. Gels 2021, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Tavera Quiroz, M.; Lecot, J.; Bertola, N.; Pinotti, A. Stability of methylcellulose-based films after being subjected to different conservation and processing temperatures. Mater. Sci. Eng. C 2013, 33, 2918–2925. [Google Scholar] [CrossRef] [PubMed]
- Hafiza, M.; Isa, M. Solid polymer electrolyte production from 2-hydroxyethyl cellulose: Effect of ammonium nitrate composition on its structural properties. Carbohydr. Polym. 2017, 165, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Muchakayala, R.; Song, S.; Gao, S.; Wang, X.; Fan, Y. Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym. Test. 2017, 58, 116–125. [Google Scholar] [CrossRef]
- Samsudin, A.; Khairul, W.M.; Isa, M. Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. Non-Cryst. Solids 2012, 358, 1104–1112. [Google Scholar] [CrossRef]
- Wei, X.; Shriver, D.F. Highly Conductive Polymer Electrolytes Containing Rigid Polymers. Chem. Mater. 1998, 10, 2307–2308. [Google Scholar] [CrossRef]
- Angell, C.A.; Liu, C.; Sanchez, E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 1993, 362, 137–139. [Google Scholar] [CrossRef]
- Srivastava, N.; Chandra, A.; Chandra, S. Dense branched growth of (SCN)x and ion transport in the poly(ethyleneoxide) NH4SCN polymer electrolyte. Phys. Rev. B 1995, 52, 225–230. [Google Scholar] [CrossRef]
- Ma, Q.; Tietz, F. Solid-State Electrolyte Materials for Sodium Batteries: Towards Practical Applications. ChemElectroChem 2020, 7, 2693–2713. [Google Scholar] [CrossRef]
- Bakar, N.Y.; Isa, M.I.N. Ionic Conduction Study Of 2—Hydroxyethyl Cellulose Doped with Dodecyltrimethyl Ammonium Bromide Solid Biopolymer Electrolytes. J. Sustain. Sci. Manag. 2018, 13, 1–10. [Google Scholar]
- Mazuki, N.F.; Fuzlin, A.F.; Saadiah, M.A.; Samsudin, A.S. An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics 2019, 25, 2657–2667. [Google Scholar] [CrossRef]
- Fuzlin, A.F.; Samsudin, A.S. Studies on favorable ionic conduction and structural properties of biopolymer electrolytes system-based alginate. Polym. Bull. 2021, 78, 2155–2175. [Google Scholar] [CrossRef]
- Rahman, N.A.; Hanifah, S.A.; Mobarak, N.N.; Ahmad, A.; Ludin, N.A.; Bella, F.; Su’ait, M.S. Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer 2021, 230, 124092. [Google Scholar] [CrossRef]
- Vahini, M.; Muthuvinayagam, M. AC impedance studies on proton conducting biopolymer electrolytes based on pectin. Mater. Lett. 2018, 218, 197–200. [Google Scholar] [CrossRef]
- Nithya, S.; Selvasekarapandian, S.; Premalatha, M. Synthesis and characterization of proton-conducting polymer electrolyte based on polyacrylonitrile (PAN). Ionics 2016, 23, 2767–2774. [Google Scholar] [CrossRef]
- Samsudin, A.; Isa, M. Structural and Ionic Transport Study on CMC Doped NH4Br: A New Types of Biopolymer Electrolytes. J. Appl. Sci. 2012, 12, 174–179. [Google Scholar] [CrossRef]
- Coşkun, M.; Polat, Ö.; Coşkun, F.M.; Durmuş, Z.; Çağlar, M.; Türüt, A. The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 2018, 8, 4634–4648. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.B.; Al-Zangana, S.; Woo, H.; Kadir, M.; Abdullah, O.G. The compatibility of chitosan with divalent salts over monovalent salts for the preparation of solid polymer electrolytes. Results Phys. 2018, 11, 826–836. [Google Scholar] [CrossRef]
- Shen, W.; Ou, T.; Wang, J.; Qin, T.; Zhang, G.; Zhang, X.; Han, Y.; Ma, Y.; Gao, C. Effects of high pressure on the electrical resistivity and dielectric properties of nanocrystalline SnO2. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Maqsood, A. Structural, dielectric, impedance, complex modulus, and optical study of Ni-doped Zn(1−x)NixO nanostructures at high temperatures. Mater. Res. Express 2021, 8, 115005. [Google Scholar] [CrossRef]
Designation | CMC (g) | AFT (g) | AFT (wt.%) |
---|---|---|---|
AFT00 | 1.000 | - | 0 |
AFT10 | 0.111 | 10 | |
AFT20 | 0.250 | 20 | |
AFT30 | 0.429 | 30 | |
AFT40 | 0.667 | 40 | |
AFT50 | 1.000 | 50 |
Biopolymer Electrolyte | Ionic Conductivity, (S/cm) | References |
---|---|---|
CMC–DTAB | 2.8 × 10−5 | [41] |
CMC–PVA-NH4Cl | 8.86 × 10−5 | [42] |
Alginate-NH4Br | 4.41 × 10−5 | [43] |
Chitosan-NH4I | 1.11 × 10−4 | [44] |
Pectin-NH4SCN | 4.05 × 10−6 | [45] |
CMC–AFT | 1.47 × 10−4 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohaimy, M.I.H.; Isa, M.I.N. Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate. Polymers 2022, 14, 3019. https://doi.org/10.3390/polym14153019
Sohaimy MIH, Isa MIN. Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate. Polymers. 2022; 14(15):3019. https://doi.org/10.3390/polym14153019
Chicago/Turabian StyleSohaimy, M. I. H., and M. I. N. Isa. 2022. "Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate" Polymers 14, no. 15: 3019. https://doi.org/10.3390/polym14153019
APA StyleSohaimy, M. I. H., & Isa, M. I. N. (2022). Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate. Polymers, 14(15), 3019. https://doi.org/10.3390/polym14153019