Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Methyl Dihydro Ferulate
2.3. Synthesis of Poly-Dihydro (Ethylene Ferulate)-PHEF
2.4. Preparation of PBSA/PHEF Compounds
2.5. NMR Analysis
2.6. Gel Permeation Chromatography (GPC)
2.7. Dynamic Scan Calorimetry (DSC)
2.8. Thermogravimetric Analysis (TGA)
2.9. Tensile Tests
2.10. Aging Test
2.11. Biodegradability
3. Results and Discussions
3.1. Synthesis and Characterization of Poly-Dihydro (Ethylene Ferulate)-PHEF
3.2. Effect of PHEF on Thermal and Antioxidant Properties of PBSA
3.3. Aging Tests: Effect of PHEF as UV Radiation Stabilizer
3.4. Biodegradability Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent Advances in Mulching Materials and Methods for Modifying Soil Environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Briassoulis, D.; Degli Innocenti, F. Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783662541289. [Google Scholar]
- Briassoulis, D.; Giannoulis, A. Evaluation of the Functionality of Bio-Based Plastic Mulching Films. Polym. Test. 2018, 67, 99–109. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Directorate General for Environment, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Soil Strategy for 2030, Brussels (Belgium). 17 November 2021. Available online: https://environment.ec.europa.eu/publications/eu-soil-strategy-2030_en (accessed on 28 April 2022).
- ISO 17556: 2012; Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. ISO: Geneva, Switzerland, 2012.
- ISO 17033: 2018; Plastics—Biodegradable Mulch Films for Use in Agriculture and Horticulture—Requirements and Test Methods. ISO: Geneva, Switzerland, 2018.
- Touchaleaume, F.; Angellier-Coussy, H.; César, G.; Raffard, G.; Gontard, N.; Gastaldi, E. How Performance and Fate of Biodegradable Mulch Films Are Impacted by Field Ageing. J. Polym. Environ. 2018, 26, 2588–2600. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Alvarado, E.; Camacho Montero, J.R.; Rosales, J.M. Atmospheric and Soil Degradation of Aliphatic-Aromatic Polyester Films. Polym. Degrad. Stab. 2010, 95, 99–107. [Google Scholar] [CrossRef]
- Dintcheva, N.T.; D’anna, F. Anti-/pro-Oxidant Behavior of Naturally Occurring Molecules in Polymers and Biopolymers: A Brief Review. ACS Sustain. Chem. Eng. 2019, 7, 12656–12670. [Google Scholar] [CrossRef]
- Kirschweng, B.; Tátraaljai, D.; Földes, E.; Pukánszky, B. Natural Antioxidants as Stabilizers for Polymers. Polym. Degrad. Stab. 2017, 145, 25–40. [Google Scholar] [CrossRef] [Green Version]
- López-Rubio, A.; Lagaron, J.M. Improvement of UV Stability and Mechanical Properties of Biopolyesters through the Addition of b -Carotene. Polym. Degrad. Stab. 2010, 95, 2162–2168. [Google Scholar] [CrossRef]
- Dintcheva, N.T.; La Mantia, F.P.; Arrigo, R. Natural Compounds as Light Stabilizer for a Starch-Based Biodegradable Polymer. J. Polym. Eng. 2014, 34, 441–449. [Google Scholar] [CrossRef]
- Arrigo, R.; Morici, E.; Dintcheva, N.T. Biopolyester-Based Systems Containing Naturally Occurring Compounds with Enhanced Thermooxidative Stability. J. Appl. Biomater. Funct. Mater. 2016, 14, 455–462. [Google Scholar] [CrossRef]
- Oral, E.; Godleski, C.A.; Lozynsky, A.J.; Malhi, A.S.; Muratoglu, O.K. Biomaterials Improved Resistance to Wear and Fatigue Fracture in High Pressure Crystallized Vitamin E-Containing Ultra-High Molecular Weight Polyethylene. Biomaterials 2009, 30, 1870–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reano, A.F.; Domenek, S.; Pernes, M.; Beaugrand, J.; Allais, F. Ferulic Acid-Based Bis/Trisphenols as Renewable Antioxidants for Polypropylene and Poly(Butylene Succinate). ACS Sustain. Chem. Eng. 2016, 4, 6562–6571. [Google Scholar] [CrossRef]
- Contardi, M.; Heredia-guerrero, J.A.; Bayer, I.S.; Contardi, M.; Guzman-puyol, S.; Summa, M.; Cusimano, G.; Picone, P.; Carlo, D.; Bertorelli, R. Combining Dietary Phenolic Antioxidants with Polyvinylpyrrolidone: Transparent Biopolymer Films Based on p-Coumaric Acid for Controlled Release. J. Mater. Chem. B 2019, 7, 1384–1396. [Google Scholar] [CrossRef] [PubMed]
- Tátraaljai, D.; Földes, E.; Pukánszky, B. Efficient Melt Stabilization of Polyethylene with Quercetin, a Flavonoid Type Natural Antioxidant. Polym. Degrad. Stab. 2014, 102, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Agustin-Salazar, S.; Gamez-Meza, N.; Medina-Juàrez, L.A.; Soto-Valdez, H.; Cerruti, P. From Nutraceutics to Materials: Effect of Resveratrol on the Stability of Polylactide. ACS Sustain. Chem. Eng. 2014, 2, 1534–1542. [Google Scholar] [CrossRef]
- Barana, D.; Ali, S.D.; Salanti, A.; Orlandi, M.; Castellani, L.; Hanel, T.; Zoia, L. Influence of Lignin Features on Thermal Stability and Mechanical Properties of Natural Rubber Compounds. ACS Sustain. Chem. Eng. 2016, 4, 5258–5267. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Argyropoulos, D.S. Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene. ACS Sustain. Chem. Eng. 2015, 3, 349–356. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Bridson, J.H.; Lomas, C.; Elliot, J.A. Esterification of Condensed Tannins and Their Impact on the Properties of Poly(Lactic Acid). Polymers 2013, 5, 344–360. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Bridson, J.H.; Lomas, C.; Frey, H. Evaluating Modified Tannin Esters as Functional Additives in Polypropylene and Biodegradable Aliphatic Polyester. Macromol. Mater. Eng. 2014, 299, 1251–1258. [Google Scholar] [CrossRef]
- Gerin, F.; Erman, H.; Erboga, M.; Sener, U.; Yilmaz, A.; Seyhan, H.; Gurel, A. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity. Inflammation 2016, 39, 1377–1386. [Google Scholar] [CrossRef]
- Ouimet, M.A.; Gri, J.; Carbone-howell, A.L.; Wu, W.; Stebbins, N.D.; Di, R.; Uhrich, K.E. Biodegradable Ferulic Acid-Containing Poly(Anhydride-Ester): Degradation Products with Controlled Release and Sustained Antioxidant Activity. Biomacromolecules 2013, 14, 854–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ggaf, E. Antioxidant Potential of Ferulic Acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar]
- Available online: https://agrimax.iris-eng.com/ (accessed on 27 February 2017).
- Dintcheva, N.T.; Arrigo, R.; Baiamonte, M.; Rizzarelli, P.; Curcuruto, G. Concentration-Dependent Anti-/pro-Oxidant Activity of Natural Phenolic Compounds in Bio-Polyesters. Polym. Degrad. Stab. 2017, 142, 21–28. [Google Scholar] [CrossRef]
- Du, J.; Fang, Y.; Zheng, Y. Synthesis and Characterization of Poly(l-Lactic Acid) Reinforced by Biomesogenic Units. Polym. Degrad. Stab. 2008, 93, 838–845. [Google Scholar] [CrossRef]
- Cerruti, P.; Santagata, G.; Gomez, G.; Ambrogi, V.; Carfagna, C.; Malinconico, M.; Persico, P. Effect of a Natural Polyphenolic Extract on the Properties of a Biodegradable Starch-Based Polymer. Polym. Degrad. Stab. 2011, 96, 839–846. [Google Scholar] [CrossRef]
- Rossi, C.; Schoubben, A.; Ricci, M.; Perioli, L.; Ambrogi, V.; Latterini, L.; Aloisi, G.G.; Rossi, A. Intercalation of the Radical Scavenger Ferulic Acid in Hydrotalcite-like Anionic Clays. Int. J. Pharm. 2005, 295, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.; Hennous, M.; Verney, V.; Leroux, F. Functionalisation of Polybutylene Succinate Nanocomposites: From Structure to Reinforcement of UV-Absorbing and Mechanical Properties. RSC Adv. 2012, 2, 5430–5438. [Google Scholar] [CrossRef]
- Marek, A.A.; Verney, V.; Totaro, G.; Sisti, L.; Celli, A.; Leroux, F. Composites for «white and Green» Solutions: Coupling UV Resistance and Chain Extension Effect from Poly(Butylene Succinate) and Layered Double Hydroxides Composites. J. Solid State Chem. 2018, 268, 9–15. [Google Scholar] [CrossRef]
- Marek, A.A.; Verney, V.; Taviot-Gueho, C.; Totaro, G.; Sisti, L.; Celli, A.; Leroux, F. Outstanding Chain-Extension Effect and High UV Resistance of Polybutylene Succinate Containing Amino-Acid-Modified Layered Double Hydroxides. Beilstein J. Nanotechnol. 2019, 10, 684–695. [Google Scholar] [CrossRef]
- Sisti, L.; Totaro, G.; Celli, A.; Diouf-Lewis, A.; Verney, V.; Leroux, F. A New Valorization Route for Olive Mill Wastewater: Improvement of Durability of PP and PBS Composites through Multifunctional Hybrid Systems. J. Environ. Chem. Eng. 2019, 7, 103026. [Google Scholar] [CrossRef]
- Marek, A.A.; Verney, V.; Totaro, G.; Sisti, L.; Celli, A.; Bozzi, N.; Di, D.; Massacrier, L.; Leroux, F. Organo-Modified LDH Fillers Endowing Multi-Functionality to Bio-Based Poly (Butylene Succinate): An Extended Study from the Laboratory to Possible Market. Appl. Clay Sci. 2020, 188, 105502. [Google Scholar] [CrossRef]
- Reano, A.F.; Chérubin, J.; Peru, A.M.M.; Wang, Q.; Clément, T.; Domenek, S.; Allais, F. Structure-Activity Relationships and Structural Design Optimization of a Series of p-Hydroxycinnamic Acids-Based Bis- and Trisphenols as Novel Sustainable Antiradical/Antioxidant Additives. ACS Sustain. Chem. Eng. 2015, 3, 3486–3496. [Google Scholar] [CrossRef]
- Parisi, O.I.; Puoci, F.; Iemma, F.; De Luca, G.; Curcio, M.; Cirillo, G.; Spizzirri, U.G.; Picci, N. Antioxidant and Spectroscopic Studies of Crosslinked Polymers Synthesized by Grafting Polymerization of Ferulic Acid. Polym. Adv. Technol. 2010, 21, 774–779. [Google Scholar] [CrossRef]
- Ya Gioia, C.; Banella, M.B.; Totaro, G.; Vannini, M.; Marchese, P.; Colonna, M.; Sisti, L.; Celli, A. Biobased Vanillic Acid and Ricinoleic Acid: Building Blocks for Fully Renewable Copolyesters. J. Renew. Mater. 2018, 6, 126–135. [Google Scholar] [CrossRef]
- Gioia, C.; Banella, M.B.; Marchese, P.; Vannini, M.; Colonna, M.; Celli, A. Advances in the Synthesis of Bio-Based Aromatic Polyesters: Novel Copolymers Derived from Vanillic Acid and ϵ-Caprolactone. Polym. Chem. 2016, 7, 5396–5406. [Google Scholar] [CrossRef]
- Kreye, O.; Oelmann, S.; Meier, M.A.R. Renewable Aromatic-Aliphatic Copolyesters Derived from Rapeseed. Macromol. Chem. Phys. 2013, 214, 1452–1464. [Google Scholar] [CrossRef]
TOnset (°C) 1 | Tmax (°C) 1 | Tg (°C) 2 | Mw (Da) 3 | PDI 3 |
---|---|---|---|---|
380 | 423 | 30.7 | 36,000 | 2.3 |
Sample | PBSA (%) | PHEF (%) | Luperox® 101XL45 (%) | Irganox® 1010 (%) | OIT (min) | TOnset (°C) |
PBSA | 100 | -- | -- | -- | 49.3 | 284 |
PBSA0.5IRG | 99.5 | -- | -- | 0.5 | 57.8 | 325 |
PBSABLEND | 95 | 5 | -- | -- | 63.1 | 351 |
PBSAREX0.5 | 94.5 | 5 | 0.5 | -- | 63.1 | 353 |
PBSAREX0.25 | 94.75 | 5 | 0.25 | -- | 64.4 | 360 |
Time of Irradiation | 0 h | 300 h | 600 h | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample | EYoung (MPa) | σbreak (MPa) | εbreak (%) | EYoung (MPa) | σbreak (MPa) | εbreak (%) | EYoung (MPa) | σbreak (MPa) | εbreak (%) |
PBSA | 244 ± 30 | 25.0 ± 0.8 | 520 ± 2 | 299 ± 22 | 9.9 ± 0.2 | 5.4 ± 0.2 | 158 ± 18 | 5.4 ± 0.8 | 6.4 ± 0.3 |
PBSA0.5IRG | 208 ± 95 | 20.4 ± 1.9 | 470 ± 40 | 234 ± 116 | 13.3 ± 1.2 | 110 ± 45 | 184 ± 63 | 8.5 ± 0.3 | 8.1 ± 1.5 |
PBSABLEND | 214 ± 86 | 22.0 ± 1.2 | 480 ± 11 | 250 ± 69 | 14.1 ± 1.3 | 140 ± 74 | 132 ± 23 | 12.4 ± 0.2 | 19.0 ± 1.0 |
PBSAREX0.5 | 191 ± 32 | 21.2 ± 1.9 | 290 ± 140 | 179 ± 75 | 17.3 ± 2.3 | 160 ± 35 | 173 ± 73 | 16.1 ± 1.0 | 190.0 ± 18.0 |
PBSAREX0.25 | 185 ± 15 | 21.0 ± 3.5 | 690 ± 100 | 208 ± 71 | 16.0 ± 0.1 | 230 ± 8 | 90.3 ± 6.1 | 12.3 ± 1.2 | 35.0 ± 22.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva, M.P.; Gioia, C.; Sisti, L.; Martí, L.; Llorens-Chiralt, R.; Verstichel, S.; Celli, A. Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture. Polymers 2022, 14, 2874. https://doi.org/10.3390/polym14142874
Villanueva MP, Gioia C, Sisti L, Martí L, Llorens-Chiralt R, Verstichel S, Celli A. Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture. Polymers. 2022; 14(14):2874. https://doi.org/10.3390/polym14142874
Chicago/Turabian StyleVillanueva, Maria Pilar, Claudio Gioia, Laura Sisti, Laura Martí, Raquel Llorens-Chiralt, Steven Verstichel, and Annamaria Celli. 2022. "Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture" Polymers 14, no. 14: 2874. https://doi.org/10.3390/polym14142874
APA StyleVillanueva, M. P., Gioia, C., Sisti, L., Martí, L., Llorens-Chiralt, R., Verstichel, S., & Celli, A. (2022). Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture. Polymers, 14(14), 2874. https://doi.org/10.3390/polym14142874