The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi
Abstract
:1. Introduction
2. Chitosan
2.1. Chitosan seed Treatments
2.2. Chitosan Treatments Dedicated for Field Application
2.3. Pre- and Post-Harvest Crop Protection Based on Chitosan
Form of Application | Chemical Composition of the Seed Treatment Formulation * | Target Pathogen(s) (Plant Disease) | Effects of the Treatment | Ref. | |
---|---|---|---|---|---|
Carbohydrate Polymer or Its Derivative | Other Components | ||||
Seed coating | CS (low and medium Mw) | propolis extract, Tween 80, Halloysite | Fusarium circinatum (pre- and post- emergence damping off in pine seedlings) | All coatings significantly reduced the post-emergence mortality of Pinus sylvestris seedlings inoculated with F. circinatum; coating with low Mw chitosan also had a positive influence on total phenolic content and antioxidant capacity of the seedlings. | [41] |
Seed coating | CS | Fungi isolated from Jatropha curcas seeds: Fusarium equiseti, Curvularia lunata | Inhibited mycelium growth, sporulation and spore germination in vitro; improved germination of J. curcas seeds inoculated with F. equiseti or C. lunata. | [42] | |
Seed coating | CS | Fungicide: tetramethylthiuram disulfide; Span 80 | seed borne fungi on artichoke seeds e.g., Rhizopus sp., Aspergillus sp. | Stimulated formation of an abundant root system, reduced fungal infection of seeds/seedlings, but Rhizopus sp. is effectively inhibited only by the fungicide. | [43] |
Seed treatment | CS | HCl, NaOH | Fusarium solani (root rot disease on fenugreek) | Significantly reduced growth, sporulation, dried biomass and spore germination of F. solani | [44] |
Seed treatment | CS | Fungicide: Benomyl [methyl 1-(butylcarbamoyl) -2-benzimidazole], acetic acid | Soil borne pathogens threatening pepper seeds | Improved the germination at 25 °C, higher emergence in cold test, increased activity of chitinase and glucanase in chitosan-treated seeds compared to the untreated ones. | [45] |
Seed treatment | CS | CS-Garlic EO NPs, sodium tripolyphosphate | Fusarium oxyporum, Aspergillus versicolor, Aspergillus niger (Fusarium head blight, wilt and root rot on cereals) | Synergistic effect of CS NPs and garlic EO resulting in a strong antifungal activity; stimulated germination and seedling growth. | [46] |
- | COS | - | Fusarium graminearum (crown/root rot, Fusarium head blight in cereals) | Antifungal effects against F. graminearum, affected conidia germination and caused ultrastructural modifications of fungi | [47] |
Spray | COS | ε-poly-l-lysine | Botrytis cinerea (tomato gray mold) | Strong antifungal, synergistic effect of application of two bio-fungicides in combination, inhibition rate of B. cinerea > 90% in vitro, effective protection of the plants in vivo | [48] |
Spray, seed treatment | COS | TEMPO, NaBr, NaOCl, NaOH, HCl | B. cinerea | Effective control B. cinerea on tomatoes and better antifungal activity, significant growth stimulation of cucumber seedlings | [49] |
Seed treatment | AG | Bacillus subtilis, bentonite, starch and titanium dioxide NPs | Rhizoctonia solani (seed decay and damping-off of bean seedlings) | The application of encapsulated B. subtilis on inoculated bean seeds provided stronger disease inhibition compared to free bacteria. It also increased the parameters of vegetative growth of bean plants. | [64] |
Seed treatment | AG | Three strains of Streptomyces spp. | Ganoderma boninense (Basal stem rot disease on oil palms) | S. palmae CMU-AB204T strain exhibited the strong antifungal activity in vitro. It was also the most effective in suppressing the disease on oil palm seedlings in vivo. | [65] |
Seed treatment | AG | Ag NPs, aldehyde | Colletotrichum lagenarium, Sclerotinia sclerotiorum, C. gloeosporioides, F. solani, Sphaeropsidales, R. solani | Nanopesticide with a broad-spectrum antifungal activity in vitro. No negative effects on seed germination were detected. | [66] |
Seed treatment | AG | Silica NPs, EOS from: Cymbopogon citratus, Syzygium aromaticum | Gaeumannomyces graminis var. tritici | The rate of disease control was >20% higher than in control when tested on wheat | [67] |
Seed coating | EC, HEC, MC | sodium lignosulfonate, lauryl sulfate | storage fungi e.g., Aspergillus niger (seed deterioration in storage) | After few months of storage: lower moisture content of the seeds, higher germination percentage, higher emergence in the field and lower fungal infestation. | [68] |
Seed treatment | CMC | Biocontrol microorganisms: Bacillus cereus, Trichoderma harzianum | F. graminearum (cereal damping-off complex) | Reduced disease severity after seed treatment with biocontrol in controlled conditions. | [69] |
Seed coating | CMC | Fungicides: difenoconazole, fludioxonil FSC, LAE-9, NNO, polyacrylamide, ethylene glycol, gelatin, pigment | Rhizoctonia cerealis (Sharp eyespot of wheat) | Reduced severity sharp eyespot disease in the field. | [70] |
Electrospun seed coating | CDA nanofibers | Pesticides (abamectin, fluopyram) acetone, dimethyl acetamid | soil borne fungi e.g., Alternatia spp. (soil borne diseases of soybean) | Laboratory tests showed: slow release of pesticides in water environment and growth inhibition of A. lineariae by fluopyram released from nanofibers. | [71] |
Electrospun seed coating | CA nanofibers | Cu2+, gelatin surfactant (Tween80), acetic acid | Fusarium oxysporum | Promoted seed germination in diseased media, increased seedling biomass. | [72] |
3. Alginate
3.1. Alginate Seed Treatments
3.2. Alginate Treatments Dedicated for Field Application
3.3. Pre- and Post-Harvest Crop Protection Based on Alginate
Form of Application | Chemical Composition of the Seed Treatment Formulation * | Target Pathogen(s) (Plant Disease) | Effects of the Treatment | Ref. | |
---|---|---|---|---|---|
Carbohydrate Polymer or Its Derivative | Other Components | ||||
- | CS | CS NPs, CS-Ag NCs, AgNO3, TPP, NaOH, Na5P3O10 | Fusarium oxysporum | Reduced fungal growth in vitro, morphological and ultrastructural changes in of the mycelium | [50] |
Soil application | CS | CS-Ag CS-CuO, CS-ZnO | F. oxysporum f. sp. Ciceri (Wilt disease of chickpea) | Nanocomposites of chitosan combined with CuO or ZnO provided the most effective protection against wilt disease and promoted growth of chickpea plants | [51] |
Seed treatment, foliar application | CS | CS-Cu NPs | Curvularia lunata, (Curvularia leaf spot disease of maize) | Lower disease severity observed in maize in pot and field experiments, plant growth stimulation. | [52] |
Seedling treatment | CS | vanilin, cinnamaldehyde, polyaniline, sodium montmorillonite | Pythium spp. Fusarium oxysporum (root rot, pre-emergence damping off in tomato plants) | Strong inhibitory effect on the linear growth of both target pathogens, reduced disease incidence under greenhouse conditions | [54] |
- | CS | CS-Saponin NPs, CS-Cu NPs, TPP | Alternaria alternata, Macrophomina phaseolina, Rhizoctonia solani, | Compared to CS-Saponin NPs, CS-Cu NPs were more effective and caused fungal growth inhibition in vitro of 89.5%, 63.0% and 60.1% in case of A. alternate, M. phaseolina and R. solani, respectively. | [56] |
Encapsulation | CS | CS-pectin NPs, fungicide: carbendazim | F. oxysporum, Aspergillus parasiticus | 100% inhibition of tested fungi. Carbendazim nanoformulation showed greater efficacy at a lower concentration compared to the top carbendazim and commercial form against target species | [57] |
Foliar spray | CS | CS-Cu NPs, CuSO4, fungicide: Bavistin | Curvularia lunata (Curvularia leaf spot in maize) | Significant defense response and control of the disease in maize. | [52] |
Encapsulation | AG | Fungicide: Bosphorus -(formerly nicobiphene); bentonite | Botrytis. cinerea (gray mold on cucumber) | Broad-spectrum fungicide inhibits the respiration of fungi by binding to the enzyme succinate dehydrogenase in fungal mitochondria. | [89] |
Encapsulation | AG beads | Fungicide: thiram | various fungi | Slower release the active fungicide in vitro and in the soil. | [90] |
Spray | AOS | Meyerozyma guilliermondii | Penicillium Expansum (blue mold on pears) | The results showed that AOS (5 g/L) combined with M. guilliermondii significantly reduced blue mold decay incidence and lesion diameter in pears. | [91] |
Encapsultion | EC | Fungicide: fluazinam; gum arabic, emulsifier | B cinerea (gray mold on cucumber) | In in vitro tests: stronger inhibitory effect on B. cinerea. In the field experiment: slower degradation after spraying plants and no phytotoxic effects on plants in case of encapsulated fungicide compared to fungicide suspension. | [105] |
Nano- carriers | fatty acid cellulose ester | Fugicides: captan, pyraclostrobin | Neonectria ditissima, Phaeoacremonium minimum (Apple Canker and Esca disease of grapevine) | In in vitro tests: pesticide release in contact with cellulolytic fungi and fungal growth inhibition | [106] |
Nano- carriers | HPC | Fungicide (pyraclostrobin); silica NPs | Magnaporthe oryzae (rice blast) | Fungicide release induced either by low pH or cellulase. Prolonged photostability and reduced cytotoxicity of the fungicide delivered in nanocarriers compared to commercial formulations. | [107] |
Micro-spheres | Copolymer: CS, CMC | EOS: citral | B. cinerea (gray mold in solanaceous crops) | Antifungal activity in vitro and reduced disease incidence in tomato tested in vivo | [108] |
Electrospun memebrane | CA | 5-chloro-8-hydroxyquinolinol, polyethylene glycol, acetone | Phaeomoniella chlamydospora, Phaeoacremonium aleophilum (Esca on grapevine) | Membranes prevent fungal spore penetration of plant tissues wounded by pruning procedure | [109] |
4. Cellulose
4.1. Cellulose Seed Treatments
4.2. Cellulose Treatments Dedicated for Field Application
4.3. Post-Harvest Crop Protection Based on Cellulose
Fruit or Vegetable | Chemical Composition of the Coating * | Fungi Responsible for Crop Decay | Effects of the Coating | Ref. | |
---|---|---|---|---|---|
Carbohydrate Polymer or Its Derivative | Other Components | ||||
Apple | CS | licorice extract | Penicillium expansum | CS-licorice coating inhibited P. expansum growth, reduced postharvest decay rate and weight loss of apples. | [58] |
Cherry tomato | CS | EOS from Mentha spp. | P. expansum, Botrytis cinerea, Rhizopus stolonifera, Aspergillus niger | CS-EOS combination strongly inhibited mycelial growth and spore germination of target fungi. CS-EOS coatings reduced decay of inoculated tomato fruits and preserved quality of the stored fruit | [59] |
Grapes | CS | salicylic acid, glacial acetic acid, NaOH | B. cinerea | Compared to pure CS coatings, coatings based on CS-salicylic acid conjugate were the most effective at promoting plant resistance, reducing fruit decay while improving their storability | [60] |
Grapes | CS NPs | Silica NPs | B. cinerea | Compared to both types of NPs, CS-silica nanocomposites were the most effective in inhibiting B. cinerea growth in vitro and in vivo. No negative impact on fruit quality was observed. | [61] |
Bell pepper | CS NPs | Byrsonima crassifolia extract | Alternaria alternata | CS NPs inhibited A. alternata growth up to 100% in vitro; when used in edible coatings in vivo they reduced the counts of microorganisms, decreased weight loss and improved quality of peppers after storage. | [62] |
Orange | CS | pomegranate peel extract, Wickerhamomyces anomalus | Penicillium digitatum | Coatings combining CS, pomegranate peel extract and W. anomalus showed the strongest antifungal effect in vivo (synergistic effect of the three components confirmed) | [63] |
Blueberry | AG | Cyclolipopeptides from Bacillus subtilis | Aspergillus niger | Compared to uncoated control, coated fruit showed >10× lower fungal contamination, reduced respiratory rate and weight loss during cold storage | [95] |
Papaya | AG | Thyme and oregano EOS, Cween 80 | not specified | Coatings reduced weight loss of fresh-cut fruit, retarded pH changes, reduced respiration rate thus delayed senescence | [96] |
Apple | AG | EOS: lemongrass, oregano, vanillin; apple puree | Listeria innocua | Coatings with EOS inhibited the growth of L. innocua inoculated on apple pieces as well as psychrophilic aerobic bacteria, yeasts and molds | [99] |
Pineapple | AG | EOS: lemongrass, glycerol, sunflower oil, ascorbic acid, citric acid | yeast and molds | Reduced weight loss, respiration rate, total counts of microorganisms, yeast and molds during storage | [97] |
Raspberry | AG | EOS: citral and eugenol, ascorbic acid | yeast and molds | Improved storability, nutritional and sensory quality of fruits, growth inhibition of molds, yeasts and aerobic mesophilic microorganisms (compared to uncoated control) | [98] |
Grapes | AG | vanillin, glycerol | B. cinerea | Maintained nutritional quality, sensory quality and extended the shelf-life of grapes, reduced growth of yeasts and molds | [100] |
Peach | AG | rhubarb extract | P. expansum | Reduced weight loss, firmness loss, respiratory rate and higher nutritional value compared to uncoated control fruits; reduced decay index recorded for coated fruit which were previously inoculated with P. expansum. | [101] |
Shiitake mushrooms | AG | Nano-Ag | bacteria, yeasts and molds | Enhanced shelf-life, higher physicochemical and sensory quality, reduced weight loss, lower counts of different groups of microorganisms. | [102] |
Strawberry | AG | ZnO NPs | not specified | Enhanced shelf-life, reduced loss of weight, texture quality and the content of the ascorbic acid, total phenols and anthocyanins. | [103] |
Kiwifruit | AOS | - | B. cinerea | AOS did not inhibit the growth of B. cinerea in vitro, but reduced the incidence of gray mold and diameter of lesions of kiwifruit during storage. | [104] |
Guava | CMC | - | not specified | Reduced decay and weight loss of fruits; higher firmness; better sensory attributes; higher sugar, ascorbic acid and phenol contents; higher titratable acidity | [117] |
Mandarin | CMC | - | Penicillium italicum | Best results compared to chitosan and beeswax coatings: reduced decay and weight loss of fruits; higher juice content and firmness of the fruits; lower activity of cell wall degrading enzymes; higher titratable acidity; higher ascorbic acid and carotenoids contents | [118] |
Strawberry | CMC | probiotic bacteria: Lactobacillus plantarum, glycerol | Reduced counts of yeast and molds and reduced percentage of decayed fruits after cold storage (better results compared to control and compared to pure CMC coating); reduced weight loss, slower deterioration of ascorbic acid and phenolic compounds. | [119] | |
Tangerine | CMC | ethanol extract of Impatiens balsamina L. stems, citric acid, sucrose ester, calcium propionate, glycerol | Penicillium spp. | Improved results compared to pure CMC coating: lowest decay and weight loss after cold storage; highest total soluble solid, titratable acid, total sugar and ascorbic acid contents; highest activity of antioxidant and defence-related enzymes | [120] |
Avocado | CMC | Moringa plant extracts | Colletotrichum gloeosporioides, A. alternata, Lasiodiplodia theobromae | Reduced decay and weight loss of the stored fruit higher firmness of the fruit; reduced ethylene production and respiration rate; confirmed antifungal effect in fungal inoculation in vivo test. | [121] |
Orange | HPMC | food preservatives, shellac, beeswax, glycerol, stearic acid | P. digitatum, P. italicum | Lower incidence and severity of the disease observed on Penicillum sp. inoculated fruit (compared to inoculated and uncoated control). The most effective coating contained potassium sorbate and sodium propionate. Coating had no adverse effects on fruit quality. | [122] |
Cherry tomato | HPMC | food preservatives | B. cinerea, A. alternata | Positive effect on the fruit quality and antifungal properties of coatings were confirmed. | [123] |
5. Advantages and Disadvantages of Carbohydrate Biopolymers Used in Plant Protection
6. Future Perspectives and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Bebber, D.P.; Gurr, S.J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 2015, 74, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 2020, 1, 332–342. [Google Scholar] [CrossRef]
- Russell, P.E. A century of fungicide evolution. J. Agric. Sci. 2005, 143, 11–25. [Google Scholar] [CrossRef]
- Gianessi, L.P.; Reigner, N. The importance of fungicides in U.S. crop production. Outlooks Pest Manag. 2006, 17, 209–213. [Google Scholar] [CrossRef]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathol. 2022, 71, 150–169. [Google Scholar] [CrossRef]
- Fungicide Resistance Action Commitee. FRAC Code List 2021: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. Available online: https://www.frac.info (accessed on 20 April 2022).
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Bruhl, C.A.; Imfeld, G.; Knabel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmuller, A.; et al. Fungicides: An overlooked pesticide class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Russell, P.E. The development of commercial disease control. Plant Pathol. 2006, 55, 585–594. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020; Volume COM(2020) 381 final. [Google Scholar]
- Lázaro, E.; Makowski, D.; Vicent, A. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Commun. Earth Environ. 2021, 2, 224. [Google Scholar] [CrossRef]
- Tleuova, A.B.; Wielogorska, E.; Talluri, V.; Stepanek, F.; Elliott, C.T.; Grigoriev, D.O. Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. J. Control. Release 2020, 326, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular mechanisms of chitosan interactions with fungi and plants. Int. J. Mol. Sci. 2019, 20, 332. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xing, K.; Zhu, X.; Peng, X.; Qin, S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agron. Sustain. Dev. 2015, 35, 569–588. [Google Scholar] [CrossRef][Green Version]
- Zheng, F.; Chen, L.; Zhang, P.F.; Zhou, J.Q.; Lu, X.F.; Tian, W. Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review. Carbohydr. Polym. 2020, 230, 115637. [Google Scholar] [CrossRef]
- Korbecka-Glinka, G.; Wiśniewska-Wrona, M.; Kopania, E. The use of natural polymers for treatments enhancing sowing material. Polimery 2021, 66, 11–20. (In Polish) [Google Scholar] [CrossRef]
- Lamichhane, J.R.; You, M.P.; Laudinot, V.; Barbetti, M.J.; Aubertot, J.N. Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis. 2020, 104, 610–623. [Google Scholar] [CrossRef][Green Version]
- Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 2014, 70, 860–868. [Google Scholar] [CrossRef]
- Gossen, B.D.; Peng, G.; Wolf, T.M.; McDonald, M.R. Improving spray retention to enhance the efficacy of foliar-applied disease- and pest-management products in field and row crops. Can. J. Plant Pathol. 2008, 30, 505–516. [Google Scholar] [CrossRef]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for management of soilborne diseases in crop production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef][Green Version]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.W.; Vallieres, C.; Avery, S.V. Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef]
- Panahirad, S.; Dadpour, M.; Peighambardoust, S.H.; Soltanzadeh, M.; Gullon, B.; Alirezalu, K.; Lorenzo, J.M. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci. Technol. 2021, 110, 663–673. [Google Scholar] [CrossRef]
- Khoushab, F.; Yamabhai, M. Chitin research revisited. Mar. Drugs 2010, 8, 1988–2012. [Google Scholar] [CrossRef][Green Version]
- Pawlowska, A.; Stepczynska, M. Natural biocidal compounds of plant origin as biodegradable materials modifiers. J. Polym. Environ. 2022, 30, 1683–1708. [Google Scholar] [CrossRef]
- Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef] [PubMed]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Martau, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef]
- Kaur, P.; Thakur, R.; Choudhary, A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Sci. Technol. Res. 2012, 1, 83–86. [Google Scholar]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Palma-Guerrero, J.; Huang, I.C.; Jansson, H.B.; Salinas, J.; Lopez-Llorca, L.V.; Read, N.D. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genet. Biol. 2009, 46, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Chien, P.J.; Chou, C.C. Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata). J. Sci. Food Agric. 2006, 86, 1964–1969. [Google Scholar] [CrossRef]
- Muanprasat, C.; Wongkrasant, P.; Satitsri, S.; Moonwiriyakit, A.; Pongkorpsakol, P.; Mattaveewong, T.; Pichyangkura, R.; Chatsudthipong, V. Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders. Biochem. Pharmacol. 2015, 96, 225–236. [Google Scholar] [CrossRef]
- Mourya, V.K.; Inamdar, N.N.; Choudhari, Y.M. Chitooligosaccharides: Synthesis, characterization and applications. Polym. Sci. Ser. A 2011, 53, 583–612. [Google Scholar] [CrossRef]
- Yuan, X.B.; Zheng, J.P.; Jiao, S.M.; Cheng, G.; Feng, C.; Du, Y.G.; Liu, H.T. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr. Polym. 2019, 220, 60–70. [Google Scholar] [CrossRef]
- Silva-Castro, I.; Diez, J.J.; Martin-Ramos, P.; Pinto, G.; Alves, A.; Martin-Gil, J.; Martin-Garcia, J. Application of bioactive coatings based on chitosan and propolis for Pinus spp. protection against Fusarium circinatum. Forests 2018, 9, 685. [Google Scholar] [CrossRef][Green Version]
- Pabon-Baquero, D.; Velazquez-del Valle, M.G.; Evangelista-Lozano, S.; Leon-Rodriguez, R.; Hernandez-Lauzardo, A.N. Chitosan effects on phytopathogenic fungi and seed germination of Jatropha curcas L. Rev. Chapingo Ser. Cienc. For. Am. 2015, 21, 241–253. [Google Scholar] [CrossRef]
- Ziani, K.; Ursua, B.; Mate, J.I. Application of bioactive coatings based on chitosan for artichoke seed protection. Crop Prot. 2010, 29, 853–859. [Google Scholar] [CrossRef]
- Ghule, M.R.; Ramteke, P.K.; Ramteke, S.D.; Kodre, P.S.; Langote, A.; Gaikwad, A.V.; Holkar, S.K.; Jambhekar, H. Impact of chitosan seed treatment of fenugreek for management of root rot disease caused by Fusarium solani under in vitro and in vivo conditions. 3 Biotech 2021, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Samarah, N.H.; Al-Quraan, N.A.; Massad, R.S.; Welbaum, G.E. Treatment of bell pepper (Capsicum annuum L.) seeds with chitosan increases chitinase and glucanase activities and enhances emergence in a standard cold test. Sci. Hortic. 2020, 269, 109393. [Google Scholar] [CrossRef]
- Mondejar-Lopez, M.; Rubio-Moraga, A.; Lopez-Jimenez, A.J.; Martinez, J.C.G.; Ahrazem, O.; Gomez-Gomez, L.; Niza, E. Chitosan nanoparticles loaded with garlic essential oil: A new alternative to tebuconazole as seed dressing agent. Carbohydr. Polym. 2022, 277, 118815. [Google Scholar] [CrossRef] [PubMed]
- Attjioui, M.; Gillet, D.; El Gueddari, N.E.; Moerschbacher, B.M. Synergistic antimicrobial effect of chitosan polymers and oligomers. Mol. Plant Microbe Interact. 2021, 34, 770–778. [Google Scholar] [CrossRef]
- Sun, G.Z.; Yang, Q.C.; Zhang, A.C.; Guo, J.; Liu, X.J.; Wang, Y.; Ma, Q. Synergistic effect of the combined bio-fungicides epsilon-poly-L-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Int. J. Food Microbiol. 2018, 276, 46–53. [Google Scholar] [CrossRef]
- Gao, K.; Zhan, J.; Qin, Y.K.; Liu, S.; Xing, R.E.; Yu, H.H.; Chen, X.L.; Li, P.C. Synthesis and effects of the selective oxidation of chitosan in induced disease resistance against Botrytis cinerea. Carbohydr. Polym. 2021, 265, 118073. [Google Scholar] [CrossRef]
- Dananjaya, S.H.S.; Erandani, W.; Kim, C.H.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int. J. Biol. Macromol. 2017, 105, 478–488. [Google Scholar] [CrossRef]
- Kaur, P.; Duhan, J.S.; Thakur, R. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2018, 14, 466–471. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 2017, 7, 9754. [Google Scholar] [CrossRef]
- Mohammed, B.L.; Hussein, R.A.; Toama, F.N. Biological control of Fusarium wilt in tomato by endophytic rhizobactria. Energy Procedia 2019, 157, 171–179. [Google Scholar] [CrossRef]
- Elsherbiny, A.S.; Galal, A.; Ghoneem, K.M.; Salahuddin, N.A. Novel chitosan-based nanocomposites as ecofriendly pesticide carriers: Synthesis, root rot inhibition and growth management of tomato plants. Carbohydr. Polym. 2022, 282, 119111. [Google Scholar] [CrossRef]
- Chapagain, B.P.; Wiesman, Z.; Tsror, L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind. Crop. Prod. 2007, 26, 109–115. [Google Scholar] [CrossRef]
- Saharan, V.; Mehrotra, A.; Khatik, R.; Rawal, P.; Sharma, S.S.; Pal, A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int. J. Biol. Macromol. 2013, 62, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Sandhya; Kumar, S.; Kumar, D.; Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. Int. 2017, 24, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Madanipour, S.; Alimohammadi, M.; Rezaie, S.; Nabizadeh, R.; Khaniki, G.J.; Hadi, M.; Yousefi, M.; Bidgoli, S.M.; Yousefzadeh, S. Influence of postharvest application of chitosan combined with ethanolic extract of liquorice on shelflife of apple fruit. J. Environ. Health Sci. Eng. 2019, 17, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Guerra, I.C.D.; de Oliveira, P.D.L.; Pontes, A.L.D.; Lucio, A.; Tavares, J.F.; Barbosa, J.M.; Madruga, M.S.; de Souza, E.L. Coatings comprising chitosan and Mentha piperita L. or Mentha x villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. Int. J. Food Microbiol. 2015, 214, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.F.; Yang, H.Q. Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci. Hortic. 2017, 224, 367–373. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosanisilica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019, 141, 247–258. [Google Scholar] [CrossRef]
- Gonzalez-Saucedo, A.; Barrera-Necha, L.L.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.N.; Bautista-Banos, S.; Hernandez-Lopez, M. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biol. Technol. 2019, 149, 74–82. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate—Bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097. [Google Scholar] [CrossRef]
- Sujarit, K.; Pathom-aree, W.; Mori, M.; Dobashi, K.; Shiomi, K.; Lumyong, S. Streptomyces palmae CMU-AB204 (T), an antifungal producing-actinomycete, as a potential biocontrol agent to protect palm oil producing trees from basal stem rot disease fungus, Ganoderma boninense. Biol. Control 2020, 148, 104307. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Ma, X.Z.; Shi, H.; Ma, T.; Tian, C.L.; Chen, Y.; Chen, H.T.; Chen, X.; Luo, K.; Cai, L.; et al. Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability. Acs Appl. Bio Mater. 2019, 2, 4087–4096. [Google Scholar] [CrossRef]
- Sattary, M.; Amini, J.; Hallaj, R. Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat’s take-all disease. Pest. Biochem. Physiol. 2020, 170, 104696. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Nisar, K.; Arun Kumar, M.B.; Walia, S.; Shakil, N.A.; Prasad, R.; Parmar, B.S. Development of polymeric seed coats for seed quality enhancement of soybean. Indian J. Agric. Sci. 2007, 77, 738–743. [Google Scholar]
- Dal Bello, G.M.; Monaco, C.I.; Simon, M.R. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World J. Microbiol. Biotechnol. 2002, 18, 627–636. [Google Scholar] [CrossRef]
- Ren, X.X.; Chen, C.; Ye, Z.H.; Su, X.Y.; Xiao, J.J.; Liao, M.; Cao, H.Q. Development and application of seed coating agent for the control of major soil-borne diseases infecting wheat. Agronomy 2019, 9, 413. [Google Scholar] [CrossRef][Green Version]
- Farias, B.V.; Pirzada, T.; Mathew, R.; Sit, T.L.; Opperman, C.; Khan, S.A. Electrospun polymer nanofibers as seed coatings for crop protection. ACS Sustain. Chem. Eng. 2019, 7, 19848–19856. [Google Scholar] [CrossRef]
- Xu, T.; Ma, C.X.; Aytac, Z.; Hu, X.; Ng, K.W.; White, J.C.; Demokritou, P. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 2020, 8, 9537–9548. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef][Green Version]
- Cao, L.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Egg-box model-based gelation of alginate and pectin: A review. Carbohydr. Polym. 2020, 242, 116389. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef]
- Percival, S.L.; McCarty, S.M. Silver and alginates: Role in wound healing and biofilm control. Adv. Wound Care 2015, 4, 407–414. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jarecki, W. Soybean response to seed coating with chitosan + alginate/PEG and/or inoculation. Agronomy 2021, 11, 1737. [Google Scholar] [CrossRef]
- Jarecki, W.; Wietecha, J. Effect of seed coating on the yield of soybean Glycine max (L.) Merr. Plant Soil Environ. 2021, 67, 468–473. [Google Scholar] [CrossRef]
- Amanatidou, A.; Slump, R.A.; Gorris, L.G.M.; Smid, E.J. High oxygen and high carbon dioxide modified atmospheres for shelf-life extension of minimally processed carrots. J. Food Sci. 2000, 65, 61–66. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Liu, H.; Yin, H.; Wang, W.X.; Zhao, X.M.; Du, Y.G. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2013, 71, 49–56. [Google Scholar] [CrossRef]
- Jung, G.; Mugnier, J.; Diem, H.G.; Dommergues, Y.R. Polymer-entrapped rhizobium as an inoculant for legumes. Plant Soil 1982, 65, 219–231. [Google Scholar] [CrossRef]
- Heo, K.R.; Lee, K.Y.; Lee, S.H.; Jung, S.J.; Lee, S.W.; Moon, B.J. Control of crisphead lettuce damping-off and bottom rot by seed coating with alginate and Pseudomonas aeruginosa LY-11. Plant Pathol. J. 2008, 24, 67–73. [Google Scholar] [CrossRef][Green Version]
- John, R.P.; Tyagi, R.D.; Brar, S.K.; Surampalli, R.Y.; Prevost, D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 2011, 31, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Khan, M.M.A.; Uddin, M.; Naeem, M.; Idrees, M.; Hashmi, N.; Dar, T.A.; Varshney, L. Radiolytically depolymerized sodium alginate improves physiological activities, yield attributes and composition of essential oil of Eucalyptus citriodora Hook. Carbohydr. Polym. 2014, 112, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Li, C.X.; Zhao, X.; Li, G.S.; Yu, G.L.; Guan, H.S. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method. Carbohydr. Res. 2013, 373, 53–58. [Google Scholar] [CrossRef]
- Hien, N.Q.; Nagasawa, N.; Tham, L.X.; Yoshii, F.; Dang, V.H.; Mitomo, H.; Makuuchi, K.; Kume, T. Growth-promotion of plants with depolymerized alginates by irradiation. Radiat. Phys. Chem. 2000, 59, 97–101. [Google Scholar] [CrossRef]
- Iwasaki, K.; Matsubara, Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci. Biotechnol. Biochem. 2000, 64, 1067–1070. [Google Scholar] [CrossRef][Green Version]
- Liakos, I.; Rizzello, L.; Scurr, D.J.; Pompa, P.P.; Bayer, I.S.; Athanassiou, A. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int. J. Pharm. 2014, 463, 137–145. [Google Scholar] [CrossRef]
- Qu, L.; Wang, H.; Zhu, L.; Duan, X.; Quan, W.; Kong, W. Sustained Release Agent for Controlling Cucumber Botrytis. CN104396958A, 11 March 2015. [Google Scholar]
- Singh, B.; Sharma, D.K.; Dhiman, A. Environment friendly agar and alginate-based thiram delivery system. Toxicol. Environ. Chem. 2013, 95, 567–578. [Google Scholar] [CrossRef]
- Han, J.J.; Zhao, L.N.; Zhu, H.M.; Dhanasekaran, S.; Zhang, X.Y.; Zhang, H.Y. Study on the effect of alginate oligosaccharide combined with Meyerozyma guilliermondii against Penicillium expansum in pears and the possible mechanisms involved. Physiol. Mol. Plant Pathol. 2021, 115, 101654. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, A.; Alderson, P.G.; Mohamed, M.T.M.; Siddiqui, Y.; Zahid, N. Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage. Postharvest Biol. Technol. 2011, 62, 71–76. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Galus, S.; Kadzinska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Xu, L.L.; Zhang, B.; Qin, Y.H.; Li, F.Y.; Yang, S.J.; Lu, P.P.; Wang, L.; Fan, J.F. Preparation and characterization of antifungal coating films composed of sodium alginate and cyclolipopeptides produced by Bacillus subtilis. Int. J. Biol. Macromol. 2020, 143, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, N.; Khan, M.A. Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Sci. Hortic. 2020, 259, 108853. [Google Scholar] [CrossRef]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Adzahan, N.M. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol. Technol. 2014, 88, 1–7. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Miguel, M.G.C.; Faleiro, M.L.; Antunes, M.D.C. The influence of edible coatings enriched with citral and eugenol on the raspberry storage ability, nutritional and sensory quality. Food Packag. Shelf Life 2016, 9, 20–28. [Google Scholar] [CrossRef]
- Rojas-Grau, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena-Bustillos, R.J.; McHugh, T.H.; Martin-Belloso, O. Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Takma, D.K.; Korel, F. Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food Chem. 2017, 221, 187–195. [Google Scholar] [CrossRef]
- Li, X.Y.; Du, X.L.; Liu, Y.; Tong, L.J.; Wang, Q.; Li, J.L. Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Sci. Hortic. 2019, 257, 108685. [Google Scholar] [CrossRef]
- Jiang, T.J.; Feng, L.F.; Wang, Y.B. Effect of alginate/nano-Ag coating on microbial and physicochemical characteristics of shiitake mushroom (Lentinus edodes) during cold storage. Food Chem. 2013, 141, 954–960. [Google Scholar] [CrossRef]
- Emamifar, A.; Bavaisi, S. Nanocomposite coating based on sodium alginate and nano-ZnO for extending the storage life of fresh strawberries (Fragaria x ananassa Duch.). J. Food Meas. Charact. 2020, 14, 1012–1024. [Google Scholar] [CrossRef]
- Zhuo, R.L.; Li, B.Q.; Tian, S.P. Alginate oligosaccharide improves resistance to postharvest decay and quality in kiwifruit (Actinidia deliciosa cv. Bruno). Hortic. Plant J. 2022, 8, 44–52. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Liu, P.Q.; Xu, Y.J.; Wang, B.; Liu, P.F.; Hao, J.J.; Liu, X.L. Encapsulation of fluazinam to extend efficacy duration in controlling Botrytis cinerea on cucumber. Pest Manag. Sci. 2021, 77, 2836–2842. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.O.; Beckers, S.J.; Fischer, J.; Sayer, C.; de Araujo, P.H.H.; Landfester, K.; Wurm, F.R. Cellulose nanocarriers via miniemulsion allow pathogen-specific agrochemical delivery. J. Colloid Interface Sci. 2021, 601, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Liu, Y.; Qin, X.Y.; Guo, Z.P.; Li, D.L.; Li, C.G.; Wan, H.; Zhu, F.X.; Li, J.H.; Zhang, Z.; et al. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles. J. Hazard. Mater. 2021, 414, 125513. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.H.; Zhao, Y.; Lu, Z.J.; Xing, R.L.; Yao, X.M.; Jin, Z.X.; Wang, Y.Y.; Yu, F. Citral-loaded chitosan/carboxymethyl cellulose copolymer hydrogel microspheres with improved antimicrobial effects for plant protection. Int. J. Biol. Macromol. 2020, 164, 986–993. [Google Scholar] [CrossRef]
- Spasova, M.; Manolova, N.; Rashkov, I.; Naydenov, M. Electrospun 5-chloro-8-hydroxyquinoline-loaded cellulose acetate/polyethylene glycol antifungal membranes against esca. Polymers 2019, 11, 1617. [Google Scholar] [CrossRef][Green Version]
- Barhoum, A.; Jeevanandam, J.; Rastogi, A.; Samyn, P.; Boluk, Y.; Dufresne, A.; Danquah, M.K.; Bechelany, M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale 2020, 12, 22845–22890. [Google Scholar] [CrossRef]
- Heinze, T.; ElSeoud, O.A.; Koschella, A. Cellulose Derivatives: Synthesis, Structure, and Properties; Springer: Cham, Switzerland, 2018; pp. 1–531. [Google Scholar] [CrossRef]
- Meraz-Davila, S.; Perez-Garcia, C.E.; Feregrino-Perez, A.A. Challenges and advantages of electrospun nanofibers in agriculture: A review. Mater. Res. Express 2021, 8, 042001. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed coating: Science or marketing spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef][Green Version]
- Viji, G.; Uddin, W.; Romaine, C.P. Suppression of gray leaf spot (blast) of perennial ryegrass turf by Pseudomonas aeruginosa from spent mushroom substrate. Biol. Control 2003, 26, 233–243. [Google Scholar] [CrossRef]
- Neri-Badang, M.C.; Chakraborty, S. Carbohydrate polymers as controlled release devices for pesticides. J. Carbohydr. Chem. 2019, 38, 67–85. [Google Scholar] [CrossRef]
- Kumar, S.; Baswal, A.K.; Ramezanian, A.; Gill, K.S.; Mirza, A.A. Impact of carboxymethyl cellulose based edible coating on storage life and quality of guava fruit cv. ‘Allahabad Safeda’ under ambient storage conditions. J. Food Meas. Charact. 2021, 15, 4805–4812. [Google Scholar] [CrossRef]
- Baswal, A.K.; Dhaliwal, H.S.; Singh, Z.; Mahajan, B.V.C.; Kalia, A.; Gill, K.S. Influence of carboxy methylcellulose, chitosan and beeswax coatings on cold storage life and quality of Kinnow mandarin fruit. Sci. Hortic. 2020, 260, 108887. [Google Scholar] [CrossRef]
- Khodaei, D.; Hamidi-Esfahani, Z. Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biol. Technol. 2019, 156, 110944. [Google Scholar] [CrossRef]
- Chen, C.Y.; Peng, X.; Zeng, R.; Wan, C.P.; Chen, M.; Chen, J.Y. Physiological and biochemical responses in cold-stored citrus fruits to carboxymethyl cellulose coating containing ethanol extract of Impatiens balsamina L. stems. J. Food Process. Preserv. 2017, 41, e12999. [Google Scholar] [CrossRef]
- Tesfay, S.Z.; Magwaza, L.S.; Mbili, N.; Mditshwa, A. Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for avocado (Persea americana Mill.) fruit. Sci. Hortic. 2017, 226, 201–207. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Perez-Gago, M.B.; del Rio, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored ‘Valencia’ oranges. Postharvest Biol. Technol. 2009, 54, 72–79. [Google Scholar] [CrossRef]
- Fagundes, C.; Perez-Gago, M.B.; Monteiro, A.R.; Palou, L. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int. J. Food Microbiol. 2013, 166, 391–398. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef][Green Version]
- Bouissil, S.; Pierre, G.; El Alaoui-Talibi, Z.; Michaud, P.; El Modafar, C.; Delattre, C. Applications of algal polysaccharides and derivatives in therapeutic and agricultural fields. Curr. Pharm. Des. 2019, 25, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Dhillon, G.S. The versatile biopolymer chitosan: Potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol. 2014, 40, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Tyliszczak, B.; Drabczyk, A.; Kudlacik-Kramarczyk, S.; Sobczak-Kupiec, A. Sustainable Production of Chitosan. In Sustainable Production: Novel Trends in Energy, Environment and Material Systems; Krolczyk, G.M., Wzorek, M., Krol, A., Kochan, O., Su, J., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 198, pp. 45–60. [Google Scholar]
- Stasinska-Jakubas, M.; Hawrylak-Nowak, B. Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules 2022, 27, 2801. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbecka-Glinka, G.; Piekarska, K.; Wiśniewska-Wrona, M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers 2022, 14, 2854. https://doi.org/10.3390/polym14142854
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers. 2022; 14(14):2854. https://doi.org/10.3390/polym14142854
Chicago/Turabian StyleKorbecka-Glinka, Grażyna, Klaudia Piekarska, and Maria Wiśniewska-Wrona. 2022. "The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi" Polymers 14, no. 14: 2854. https://doi.org/10.3390/polym14142854