Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review
Abstract
:1. Introduction
2. Chemical Tests of Asphalt Materials
2.1. Chemical Detection Method
2.2. Brief Introduction of AFM and Its Function on Asphalt
3. AFM Test on Asphalt Material
3.1. The History of Using AFM on Asphalt
3.2. Sample Preparation Methods
3.3. Different AFM Testing Modes
3.3.1. Contact Mode
3.3.2. Tapping Mode
3.3.3. Noncontact Mode
4. AFM Data Analysis
4.1. Effect of Polymer Modification
4.1.1. SBS Modified Asphalt
4.1.2. CR Modified Asphalt
4.1.3. SBR Modified Asphalt
4.2. Effect of Aging and Rejuvenating
5. Future Development of AFM Testing
6. Conclusions
- AFM can be used to analyze the microstructure of asphalt binders at the microscale, which provides a new idea for the application of AFM in the field of asphalt materials and a further basis for the study of the asphalt microstructure. The “bee structure” of asphalt under AFM can represent the four components of asphalt (asphaltene, resin, saturate, and aromatic). The adhesion force among the four components in a single group can represent the force between colloid structures.
- AFM can be used to investigate binder modification. It has been successfully used to acquire micro-mechanical information such as the relative stiffness/Young’s modulus, stickiness/adhesion, hardness, energy loss, and sample deformation quantitatively. Furthermore, the microscale changes correlated to the physical, chemical, and rheological performance of the modified binder.
- AFM can be used to characterize the effect of short-term, long-term aging and UV radiation on the surface morphology and micro-mechanical properties of the asphalt binder. In addition, the blending between RAP and virgin binder, the devulcanization of the rubber in the asphalt binder, the healing characteristics, and the stress concentration due to phase separation can be studied by the “bee structures” and micro-mechanical behavior.
- 4.
- The sample extraction and preparation to conduct AFM are very important factors. Standards or specifications are needed to obtain homogenous samples with a sufficient thickness and no surface contamination.
- 5.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kline, T.R.; Paxton, W.F.; Mallouk, T.E.; Sen, A. Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Edit. 2005, 44, 744–746. [Google Scholar] [CrossRef] [PubMed]
- Li, N.W.; Shi, Y.; Yin, Y.X.; Zeng, X.X.; Li, J.Y.; Li, C.J.; Wan, L.J.; Wen, R.; Guo, Y.G. A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. Angew. Chem. Int. Edit. 2018, 57, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Su, D.W.; Dou, S.X.; Wang, G.X. Ultrathin MoS2 Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance. Adv. Energy Mater. 2015, 5, 6. [Google Scholar] [CrossRef]
- Ouyang, J.; Xu, Q.F.; Chu, C.W.; Yang, Y.; Li, G.; Shinar, J. On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): Poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443–8450. [Google Scholar] [CrossRef]
- Hrapovic, S.; Liu, Y.L.; Male, K.B.; Luong, J.H.T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2004, 76, 1083–1088. [Google Scholar] [CrossRef]
- Jia, J.B.; Wang, B.Q.; Wu, A.G.; Cheng, G.J.; Li, Z.; Dong, S.J. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem. 2002, 74, 2217–2223. [Google Scholar] [CrossRef]
- Dufrene, Y.F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Muller, D.J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847–854. [Google Scholar] [CrossRef]
- Alsteens, D.; Dupres, V.; Yunus, S.; Latge, J.P.; Heinisch, J.J.; Dufrene, Y.F. High-Resolution Imaging of Chemical and Biological Sites on Living Cells Using Peak Force Tapping Atomic Force Microscopy. Langmuir 2012, 28, 16738–16744. [Google Scholar] [CrossRef]
- Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology 2016, 27, 8. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2012, 90, 78–84. [Google Scholar] [CrossRef]
- Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean Prod. 2020, 272, 25. [Google Scholar] [CrossRef]
- Pyne, A.L.B.; Noy, A.; Main, K.H.S.; Velasco-Berrelleza, V.; Piperakis, M.M.; Mitchenall, L.A.; Cugliandolo, F.M.; Beton, J.G.; Stevenson, C.E.M.; Hoogenboom, B.W.; et al. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat. Commun. 2021, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Abol-Fotouh, D.; Hassan, M.A.; Shokry, H.; Roig, A.; Azab, M.S.; Kashyout, A.H.B. Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep 2020, 10, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, D.; Wei, H.Y.; Ho, K.C.; Chu, C.W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012, 5, 9662–9671. [Google Scholar] [CrossRef]
- Wu, S. Characterization of ductility of field-aged petroleum asphalt. Pet. Sci. Technol. 2018, 36, 696–703. [Google Scholar] [CrossRef]
- Iwański, M.M. Synergistic Effect of F–T Synthetic Wax and Surface-Active Agent Content on the Properties and Foaming Characteristics of Bitumen 50/70. Materials 2021, 14, 300. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Conti, C.; Canestrari, F. Investigating the “circular propensity” of road bio-binders: Effectiveness in hot recycling of reclaimed asphalt and recyclability potential. J. Clean Prod. 2020, 255, 120193. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Epps Martin, A.; Masad, E.; Arambula Mercado, E.; Kaseer, F. Effects of ageing and recycling agents on the multiscale properties of binders with high RAP contents. Int. J. Pavement Eng. 2022, 23, 1248–1270. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Hou, X.; Xiao, F. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. Fuel 2019, 238, 330. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.; Lin, J.; Li, M.; Chen, Z. Correlation of asphalt performance indicators and aging degrees: A review. Constr. Build. Mater. 2020, 250, 118824. [Google Scholar] [CrossRef]
- Isacsson, U.; Zeng, H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Constr. Build. Mater. 1997, 11, 83–91. [Google Scholar] [CrossRef]
- Bowers, B.F.; Huang, B.; Shu, X.; Miller, B.C. Investigation of Reclaimed Asphalt Pavement blending efficiency through GPC and FTIR. Constr. Build. Mater. 2014, 50, 517–523. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Chemical and rheological investigation on the short-and long-term aging properties of bio-binders for road pavements. Constr. Build. Mater. 2019, 217, 518–529. [Google Scholar] [CrossRef]
- Hou, X.D.; Lv, S.T.; Chen, Z.; Xiao, F.P. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 2018, 121, 304–316. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Z.; Leng, Z.; Wu, C.; Zhang, Z.; Wang, D.; Oeser, M. Effect of mixing sequence on asphalt mixtures containing waste tire rubber and warm mix surfactants. J. Clean. Prod. 2020, 246, 119008. [Google Scholar] [CrossRef]
- Yu, H.; Leng, Z.; Dong, Z.; Tan, Z.; Guo, F.; Yan, J. Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr. Build. Mater. 2018, 175, 392–401. [Google Scholar] [CrossRef]
- Xin, J.; Li, M.; Li, R.; Wolcott, M.P.; Zhang, J. Green Epoxy Resin System Based on Lignin and Tung Oil and Its Application in Epoxy Asphalt. ACS Sustain. Chem. Eng. 2016, 4, 2754–2761. [Google Scholar] [CrossRef]
- Yu, H.; Deng, G.; Wang, D.; Zhang, Z.Y.; Oeser, M. Warm asphalt rubber: A sustainable way for waste tire rubber recycling. J. Cent. SouthUniv. 2020, 27, 3477–3498. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: Towards more sustainable materials in road pavements. J. Traffic Transp. Eng. 2020, 7, 192–204. [Google Scholar] [CrossRef]
- Yu, H.; Deng, G.; Zhang, Z.; Zhu, M.; Gong, M.; Oeser, M. Workability of rubberized asphalt from a perspective of particle effect. Transp. Res. Part D Transp. Environ. 2021, 91, 102712. [Google Scholar] [CrossRef]
- Baumgardner, G.L.; Masson, J.F.; Hardee, J.R.; Menapace, A.M.; Williams, A.G.; Kluttz, R.; Dunning, R.; Scherocman, J.; Puzinauskas, V.; Reinke, G.; et al. Polyphosphoric acid modified asphalt: Proposed mechanisms. J. Assoc. Asph. Paving Technol. 2005, 74, 283–305. [Google Scholar]
- Ali, L.H.; Al-Ghannam, K.A.; Al-Rawi, J.M. Chemical structure of asphaltenes in heavy crude oils investigated by n.m.r. Fuel 1990, 69, 519–521. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Freund, H.; Afeworki, M.; Sansone, M.; Lamberti, W.A.; Pottorf, R.J.; Machel, H.G.; Peters, K.E.; et al. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction. Geochim. Cosmochim. Acta 2010, 74, 5305–5332. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Ali, M.F. Investigation of chemical transformations by NMR and GPC during the laboratory aging of Arabian asphalt. Fuel 1999, 78, 1407–1416. [Google Scholar] [CrossRef]
- Moro, M.K.; Santos, F.; Folli, G.S.; Romo, W.; Filgueiras, P.R. A review of chemometrics models to predict crude oil properties from nuclear magnetic resonance and infrared spectroscopy. Fuel 2021, 303, 121283. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, C. The research for structural characteristics and modification mechanism of crumb rubber compound modified asphalts. Constr. Build. Mater. 2015, 76, 330–342. [Google Scholar] [CrossRef]
- Chen, M.; Cen, H.; Guo, C.; Guo, X.; Chen, Z. Preparation of Cu-MOFs and its corrosion inhibition effect for carbon steel in hydrochloric acid solution. J. Mol. Liq. 2020, 318, 114328. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, X.; Zhang, Z.; Zou, B.; Zhu, Z.; Lu, G.; Xu, W.; Yu, J.; Yu, H. Effect of Aging on Chemical and Rheological Properties of Bitumen. Polymers 2018, 10, 1345. [Google Scholar] [CrossRef] [Green Version]
- Pipintakos, G.; Hasheminejad, N.; Lommaert, C.; Bocharova, A.; Blom, J. Application of Atomic Force (AFM), Environmental Scanning Electron (ESEM) and Confocal Laser Scanning Microscopy (CLSM) in bitumen: A review of the ageing effect. Micron 2021, 147, 103083. [Google Scholar] [CrossRef]
- Liu, C. Van der Waals force and asphalt concrete strength and cracking. J. Eng. Mech. 2005, 131, 161–166. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Z.; Zhang, Z.; Yu, J.; Oeser, M.; Wang, D. Recycling waste packaging tape into bituminous mixtures towards enhanced mechanical properties and environmental benefits. J. Clean. Prod. 2019, 229, 22–31. [Google Scholar] [CrossRef]
- Aguiar-Moya, J.P.; Salazar-Delgado, J.; Bonilla-Mora, V.; Rodríguez-Castro, E.; Leiva-Villacorta, F.; Loría-Salazar, L. Morphological analysis of bitumen phases using atomic force microscopy. Road Mater. Pavement Des. 2015, 16, 138–152. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Cui, Y.A.; Wei, W.W. Low-temperature characteristics and microstructure of asphalt under complex aging conditions. Constr. Build. Mater. 2021, 303, 124408. [Google Scholar] [CrossRef]
- Ji, J.; Suo, Z.; Zhang, R.; Li, H.L.; Han, B.Y.; Wang, J.N.; You, Z.P. Effect of physical hardening on low temperature performance of DCLR modified asphalt. Constr. Build. Mater. 2021, 295, 123545. [Google Scholar] [CrossRef]
- Guo, M.; Liang, M.; Jiao, Y.; Tan, Y.; Yu, J.; Luo, D. Effect of aging and rejuvenation on adhesion properties of modified asphalt binder based on AFM. J. Microsc. 2021, 284, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.M.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- Ese, M.H.; Sjöblom, J.; Djuve, J.; Pugh, R. An atomic force microscopy study of asphaltenes on mica surfaces. Influence of added resins and demulsifiers. Colloid Polym. Sci. 2000, 278, 532–538. [Google Scholar] [CrossRef]
- Hua, Y.; Angle, C.W. Brewster Angle Microscopy of Langmuir Films of Athabasca Bitumens, n-C5 Asphaltenes, and SAGD Bitumen during Pressure-Area Hysteresis. Langmuir 2013, 29, 244–263. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Lawrence, S.; Xu, Z.; Masliyah, J.H. Studies of Athabasca asphaltene Langmuir films at air-water interface. J. Colloid Interface Sci. 2003, 264, 128–140. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xu, Z.; Masliyah, J.H. Langmuir and Langmuir-Blodgett films of mixed asphaltene and a demulsifier. Langmuir 2003, 19, 9730–9741. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Lopetinsky, R.; Xu, Z.; Masliyah, J.H. Asphaltene monolayers at a toluene/water interface. Energy Fuels 2005, 19, 1330–1336. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Breen, P.; Xu, Z.; Masliyah, J.H. Asphaltene films at a toluene/water interface. Energy Fuels 2007, 21, 274–285. [Google Scholar] [CrossRef]
- Li, Y.Z.; Xu, Z.; Masliyah, J.H. Characterisation of adsorbed Athabasca asphaltene films at solvent-water interfaces using a langmuir interfacial trough. Ind. Eng. Chem. Res. 2005, 44, 1160–1174. [Google Scholar] [CrossRef]
- Jäger, A.; Lackner, R.; Eisenmenger-Sittner, C.; Blab, R. Identification of four material phases in bitumen by atomic force microscopy. Road Mater. Pavement Des. 2004, 5, 9–24. [Google Scholar] [CrossRef]
- Masson, J.F.; Leblond, V.; Margeson, J.; Bundalo-Perc, S. Low-temperature bitumen stiffness and viscous paraffinic nano- and micro-domains by cryogenic AFM and PDM. J. Microsc. 2007, 227, 191–202. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Masliyah, J. Interaction between bitumen and fines in oil sands extraction system: Implication to bitumen recovery. Can. J. Chem. Eng. 2004, 82, 655–666. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Masliyah, J. Role of fine clays in bitumen extraction from oil sands. AIChE J. 2004, 50, 1917–1927. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Masliyah, J. Colloidal forces between bitumen surfaces in aqueous solutions measured with atomic force microscope. Colloids Surf. A Physicochem. Eng. Asp. 2005, 260, 217. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Masliyah, J. Interaction forces in bitumen extraction from oil sands. J. Colloid Interface Sci. 2005, 287, 507–520. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Xu, Z.; Masliyah, J. Colloidal Interactions between Asphaltene Surfaces in Aqueous Solutions. Langmuir 2006, 22, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Z.; Masliyah, J. Studies on bitumen-silica interaction in aqueous solutions by atomic force microscopy. Langmuir 2003, 19, 3911–3920. [Google Scholar] [CrossRef]
- Abraham, T.; Christendat, D.; Karan, K.; Xu, Z.; Masliyah, J. Asphaltene—Silica interactions in aqueous solutions: Direct force measurements combined with electrokinetic studies. Ind. Eng. Chem. Res. 2002, 41, 2170–2177. [Google Scholar] [CrossRef]
- Drelich, J.; Long, J.; Yeung, A. Determining surface potential of the bitumen-water interface at nanoscale resolution using atomic force microscopy. Can. J. Chem. Eng. 2007, 85, 625–634. [Google Scholar] [CrossRef]
- Long, J.; Xu, Z.; Masliyah, J.H. Adhesion of single polyelectrolyte molecules on silica, mica, and bitumen surfaces. Langmuir 2006, 22, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Tarefder, R.A.; Zaman, A.M. Nanoscale evaluation of moisture damage in polymer modified asphalts. J. Mater. Civ. Eng. 2010, 22, 725. [Google Scholar] [CrossRef]
- Grover Allen, R.; Little, D.N.; Bhasin, A. Structural characterization of micromechanical properties in asphalt using atomic force microscopy. J. Mater. Civ. Eng. 2012, 24, 1317–1327. [Google Scholar] [CrossRef]
- Allen, R.G.; Little, D.N.; Bhasin, A.; Lytton, R.L. Identification of the composite relaxation modulus of asphalt binder using AFM nanoindentation. J. Mater. Civ. Eng. 2013, 25, 530–539. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Abu-Qtaish, L.; Kaya, S.; Powers, D. Using Atomic Force Microscopy to evaluate the nanostructure and nanomechanics of warm mix asphalt. J. Mater. Civ. Eng. 2015, 27, 04015005. [Google Scholar] [CrossRef]
- Yu, X.; Burnham, N.A.; Mallick, R.B.; Tao, M. A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders. Fuel 2013, 113, 443–447. [Google Scholar] [CrossRef]
- Wu, S.P.; Zhu, G.J.; Chen, Z.; Liu, Z.F. Laboratory research on rheological behavior and characterization of ultraviolet aged asphalt. J. Cent. South Univ. Technol. 2008, 15, 369–373. [Google Scholar] [CrossRef]
- Wu, S.P.; Ling, P.; Mo, L.T.; Chen, Y.C.; Zhu, G.J. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Constr. Build. Mater. 2009, 23, 1005–1010. [Google Scholar] [CrossRef]
- Rebelo, L.M.; De Sousa, J.S.; Abreu, A.S.; Baroni, M.P.M.A.; Alencar, A.E.V.; Soares, S.A.; Mendes Filho, J.; Soares, J.B. Aging of asphaltic binders investigated with atomic force microscopy. Fuel 2014, 117, 15–25. [Google Scholar] [CrossRef]
- Menapace, I.; Masad, E.; Bhasin, A.; Little, D. Microstructural properties of warm mix asphalt before and after laboratory-simulated long-term ageing. Road Mater. Pavement Des. 2015, 16, 2–20. [Google Scholar] [CrossRef]
- Grover Allen, R.; Little, D.N.; Bhasin, A.; Glover, C.J. The effects of chemical composition on asphalt microstructure and their association to pavement performance. Int. J. Pavement Eng. 2014, 15, 9–22. [Google Scholar] [CrossRef]
- Hu, K.; Yu, C.H.; Yang, Q.L.; Chen, Y.J.; Chen, G.X.; Ma, R. Multi-scale enhancement mechanisms of graphene oxide on styrene- butadiene-styrene modified asphalt: An exploration from molecular dynamics simulations. Mater. Des. 2021, 208, 109901. [Google Scholar] [CrossRef]
- Costa, E.R.; Colaco, R.; Diogo, A.C. Bitumen Morphology as Observed by Phase-Detection Atomic Force Microscopy. Proc. Mater. Sci. Forum. 2008, 587, 981–985. [Google Scholar] [CrossRef]
- Xing, C.W.; Liu, L.P.; Wang, M. A new preparation method and imaging parameters of asphalt binder samples for atomic force microscopy. Constr. Build. Mater. 2019, 205, 622–632. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, X.Y.; Chen, L. Relationship among cohesion, adhesion, and bond strength: From multi-scale investigation of asphalt-based composites subjected to laboratory-simulated aging. Mater. Des. 2020, 185, 108272. [Google Scholar] [CrossRef]
- Aljarrah, M.F.; Masad, E. Nanoscale viscoelastic characterization of asphalt binders using the AFM-nDMA test. Mater. Struct. 2020, 53, 110. [Google Scholar] [CrossRef]
- Rodriguez-Fernandez, I.; Baheri, F.T.; Cavalli, M.C.; Poulikakos, L.D.; Bueno, M. Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Constr. Build. Mater. 2020, 259, 119662. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.M.; Wu, Y.L.; Wang, H.R.; Wang, Q.L.; Zhu, X.X.; Liu, X.C.; Sun, H.D.; Fan, L. Effect of Graphene on Modified Asphalt Microstructures Based on Atomic Force Microscopy. Materials 2021, 14, 3677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.G.; Zou, L.; Jia, Z.R.; Wang, F.; Li, Y.; Shi, P. Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Appl. Sci. 2019, 9, 3027. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Peng, A.H.; Zhou, S.B.; Wu, J.T.; Xuan, W.A.; Liu, W. Evaluation of the ageing behaviour of waste engine oil-modified asphalt binders. Constr. Build. Mater. 2019, 223, 394–408. [Google Scholar] [CrossRef]
- Zhang, M.; Hao, P.; Dong, S.; Li, Y.; Yuan, G. Asphalt binder micro-characterization and testing approaches: A review. Measurement 2020, 151, 107255. [Google Scholar] [CrossRef]
- Zhang, H.T.; Wang, Y.; Yu, T.J.; Liu, Z.Q. Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM). Constr. Build. Mater. 2020, 255, 12. [Google Scholar] [CrossRef]
- Xu, J.; Sun, L.; Pei, J.; Xue, B.; Liu, T.; Li, R. Microstructural, chemical and rheological evaluation on oxidative aging effect of SBS polymer modified asphalt. Constr. Build. Mater. 2021, 267, 121028. [Google Scholar] [CrossRef]
- Garca, A.; Aguiar-Moya, J.P.; Salazar-Delgado, J.; Baldi-Sevilla, A.; Lora-Salazar, L.G. Methodology for estimating the modulus of elasticity of bitumen under different aging conditions by AFM. Road Mater. Pavement Des. 2019, 20, S332–S346. [Google Scholar] [CrossRef]
- Shi, Y.S.; Li, W.; Gao, S.T.; Lu, M.Z.; Hu, X.D. Atomic force microscope scanning head with 3-dimensional orthogonal scanning to eliminate the curved coupling. Ultramicroscopy 2018, 190, 77–80. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Bučinskas, V.; Lenkutis, T.; Morkvėnaitė-Vilkončienė, I.; Kovalevskyi, V. Increasing imaging speed and accuracy in contact mode AFM. In Proceedings of the Conference on Automation, Shenzhen, China, 19–21 July 2019; pp. 599–607. [Google Scholar] [CrossRef]
- Yu, X.; Burnham, N.A.; Tao, M. Surface microstructure of bitumen characterized by atomic force microscopy. Adv. Colloid Interface Sci. 2015, 218, 17–33. [Google Scholar] [CrossRef]
- Neves, B.; Vilela, J.; Russell, P.E.; Reis, A.; Andrade, M.S. Imaging micro-cracks in gold films: A comparative study of scanning tunneling and atomic force microscopies. Ultramicroscopy 1999, 76, 61–67. [Google Scholar] [CrossRef]
- Su, M.M.; Zhou, J.L.; Lu, J.Z.; Chen, W.; Zhang, H.L. Using molecular dynamics and experiments to investigate the morphology and micro-structure of SBS modified asphalt binder. Mater. Today Commun. 2022, 30, 103082. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.Y.; Huang, J.; Cui, X.; Tan, X.L.; Liu, Q.; Zeng, H.B. Heterogeneous Distribution of Adsorbed Bitumen on Fine Solids from Solvent-Based Extraction of Oil Sands Probed by AFM. Energy Fuels 2017, 31, 8833–8842. [Google Scholar] [CrossRef]
- Li, L.Y.; Li, Z.W.; Wang, Y.N.; Li, X.L.; Li, B. Relation Between Adhesion Properties and Microscopic Characterization of Polyphosphoric Acid Composite SBS Modified Asphalt Binder. Front. Mater. 2021, 8, 633439. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Shen, A.; Yang, X.; Li, P. Effect of Nanoclays on Moisture Susceptibility of SBS-Modified Asphalt Binder. Adv. Mater. Sci. Eng. 2020, 2020, 2074232. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.H.; Hu, K.; Chen, G.X.; Chang, R.; Wang, Y. Molecular dynamics simulation and microscopic observation of compatibility and interphase of composited polymer modified asphalt with carbon nanotubes. J. Zhejiang Univ. Sci. A 2021, 22, 528–546. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, A.; Ding, W.; Rao, F.; Yuan, J.; Zhang, Z.; Xu, Z.; Dong, C. The Effects of Using Waste Engine Oil Bottom on Physical, Rheological Properties and Composite Modification Mechanism of SBS-Modified Asphalt. Adv. Mater. Sci. Eng. 2022, 2022, 2775950. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q. Enhancing Effect of Waste Engine Oil Bottom Incorporation on the Performance of CR+ SBS Modified Bitumen: A Sustainable and Environmentally-Friendly Solution for Wastes. Sustainability 2021, 13, 12772. [Google Scholar] [CrossRef]
- Zhang, W.G.; Wang, F.; Shi, J.; Li, Z.M.; Liang, X.F. Experimental Study on Nano-Parameters of Styrene-Butadiene-Styrene Block Copolymer Modified Bitumen Based on Atomic Force Microscopy. Polymers 2019, 11, 989. [Google Scholar] [CrossRef] [Green Version]
- Gorbatova, V.; Gordeeva, I.; Dudareva, T.; Krasotkina, I.; Nikolskii, V.; Naumova, Y. Rheological properties of bitumen with powder rubber modifier obtained by high-temperature shear grinding. In Proceedings of the International Scientific Conference on Energy, Environmental and Construction Engineering, St. Petersburg, Russia, 19–20 November 2020; pp. 475–485. [Google Scholar] [CrossRef]
- Badri, R.M.; Alkaissi, Z.A.; Sutanto, M. Physical, rheological and morphological characterization of modified asphalt binder with differing crumb rubber contents. In Proceedings of the 3rd International Conference on Materials Engineering and Science (IConMEAS), Electr Network, Kuala Lumpur, Malaysia, 28–30 December 2020; pp. 3028–3034. [Google Scholar] [CrossRef]
- Lushinga, N.; Cao, L.; Dong, Z.; Yang, C.; Assogba, C.O. Performance Evaluation of Crumb Rubber Asphalt Modified with Silicone-Based Warm Mix Additives. Adv. Civ. Eng. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Iwański, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Resistance to Moisture-Induced Damage of Half-Warm-Mix Asphalt Concrete with Foamed Bitumen. Materials 2020, 13, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomicz-Kowalska, A.; Gardziejczyk, W.; Iwański, M.M. Moisture resistance and compactibility of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen. Constr. Build. Mater. 2016, 126, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Ingrassia, L.P.; Lu, X.; Canestrari, F.; Ferrotti, G. Tribological characterization of bituminous binders with Warm Mix Asphalt additives. Constr. Build. Mater. 2018, 172, 309–318. [Google Scholar] [CrossRef]
- Zhai, R.; Ge, L.; Li, Y. The effect of nano-CaCO3/styrene-butadiene rubber (SBR) on fundamental characteristic of hot mix asphalt. Road Mater. Pavement Des. 2020, 21, 1006–1026. [Google Scholar] [CrossRef]
- Azadgoleh, M.A.; Modarres, A.; Ayar, P. Effect of polymer modified bitumen emulsion production method on the durability of recycled asphalt mixture in the presence of deicing agents. Constr. Build. Mater. 2021, 307, 124958. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, M. Durability of Composite-Modified Asphalt Mixture Based on Inherent and Improved Performance. Sustain. Constr. Build. Mater. 2018, 179, 539–552. [Google Scholar] [CrossRef]
- Rafiq, W.; Napiah, M.; Habib, N.Z.; Sutanto, M.H.; Alaloul, W.S.; Khan, M.I.; Musarat, M.A.; Memon, A.M. Modeling and design optimization of reclaimed asphalt pavement containing crude palm oil using response surface methodology. Constr. Build. Mater. 2021, 291, 123288. [Google Scholar] [CrossRef]
- Li, F.; Yang, Y.Y. Experimental investigation on the influence of interfacial effects of limestone and fly ash filler particles in asphalt binder on mastic aging behaviors. Constr. Build. Mater. 2021, 290, 123184. [Google Scholar] [CrossRef]
- Cui, L.R.; Xu, J.; Cen, L.; Ren, M.N.; Cao, F.H. Molecular engineering and modification of FCC slurry oil residue for improving ageing resistance of high quality paving asphalt. Constr. Build. Mater. 2021, 299, 124234. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, X.Y.; Yuan, Y.; Li, L.H. Effects of Aging on Micromechanical Properties of Asphalt Binder Using AFM. J. Mater. Civ. Eng. 2020, 32, 04020081. [Google Scholar] [CrossRef]
- Lv, S.T.; Ma, W.B.; Zhao, Z.G.; Guo, S.C. Improvement on the high-temperature stability and anti-aging performance of the rubberized asphalt binder with the Lucobit additive. Constr. Build. Mater. 2021, 299, 124304. [Google Scholar] [CrossRef]
- Zhou, L.M.; Xia, T.; Xu, J.H.; Qin, Y.P.; Chen, W.Q.; Dai, J.F. Effects of microfiller on the rheological behavior and structure of SBS modified bitumen. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Xi’an, China, 1–4 November 2018; p. 012013. [Google Scholar] [CrossRef]
- Pires, G.M.; Lo Presti, D.; Airey, G.D. A practical approach to estimate the degree of binder activity of reclaimed asphalt materials. Road Mater. Pavement Des. 2021, 22, 1093–1116. [Google Scholar] [CrossRef]
- Liu, J.N.; Wang, Z.J.; Luo, R.; Bian, G.; Liang, Q.Y.; Yan, F.F. Changes of components and rheological properties of bitumen under dynamic thermal aging. Constr. Build. Mater. 2021, 303, 124501. [Google Scholar] [CrossRef]
- Heath, G.R.; Kots, E.; Robertson, J.L.; Lansky, S.; Khelashvili, G.; Weinstein, H.; Scheuring, S. Localization atomic force microscopy. Nature 2021, 594, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Guillaume-Gentil, O.; Potthoff, E.; Ossola, D.; Franz, C.M.; Zambelli, T.; Vorholt, J.A. Force-controlled manipulation of single cells: From AFM to FluidFM. Trends Biotechnol. 2014, 32, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, L.; Zambelli, T. FluidFM for single-cell biophysics. Nano Res. 2021, 15, 773–786. [Google Scholar] [CrossRef]
Chemical Detection Method | History | Testing Forms | Application in Asphalt Testing | Advantages | Inadequacies or Limitations |
---|---|---|---|---|---|
FTIR | 1950s | Speculation of the type and content of functional groups in a sample from the absorption spectrum of an asphalt sample [24] |
|
|
|
GPC | 1960s | Separation of molecules of different sizes by passing the sample through the stationary phase of a porous cross-linked polymer gel with a mobile phase |
|
|
|
NMR | 1950s | Application of magnetic field interactions with nuclei within a sample to detect the length of phenomena from molecular and colloidal to macroscopic scales |
|
|
|
AFM | 1980s | Detection of the weak interatomic interaction between the surface of the sample and the micro-force sensitive element [37] |
|
|
|
Method | Hot Casting | Solution Casting |
---|---|---|
Description | Drop a string of asphalt binder onto the substrate and heat it on the hot plate to convert the asphalt binder into liquid and spread it out with a blade to form a film. | The asphalt binder is dissolved in a specific concentration of organic solvent, and part of it is deposited on the glass slide in the centrifuge to obtain the asphalt binder film. |
Thickness of film | Micrometers, depending on the amount of asphalt binders and substrate surface area. | Varies from nanometers to micrometers, depending on the rotation speed and the concentration of the asphalt binder solution. |
Advantage | The solid morphology is preserved during experiment. | Great flatness of the surface. |
Disadvantage | Heat treatment is required and the surface has lower flatness. | Because the solvent and evaporation process change the molecular interaction in asphalt binder, it has a greater impact on the microstructure. |
Mode | Tapping Mode | Contact Mode | Non-Contact Mode |
---|---|---|---|
Advantage | Not affected by transverse force, reducing the force caused by the adsorption liquid layer, the image resolution is high. | Fast scanning speed | No force applied to the sample surface and no effect on the sample. |
Application | Fragile or soft adhesive sample. | Hard samples with obvious changes in vertical direction. | Sample for hydrophobic surfaces. |
Disadvantage | Scanning speed is lower than the contact mode. | The effect of lateral force and adhesion reduces the spatial resolution of the image, and the soft sample will be damaged when the tip scratches the sample. | The separation of tip and sample results in low lateral resolution and slowest scanning speed. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Q.; Xie, Z.; Liu, J.; Gong, M.; Yu, H. Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review. Polymers 2022, 14, 2851. https://doi.org/10.3390/polym14142851
Ouyang Q, Xie Z, Liu J, Gong M, Yu H. Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review. Polymers. 2022; 14(14):2851. https://doi.org/10.3390/polym14142851
Chicago/Turabian StyleOuyang, Qijian, Zhiwei Xie, Jinhai Liu, Minghui Gong, and Huayang Yu. 2022. "Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review" Polymers 14, no. 14: 2851. https://doi.org/10.3390/polym14142851
APA StyleOuyang, Q., Xie, Z., Liu, J., Gong, M., & Yu, H. (2022). Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review. Polymers, 14(14), 2851. https://doi.org/10.3390/polym14142851