Viscoelastic Behavior and Phase Structure of High-Content SBS-Modified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Methods
2.2.1. Preparing SBSMA
2.2.2. MSCR Test
2.2.3. LAS Test
2.2.4. Low-Temperature Frequency Sweep Test
2.2.5. Fluorescence Microscope Test
3. Results and Discussion
3.1. Viscoelastic Behavior at High Temperatures
3.1.1. Non-Recoverable Creep Compliance and Creep Recovery Rate
3.1.2. Stress Sensitivity
3.2. Viscoelastic Properties at Medium Temperatures
3.2.1. Stress–Strain Response
3.2.2. Fatigue Life
3.3. Viscoelastic Properties at Low Temperatures
3.3.1. Modulus and Phase Angle
3.3.2. Evaluating Index
3.4. Phase Structure of SBSMA
4. Conclusions
- (1)
- With the increasing SBS modifier content (3.0–12.0%), the non-recoverable creep compliance of SBSMA drops with the growing creep recovery rate. The modifier content increases the high-temperature viscoelastic performance of SBSMA. An obvious turning point was observed in the change in non-recoverable creep compliance and creep recovery rate, which is bounded by the 4.5% content. The changing slope of the content less than 4.5% is much higher than that of the content greater than 4.5%.
- (2)
- The fatigue life of SBSMA increases exponentially with the increasing modifier content. Moreover, the growth rate of fatigue life is the largest (63.9%) when the content increases from 4.5% to 6.0%.
- (3)
- The 4 mm DSR test can evaluate the viscoelastic performance of SBSMA at low temperatures. G (60 s) and mr (60 s) were selected as evaluation indicators. The G (60 s) of SBSMA decreases logarithmically with the increasing modifier content (3.0–12.0%). However, mr (60 s) has no noticeable change with the rising content. The SBS modifier cut down the low-temperature relaxation modulus of asphalt.
- (4)
- In terms of the microscopic phase structure, the microscopic phase structure of SBSMA is a two-phase (SBS modifier and neat asphalt) coexistence of the co-blended structural system. With the increasing SBS modifier content, the SBS modifier gradually changes from a dispersed to a continuous phase state. When the modifier amount is less than 6.0%, the SBS modifier is present in a dispersed phase. Similarly, when the modifier is more than 6.0%, the SBS modifier is present in the continuous phase.
- (5)
- The viscoelastic properties of high-content SBS modified asphalt at different temperature were investigated, and the phase structure of different content SBS modified asphalt were clarified. The chemical composition of high-content SBS modified asphalt and its aging characteristics will be studied in the next step.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sha, A.M.; Liu, Z.Z.; Jiang, W.; Qi, L.; Hu, L.Q.; Jiao, W.X.; Barbieri, D.M. Advances and development trends in eco-friendly pavements. J. Road Eng. 2021, 1, 1–42. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.D.; Shan, J.H.; Ye, W.L.; Lu, H.H.; Sha, A.M. Experimental study of the performance of porous ultra-thin asphalt overlay. Int. J. Pavement Eng. 2022, 23, 2049–2061. [Google Scholar] [CrossRef]
- Liu, J.N.; Zhang, T.H.; Guo, H.Y.; Wang, Z.J.; Wang, X.F. Evaluation of self-healing properties of asphalt mixture containing steel slag under microwave heating: Mechanical, thermal transfer and voids microstructural characteristics. J. Clean. Prod. 2022, 342, 130932. [Google Scholar] [CrossRef]
- Wang, C.H.; Wang, M.H.; Chen, Q.; Zhang, L. Basic performance and asphalt smoke absorption effect of environment-friendly asphalt to improve pavement construction environment. J. Clean. Prod. 2022, 333, 130142. [Google Scholar] [CrossRef]
- Gao, J.; Yao, Y.Q.; Song, L.; Xu, J.; Yang, J.G. Determining the maximum permissible content of recycled asphalt pavement stockpile in plant hot-mix recycled asphalt mixtures considering homogeneity: A case study in China. Case Stud. Constr. Mater. 2022, 16, e00961. [Google Scholar] [CrossRef]
- JTTE Editorial Office; Chen, J.; Dan, H.; Ding, Y.; Gao, Y.; Guo, M.; Guo, S.; Han, B.; Hong, B.; Hou, Y.; et al. New innovations in pavement materials and engineering: A review on pavement engineering research 2021. J. Traffic Transp. Eng. 2021, 8, 815–999. [Google Scholar] [CrossRef]
- Jiang, W.; Xiao, J.J.; Yuan, D.D.; Lu, H.H.; Xu, S.D.; Huang, Y. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy Build. 2018, 169, 39–47. [Google Scholar] [CrossRef]
- Chen, M.Y.; Geng, J.G.; Xia, C.Y.; He, L.L.; Liu, Z. A review of phase structure of SBS modified asphalt: Affecting factors, analytical methods, phase models and improvements. Constr. Build. Mater. 2021, 294, 123610. [Google Scholar] [CrossRef]
- Yu, H.; Bai, X.; Qian, G.; Wei, H.; Gong, X.; Jin, J.; Li, Z. Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders. Polymers 2019, 11, 1111. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.J.; Wang, W.S.; Cheng, Y.C.; Wang, Y.; Zhu, Z.Q. Master curve establishment and complex modulus evaluation of SBS-modified asphalt mixture reinforced with basalt fiber based on generalized sigmoidal model. Polymers 2020, 12, 1586. [Google Scholar] [CrossRef]
- Kozak, R.; Matlengiewicz, M. Effect of enthalpy of polar modifiers interaction with n-butyllithium on the reaction enthalpy, kinetics and chain microstructure during anionic polymerization of 1, 3-butadiene. Polym. Test. 2017, 64, 20–37. [Google Scholar] [CrossRef]
- Li, H.B.; Li, W.B.; Sheng, Y.P.; Lv, H.L. Influence of compound action of rubber powder and SBS on high-temperature performance of asphalt pavement surface. J. Mater. Civil. Eng. 2021, 33, 04021126. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Sha, A.M.; Liu, X.; Luan, B.; Gao, J.; Jiang, W.; Ma, F. State-of-the-art of porous asphalt pavement: Experience and considerations of mixture design. Constr. Build. Mater. 2020, 262, 119998. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.P.; Zhang, L.F.; Amirkhanian, S.N. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Lu, R.; Jiang, W.; Xiao, J.J.; Xing, C.W.; Ruan, C.; Li, Y.P.; Wu, W.J. Temperature characteristics of permeable asphalt pavement: Field research. Constr. Build. Mater. 2022, 332, 127379. [Google Scholar] [CrossRef]
- Cai, J.; Song, C.; Gong, X.B.; Zhang, J.P.; Pei, J.Z.; Chen, Z.W. Gradation of limestone-aggregate-based porous asphalt concrete under dynamic crushing test: Composition, fragmentation and stability. Constr. Build. Mater. 2022, 323, 126532. [Google Scholar] [CrossRef]
- Hu, J.Y.; Ma, T.; Zhu, Y.H.; Huang, X.M.; Xu, J.; Chen, L.B. High-viscosity modified asphalt mixtures for double-layer porous asphalt pavement: Design optimization and evaluation metrics. Constr. Build. Mater. 2021, 271, 121893. [Google Scholar] [CrossRef]
- Cai, J.; Song, C.; Zhou, B.C.; Tian, Y.F.; Li, R.; Zhang, J.P.; Pei, J.Z. Investigation on high-viscosity asphalt binder for permeable asphalt concrete with waste materials. J. Clean. Prod. 2019, 228, 40–51. [Google Scholar] [CrossRef]
- Luo, Y.F.; Zhang, K.; Li, P.L.; Yang, J.H.; Xie, X.B. Performance evaluation of stone mastic asphalt mixture with different high viscosity modified asphalt based on laboratory tests. Constr. Build. Mater. 2019, 225, 214–222. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.B. Preparation and properties of high viscosity modified asphalt. Polym. Compos. 2017, 38, 936–946. [Google Scholar] [CrossRef]
- De Keer, L.; Kilic, K.I.; Van Steenberge, P.H.M.; Daelemans, L.; Kodura, D.; Frisch, H.; De Clerck, K.; Reyniers, M.-F.; Barner-Kowollik, C.; Dauskardt, R.H.; et al. Computational prediction of the molecular configuration of three-dimensional network polymers. Nat. Mater. 2021, 20, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.Q.; Huang, W.D.; Lin, P.; Zhang, Y.; Lv, Q. Chemical and rheological evaluation of aging properties of high content SBS polymer modified asphalt. Fuel 2019, 252, 417–426. [Google Scholar] [CrossRef]
- Lin, P.; Yan, C.; Huang, W.; Li, Y.; Zhou, L.; Tang, N.; Xiao, F.; Zhang, Y.; Lv, Q. Rheological, chemical and aging characteristics of high content polymer modified asphalt. Constr. Build. Mater. 2019, 207, 616–629. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.B. The composition and ageing of high-viscosity and elasticity asphalts. Polym. Compos. 2017, 38, 2509–2517. [Google Scholar] [CrossRef]
- Cuciniello, G.; Leandri, P.; Filippi, S.; Lo, P.D.; Losa, M.; Airey, G. Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens. Mater. Struct. 2018, 51, 136. [Google Scholar] [CrossRef] [Green Version]
- AASHTO M332-19; Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test. AASHTO: Washington, DC, USA, 2019.
- Huang, W.D.; Tang, N.P. Characterizing SBS modified asphalt with sulfur using multiple stress creep recovery test. Constr. Build. Mater. 2015, 93, 514–521. [Google Scholar] [CrossRef]
- Gaspar, M.S.; Nogueira, B.; Vasconcelos, K.L.; Leite, L.; Bernucci, L. Effect of different creep and recovery times on the MSCR test for highly modified asphalt binder. J. Test. Eval. 2021, 49, 1. [Google Scholar] [CrossRef]
- Gao, J.F.; Wang, H.N.; You, Z.P.; Yang, X. Gray relational entropy analysis of high temperature performance of bio-asphalt binder and its mixture. Int. J. Pavement Res. Technol. 2018, 11, 698–708. [Google Scholar] [CrossRef]
- Ameri, M.; Mirzaiyan, D.; Amini, A. Rutting resistance and fatigue behavior of gilsonite-modified asphalt binders. J. Mater. Civil. Eng. 2018, 30, 04018292. [Google Scholar] [CrossRef]
- Cao, W.; Wang, C. A new comprehensive analysis framework for fatigue characterization of asphalt binder using the Linear Amplitude Sweep test. Constr. Build. Mater. 2018, 171, 1–12. [Google Scholar] [CrossRef]
- Mannan, U.A.; Islam, M.R.; Tarefder, R.A. Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies. Int. J. Fatigue 2015, 78, 72–80. [Google Scholar] [CrossRef]
- Ashish, P.K.; Singh, D.; Bohm, S. Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Mater. Pavement Des. 2017, 18, 1007–1026. [Google Scholar] [CrossRef]
- Yuan, D.D.; Jiang, W.; Xiao, J.J.; Tong, Z.; Jia, M.; Shan, J.H.; Ogbon, A.W. Assessment of the Aging Process of Finished Product–Modified Asphalt Binder and Its Aging Mechanism. J. Mater. Civ. Eng. 2022, 34, 04022174. [Google Scholar] [CrossRef]
- Hajj, R.; Filonzi, A.; Rahman, S.; Bhasin, A. Considerations for using the 4 mm plate geometry in the dynamic shear rheometer for low temperature evaluation of asphalt binders. Trans. Res. Rec. 2019, 2673, 649–659. [Google Scholar] [CrossRef]
- Sui, C.; Farrar, M.J.; Tuminello, W.H.; Turner, T.F. New technique for measuring low-temperature properties of asphalt binders with small amounts of material. Trans. Res. Rec. 2010, 2179, 23–28. [Google Scholar] [CrossRef]
Item | Shell 70# |
---|---|
Penetration at 25 °C, 0.1 mm | 70.8 |
Softening point, °C | 49.2 |
Ductility at 5 °C, 5 cm min−1, cm | 74.3 |
Type | Star Type |
---|---|
Specific gravity, g cm−3 | 0.94 |
Elongation at break, % | 680 |
Tensile strength, MPa | 21.2 |
Melt index, g (10 min−1) | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, D.; Xing, C.; Jiang, W.; Xiao, J.; Wu, W.; Li, P.; Li, Y. Viscoelastic Behavior and Phase Structure of High-Content SBS-Modified Asphalt. Polymers 2022, 14, 2476. https://doi.org/10.3390/polym14122476
Yuan D, Xing C, Jiang W, Xiao J, Wu W, Li P, Li Y. Viscoelastic Behavior and Phase Structure of High-Content SBS-Modified Asphalt. Polymers. 2022; 14(12):2476. https://doi.org/10.3390/polym14122476
Chicago/Turabian StyleYuan, Dongdong, Chengwei Xing, Wei Jiang, Jingjing Xiao, Wangjie Wu, Pengfei Li, and Yupeng Li. 2022. "Viscoelastic Behavior and Phase Structure of High-Content SBS-Modified Asphalt" Polymers 14, no. 12: 2476. https://doi.org/10.3390/polym14122476
APA StyleYuan, D., Xing, C., Jiang, W., Xiao, J., Wu, W., Li, P., & Li, Y. (2022). Viscoelastic Behavior and Phase Structure of High-Content SBS-Modified Asphalt. Polymers, 14(12), 2476. https://doi.org/10.3390/polym14122476