Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials
Abstract
1. Introduction
2. Material and Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Lambert, F.; Eldafrawy, M.; Bekaert, S.; Mainjot, A. One-tooth one-time (1T1T), immediate loading of posterior single implants with the final crown: 2-year results of a case series. Int. J. Oral Implant. 2020, 13, 369–383. [Google Scholar]
- Blatz, M.B.; Conejo, J. The Current State of Chairside Digital Dentistry and Materials. Dent. Clin. N. Am. 2019, 63, 175–197. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A. Materials in digital dentistry-A review. J. Esthet. Restor. Dent. 2020, 32, 171–181. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Ritter, A.V.; Sulaiman, T.A.; Rodgers, B.M.; Baratto-Filho, F.; Cunha, L.; Gonzaga, C.C.; Correr, G.M. Effect of surface treatment and cement type on dentin bonding of processed resin composite. Am. J. Dent. 2019, 32, 271–275. [Google Scholar]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef]
- Tinschert, J. Oxidkeramiken und CAD/CAM-Technologien: Atlas für Klinik, Labortechnik und Werkstoffkunde; Deutscher Zahnärzte: Köln, Germany, 2007. [Google Scholar]
- Seidel, K.; El-Sabbagh, B.; Brandt, S.; Güth, J.F. Chance oder Risiko? Monolithische zahnfarbene Restaurationen—Kritisch hinterfragt. Wissen Kompakt 2021, 15, 169–182. [Google Scholar] [CrossRef]
- Sieper, K.; Wille, S.; Kern, M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J. Mech. Behav. Biomed. Mater. 2017, 74, 342–348. [Google Scholar] [CrossRef]
- Pfeilschifter, M.; Preis, V.; Behr, M.; Rosentritt, M. Edge strength of CAD/CAM materials. J. Dent. 2018, 74, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Nordahl, N.; Vult von Steyern, P.; Larsson, C. Fracture strength of ceramic monolithic crown systems of different thickness. J. Oral Sci. 2015, 57, 255–261. [Google Scholar] [CrossRef]
- Zimmermann, M.; Egli, G.; Zaruba, M.; Mehl, A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent. Mater. J. 2017, 36, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Scholz, K.J.; Strub, J.R.; Vach, K.; Gierthmuehlen, P.C. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin. Oral Investig. 2018, 22, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Scholz, K.J.; Vach, K.; Gierthmuehlen, P.C. Monolithic Polymer-Infiltrated Ceramic Network CAD/CAM Single Crowns: Three-Year Mid-Term Results of a Prospective Clinical Study. Int. J. Prosthodont. 2020, 33, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Peng, L.; Xiong, F.; Lin, X.Y.; Zhang, P.; Lin, Z.T.; Wu, B.L. A 3-year clinical evaluation of endodontically treated posterior teeth restored with two different materials using the CEREC AC chair-side system. J. Prosthet. Dent. 2018, 119, 363–368. [Google Scholar] [CrossRef]
- Edelhoff, D.; Liebermann, A.; Beuer, F.; Stimmelmayr, M.; Güth, J.F. Minimally invasive treatment options in fixed prosthodontics. Quintessence Int. 2016, 47, 207–216. [Google Scholar] [CrossRef]
- International Organization for Standardization; Technical Committee ISO/TC 106, Dentistry; European Committee for Standardization; Technical Committee CEN/TC 55 "Dentistry"; British Standards Institution. ISO 6872:2015; Dentistry—Ceramic Materials. European Committee for Standardization: Brussels, Belgium, 2015.
- Dikicier, S.; Ayyildiz, S.; Ozen, J.; Sipahi, C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dent. Mater. J. 2017, 36, 296–302. [Google Scholar] [CrossRef][Green Version]
- Ferrario, V.F.; Sforza, C.; Serrao, G.; Dellavia, C.; Tartaglia, G.M. Single tooth bite forces in healthy young adults. J. Oral Rehabil. 2004, 31, 18–22. [Google Scholar] [CrossRef]
- Reitemeier, B.; Biffar, R. Einführung in die Zahnmedizin; Thieme: Stuttgart, Germany, 2006; pp. XIII, 305 S. [Google Scholar]
- Peutzfeldt, A.; Sahafi, A.; Flury, S. Bonding of restorative materials to dentin with various luting agents. Oper. Dent. 2011, 36, 266–273. [Google Scholar] [CrossRef]
- Edelhoff, D.; Ozcan, M. To what extent does the longevity of fixed dental prostheses depend on the function of the cement? Working Group 4 materials: Cementation. Clin. Oral Implant. Res. 2007, 18 (Suppl. 3), 193–204. [Google Scholar] [CrossRef]
- Rosentritt, M.; Preis, V.; Behr, M.; Hahnel, S. Influence of preparation, fitting, and cementation on the vitro performance and fracture resistance of CAD/CAM crowns. J. Dent. 2017, 65, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, J.; Güth, J.F.; Schubert, O.; Sciuk, T.; Beuer, F.; Erdelt, K.J. Predictable esthetics in all-ceramic restorations: Translucency as a function of material thickness. Int. J. Comput. Dent. 2021, 24, 147–155. [Google Scholar]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Güth, J.F.; Runkel, C.; Beuer, F.; Stimmelmayr, M.; Edelhoff, D.; Keul, C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin. Oral Investig. 2017, 21, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef]
- Liberato, W.F.; Barreto, I.C.; Costa, P.P.; de Almeida, C.C.; Pimentel, W.; Tiossi, R. A comparison between visual, intraoral scanner, and spectrophotometer shade matching: A clinical study. J. Prosthet. Dent. 2019, 121, 271–275. [Google Scholar] [CrossRef]
- Michou, S.; Vannahme, C.; Bakhshandeh, A.; Ekstrand, K.R.; Benetti, A.R. Intraoral scanner featuring transillumination for proximal caries detection. An in vitro validation study on permanent posterior teeth. J. Dent. 2021, 103841. [Google Scholar] [CrossRef] [PubMed]
Material Thickness | Flexural Strength | |||||
---|---|---|---|---|---|---|
0.4 mm | 0.7 mm | 1.0 mm | 1.3 mm | 1.6 mm | ||
material | mean ± SD (N) | mean ± SD (N) | mean ± SD (N) | mean ± SD (N) | mean ± SD (N) | mean ± SD (MPa) |
Lava Ultimate (LU) | 21.3 ± 3.1 “a” | 58.9 ± 9.3 “a” | 132.1 ± 12.8 “a” | 218.2 ± 35.0 “a” | 289.8 ± 35.0 “a” | 223.3 ± 20.0 |
GC Smart (GC) | 27.7 ± 47.0 “a” | 74.6 ± 10.2 “a” | 162.1 ± 18.5 “a” | 254.3 ± 35.1 “b” | 408.2 ± 44.9 “b” | 276.3 ± 41.0 |
Vita Enamic (VE) | 13.3 ± 1.0 “a” | 32,6 ± 7.9 “a” | 88.8 ± 7.3 “a” | 153.4 ± 14.7 “a” | 230.0 ± 20.5 “a” | 132.4 ± 10.2 |
Telio CAD (TC) | 32.3 ± 16.9 “a” | 69.2 ± 16.0 “a” | 122.5 ± 19.1 “a” | 204.0 ± 29.5 “a” | 315.5 ± 22.5 “a” | 187.8 ± 27.6 |
Material | Linear | Quadratic | Cubic |
---|---|---|---|
Lava Ultimate (LU) | 0.886 | 0.944 | 0.947 * |
GC Smart (GC) | 0.886 | 0.971 * | 0.971 * |
Enamic (VE) | 0.888 | 0.981 * | 0.981 * |
Telio CAD (TC) | 0.896 | 0.969 | 0.971 * |
Material | Cubic “Fracture Load Coefficients” | |||
---|---|---|---|---|
b0 | b1 | b2 | b3 | |
Lava Ultimate (LU) | 1.1 ± 0.5 | −45.1 ± 44.6 | 230.0 ± 70.0 | −53.1 ± 28.8 |
GC Smart (GC) | −0.57 ± 7.2 | 31.0 ± 42.5 | 95.8 ± 66.7 | 27.3 ± 27.5 |
Enamic (VE) | 1.0 ± 3.5 | −30.7 ± 20.1 | 129.7 ± 31.3 | −13.0 ± 12.9 |
Telio CAD (TC) | 0.0 ± 5.5 | 69.9 ± 51.3 | 9.8 ± 21.2 | 43.7 ± 5.5 |
Material-Dependent Calculated Fracture Loads | Material Thickness (in mm) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | |
Lava Ultimate (LU) (in N) | 6.9 | 16.5 | 29.4 | 45.4 | 64.1 | 85.1 | 108.1 | 132.9 | 159.2 | 186.5 | 214.5 | 243.1 | 271.8 | 300.3 | 328.2 | 355.4 | 381.5 | 406.1 |
GC Smart (GC) (in N) | 18.1 | 28.9 | 42.3 | 58.4 | 77.4 | 99.5 | 124.8 | 153.5 | 185.8 | 221.8 | 261.6 | 305.5 | 353.6 | 406.1 | 463.2 | 524.9 | 591.5 | 663.1 |
Enamic (VE) (in N) | 3.2 | 8.7 | 16.5 | 26.5 | 38.7 | 52.9 | 69.0 | 87.1 | 107.0 | 128.6 | 151.8 | 176.7 | 203.0 | 230.8 | 259.9 | 290.3 | 321.9 | 354.6 |
Telio CAD (TC) (in N) | 23.0 | 32.3 | 42.9 | 54.9 | 68.7 | 84.5 | 102.7 | 123.4 | 146.8 | 173.4 | 203.3 | 236.8 | 274.2 | 315.7 | 361.6 | 412.1 | 467.6 | 528.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graf, T.; Schweiger, J.; Güth, J.-F.; Sciuk, T.; Schubert, O.; Erdelt, K.-J. Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers 2022, 14, 58. https://doi.org/10.3390/polym14010058
Graf T, Schweiger J, Güth J-F, Sciuk T, Schubert O, Erdelt K-J. Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers. 2022; 14(1):58. https://doi.org/10.3390/polym14010058
Chicago/Turabian StyleGraf, Tobias, Josef Schweiger, Jan-Frederik Güth, Thomas Sciuk, Oliver Schubert, and Kurt-Jürgen Erdelt. 2022. "Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials" Polymers 14, no. 1: 58. https://doi.org/10.3390/polym14010058
APA StyleGraf, T., Schweiger, J., Güth, J.-F., Sciuk, T., Schubert, O., & Erdelt, K.-J. (2022). Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers, 14(1), 58. https://doi.org/10.3390/polym14010058