Next Article in Journal
Crosslinked Elastomers: Structure–Property Relationships and Stress-Optical Law
Next Article in Special Issue
A Brief Overview of Polymers Science and Technology, in Spain
Previous Article in Journal
A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether-block-amide) Copolymers as Membranes for CO2 Separation
Previous Article in Special Issue
Chitosan: An Overview of Its Properties and Applications
Article

Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering

1
Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
2
Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
3
Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
4
Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, CEU Universities, 28925 Alcorcon, Spain
5
Unidad Asociada de I+D al CSIC Unidad de Investigación Clínica y Biopatología Experimental, Complejo Asistencial de Ávila, SACYL, 05003 Avila, Spain
6
Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
*
Author to whom correspondence should be addressed.
Academic Editors: David Mecerreyes, Rafael Antonio Balart Gimeno, Ana María Díez-Pascual, Vicente Compañ Moreno, Angels Serra and Rebeca Hernandez Velasco
Polymers 2022, 14(1), 12; https://doi.org/10.3390/polym14010012
Received: 19 November 2021 / Revised: 13 December 2021 / Accepted: 15 December 2021 / Published: 21 December 2021
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Spain (2020,2021))
Regenerative therapies based on tissue engineering are becoming the most promising alternative for the treatment of osteoarthritis and rheumatoid arthritis. However, regeneration of full-thickness articular osteochondral defects that reproduces the complexity of native cartilage and osteochondral interface still remains challenging. Hence, in this work, we present the fabrication, physic-chemical characterization, and in vitro and in vivo evaluation of biomimetic hierarchical scaffolds that mimic both the spatial organization and composition of cartilage and the osteochondral interface. The scaffold is composed of a composite porous support obtained by cryopolymerization of poly(ethylene glycol) dimethacrylate (PEGDMA) in the presence of biodegradable poly(D,L-lactide-co-glycolide) (PLGA), bioactive tricalcium phosphate β-TCP and the bone promoting strontium folate (SrFO), with a gradient biomimetic photo-polymerized methacrylated hyaluronic acid (HAMA) based hydrogel containing the bioactive zinc folic acid derivative (ZnFO). Microscopical analysis of hierarchical scaffolds showed an open interconnected porous open microstructure and the in vitro behaviour results indicated high swelling capacity with a sustained degradation rate. In vitro release studies during 3 weeks indicated the sustained leaching of bioactive compounds, i.e., Sr2+, Zn2+ and folic acid, within a biologically active range without negative effects on human osteoblast cells (hOBs) and human articular cartilage cells (hACs) cultures. In vitro co-cultures of hOBs and hACs revealed guided cell colonization and proliferation according to the matrix microstructure and composition. In vivo rabbit-condyle experiments in a critical-sized defect model showed the ability of the biomimetic scaffold to promote the regeneration of cartilage-like tissue over the scaffold and neoformation of osteochondral tissue. View Full-Text
Keywords: biomimetic; tissue engineering; cryopolymerization; hyaluronic acid; folic acid; strontium; zinc biomimetic; tissue engineering; cryopolymerization; hyaluronic acid; folic acid; strontium; zinc
Show Figures

Figure 1

MDPI and ACS Style

Asensio, G.; Benito-Garzón, L.; Ramírez-Jiménez, R.A.; Guadilla, Y.; Gonzalez-Rubio, J.; Abradelo, C.; Parra, J.; Martín-López, M.R.; Aguilar, M.R.; Vázquez-Lasa, B.; Rojo, L. Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering. Polymers 2022, 14, 12. https://doi.org/10.3390/polym14010012

AMA Style

Asensio G, Benito-Garzón L, Ramírez-Jiménez RA, Guadilla Y, Gonzalez-Rubio J, Abradelo C, Parra J, Martín-López MR, Aguilar MR, Vázquez-Lasa B, Rojo L. Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering. Polymers. 2022; 14(1):12. https://doi.org/10.3390/polym14010012

Chicago/Turabian Style

Asensio, Gerardo, Lorena Benito-Garzón, Rosa A. Ramírez-Jiménez, Yasmina Guadilla, Julian Gonzalez-Rubio, Cristina Abradelo, Juan Parra, María R. Martín-López, María R. Aguilar, Blanca Vázquez-Lasa, and Luis Rojo. 2022. "Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering" Polymers 14, no. 1: 12. https://doi.org/10.3390/polym14010012

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop