Influence of Post-Core and Crown Type on the Fracture Resistance of Incisors Submitted to Quasistatic Loading
Abstract
1. Introduction
2. Materials and Methods
2.1. Post and Core Fabrication
2.2. Crown Fabrication
2.2.1. Direct PFC Crowns (Groups 1–4)
2.2.2. Indirect CAD/CAM Crowns (Groups 5–10)
2.3. Fracture Load Test
2.4. Microscopic Analysis of Fiber Post–Cement Interface
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- For restoring extensively damaged anterior teeth, unidirectional fiber posts are recommended.
- The use of flowable SFRC as post-luting and core material, with regular fiber posts, revealed promising outcomes regarding load-bearing capacity and failure modes.
- Indirect CAD/CAM crown restorations showed improved load capacities compared to direct conventional composite restorations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lassila, L.; Oksanen, V.; Fráter, M.; Vallittu, P.K.; Garoushi, S. The influence of resin composite with high fiber aspect ratio on fracture resistance of severely damaged bovine incisors. Dent. Mater. J. 2020, 39, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Pantaleón, D.S.; Morrow, B.R.; Cagna, D.R.; Pameijer, C.H.; Garcia-Godoy, F. Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors. J. Prosthet. Dent. 2018, 119, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Zarow, M.; Ramírez-Sebastià, A.; Paolone, G.; de Ribot Porta, J.; Mora, J.; Espona, J.; Durán-Sindreu, F.; Roig, M. A new classification system for the restoration of root filled teeth. Int. Endod. J. 2018, 51, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Meyenberg, K. The ideal restoration of endodontically treated teeth—Structural and esthetic considerations: A review of the literature and clinical guidelines for the restorative clinician. Eur. J. Esthet. Dent. 2013, 8, 238–268. [Google Scholar] [PubMed]
- Fragou, T.; Tortopidis, D.; Kontonasaki, E.; Evangelinaki, E.; Ioannidis, K.; Petridis, H.; Koidis, P. The effect of ferrule on the fracture mode of endodontically treated canines restored with fibre posts and metal-ceramic or all-ceramic crowns. J. Dent. 2012, 40, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W. A review of the management of endodontically treated teeth. Post, core and the final restoration. J. Am. Dent. Assoc. 2005, 136, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.S.; Chan, T.K. Long-term survival of primary root canal treatment carried out in a dental teaching hospital. Int. Endod. J. 2003, 36, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, F.; Bertelli, E.; Sherriff, M.; Watson, T.F.; Ford, T.R. Three-year clinical comparison of survival of endodontically treated teeth restored with either full cast coverage or with direct composite restoration. J. Prosthet. Dent. 2002, 88, 297–301. [Google Scholar] [CrossRef]
- Stavropoulou, A.F.; Koidis, P.T. A systematic review of single crowns on endodontically treated teeth. J. Dent. 2007, 35, 761–767. [Google Scholar] [CrossRef]
- Stenhagen, S.; Skeie, H.; Bårdsen, A.; Laegreid, T. Influence of the coronal restoration on the outcome of endodontically treated teeth. Acta Odontol. Scand. 2020, 78, 81–86. [Google Scholar] [CrossRef]
- Qualtrough, A.J.; Mannocci, F. Tooth-colored post system: A review. Oper. Dent. 2003, 28, 86–91. [Google Scholar]
- Garcia, P.P.; Wambier, L.M.; de Geus, J.L.; da Cunha, L.F.; Correr, G.M.; Gonzaga, C.C. Do anterior and posterior teeth treated with post-and-core restorations have similar failure rates? A systematic review and meta-analysis. J. Prosthet. Dent. 2019, 121, 887–894. [Google Scholar] [CrossRef]
- Naumann, M.; Blankenstein, F.; Kiessling, S.; Dietrich, T. Risk factors for failure of glass fiber-reinforced composite post restorations: A prospective observational clinical study. Eur. J. Oral Sci. 2005, 113, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Zicari, F.; De Munck, J.; Scotti, R.; Naert, I.; Van Meerbeek, B. Factors affecting the cement-post interface. Dent. Mater. 2012, 28, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K. Are we misusing fiber posts? Guest editorial. Dent. Mater. 2016, 32, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V. Influence of cement thickness on the bond strength of tooth-colored posts to root dentin after thermal cycling. Acta Odontol. Scand. 2013, 71, 175–182. [Google Scholar] [CrossRef]
- Hatta, M.; Shinya, A.; Vallittu, P.K.; Shinya, A.; Lassila, L.V. High volume individual fibre post versus low volume fibre post: The fracture load of the restored tooth. J. Dent. 2011, 39, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Fráter, M.; Forster, A.; Jantyik, Á.; Braunitzer, G.; Nagy, K.; Grandini, S. In vitro fracture resistance of premolar teeth restored with fibre-reinforced composite posts using a single or a multi-post technique. Aust. Endod. J. 2017, 43, 16–22. [Google Scholar] [CrossRef][Green Version]
- Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Continuous and short fiber reinforced composite in root post-core system of severely damaged incisors. Open Dent. J. 2009, 3, 36–41. [Google Scholar] [CrossRef][Green Version]
- Forster, A.; Sáry, T.; Braunitzer, G.; Fráter, M. In vitro fracture resistance of endodontically treated premolar teeth restored with a direct layered fiber-reinforced composite post and core. J. Adhes. Sci. Technol. 2016, 31, 1454–1466. [Google Scholar] [CrossRef]
- Fráter, M.; Lassila, L.; Braunitzer, G.; Vallittu, P.K.; Garoushi, S. Fracture resistance and marginal gap formation of post-core restorations: Influence of different fiber-reinforced composites. Clin. Oral Investig. 2020, 24, 265–276. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Néma, V.; Braunitzer, G.; Vallittu, P.; Lassila, L.; Garoushi, S. Fatigue failure load of immature anterior teeth: Influence of different fiber post-core systems. Odontology 2021, 109, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Fráter, M.; Sáry, T.; Jókai, B.; Braunitzer, G.; Säilynoja, E.; Vallittu, P.; Lassila, L.; Garoushi, S. Fatigue behavior of endodontically treated premolars restored with different fiber-reinforced designs. Dent. Mater. 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Fráter, M.; Sáry, T.; Braunitzer, G.; Szabó, P.B.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Fatigue failure of anterior teeth without ferrule restored with individualized fiber-reinforced post-core foundations. J. Mech. Behav. Biomed. Mater. 2021, 118, 104440. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Tanner, J.; Keulemans, F.; Le Bell-Rönnlöf, A.M.; Lassila, L.; Vallittu, P.K. Fiber Reinforcement of Endodontically Treated Teeth: What Options Do We Have? Literature Review. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Lassila, L.; Keulemans, F.; Vallittu, P.K.; Garoushi, S. Characterization of restorative short-fiber reinforced dental composites. Dent. Mater. J. 2020, 39, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Lassila, L.; Säilynoja, E.; Prinssi, R.; Vallittu, P.; Garoushi, S. Characterization of a new fiber-reinforced flowable composite. Odontology 2019, 107, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Bijelic, J.; Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Short fiber reinforced composite in restoring severely damaged incisors. Acta Odontol. Scand. 2013, 71, 1221–1231. [Google Scholar] [CrossRef]
- Le Bell-Rönnlöf, A.M.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P.K. Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts. Dent. Mater. 2011, 27, 107–115. [Google Scholar] [CrossRef]
- Zicari, F.; Van Meerbeek, B.; Scotti, R.; Naert, I. Effect of ferrule and post placement on fracture resistance of endodontically treated teeth after fatigue loading. J. Dent. 2013, 41, 207–215. [Google Scholar] [CrossRef]
- Lazari, P.C.; de Carvalho, M.A.; Del Bel Cury, A.A.; Magne, P. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material. J. Prosthet. Dent. 2018, 119, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Nothdurft, F.P.; Schmitt, T.; Rupf, S.; Pospiech, P.R. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and FRC posts. Dent. Mater. J. 2011, 30, 109–114. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dietschi, D.; Ardu, S.; Rossier-Gerber, A.; Krejci, I. Adaptation of adhesive post and cores to dentin after in vitro occlusal loading: Evaluation of post material influence. J. Adhes. Dent. 2006, 8, 409–419. [Google Scholar]
- Garner, J.R.; Wajdowicz, M.N.; DuVall, N.B.; Roberts, H.W. Selected physical properties of new resin-modified glass ionomer luting cements. J. Prosthet. Dent. 2017, 117, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Azar, M.R.; Bagheri, R.; Burrow, M.F. Effect of storage media and time on the fracture toughness of resin-based luting cements. Aust. Dent. J. 2012, 57, 349–354. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R. The Mechanical Performance of a Novel Self-Adhesive Restorative Material. J. Adhes. Dent. 2020, 22, 47–58. [Google Scholar]
- Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Depth of cure and surface microhardness of experimental short fiber-reinforced composite. Acta Odontol. Scand. 2008, 66, 38–42. [Google Scholar] [CrossRef]
- Lassila, L.V.; Nagas, E.; Vallittu, P.K.; Garoushi, S. Translucency of flowable bulk-filling composites of various thicknesses. Chin. J. Dent. Res. 2012, 15, 31–35. [Google Scholar]
- Garoushi, S.; Vallittu, P.; Shinya, A.; Lassila, L. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites. Odontology 2016, 104, 291–297. [Google Scholar] [CrossRef]
- Sequeira-Byron, P.; Fedorowicz, Z.; Carter, B.; Nasser, M.; Alrowaili, E.F. Single crowns versus conventional fillings for the restoration of root-filled teeth. Cochrane Database Syst. Rev. 2015, 9, CD009109. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhuysen, J.P.; D’Hoore, W.; Carvalho, J. Long-term evaluation of extensive restorations in permanent teeth. J. Dent. 2003, 31, 395–405. [Google Scholar] [CrossRef]
- Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, J.M.; Loomans, B.A. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent. Mater. 2007, 23, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Lazari, P.C.; Carvalho, M.A.; Johnson, T.; Del Bel Cury, A.A. Ferrule-Effect Dominates Over Use of a Fiber Post When Restoring Endodontically Treated Incisors: An In Vitro Study. Oper. Dent. 2017, 42, 396–406. [Google Scholar] [CrossRef]
- Saunders, W.P.; Saunders, E.M. Coronal leakage as a cause of failure in root-canal therapy: A review. Endod. Dent. Traumatol. 1994, 10, 105–108. [Google Scholar] [CrossRef]
- Anusavice, K.J. Phillips’ Science of Dental Materials, 11th ed.; Elsevier: St. Louis, MO, USA, 2003; pp. 93–94. [Google Scholar]
- Garoushi, S.; Lassila, L.V.J.; Tezvergil, A.; Vallittu, P.K. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent. Mater. 2007, 23, 17–23. [Google Scholar] [CrossRef]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. Fracture-behavior of CAD/CAM ceramic crowns before and after cyclic fatigue aging. Int. J. Prosthodont. 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]






| Brand (Code) | Manufacturer | Type | Composition | ||||
|---|---|---|---|---|---|---|---|
| G-aenial Anterior (PFC) | GC Corp, Tokyo, Japan | Hybrid microfilled composite | UDMA, dimethacrylate co-monomers, pre-polymerized silica and strontium fluoride containing fillers 76 wt% | ||||
| everX Flow (SFRC) | GC Corp, Tokyo, Japan | Flowable fiber reinforced composite (bulk shade) | Bis-EMA, TEGDMA, UDMA, micrometer scale glass fiber filler (100–300 µm and Ø7 μm), Barium glass 70 wt%, 46 vol% | ||||
| Gradia Core | GC Corp, Tokyo, Japan | Dual-cured core build-up composite | Methacrylic acid ester 20–30 wt%, fluoro-alumino-silicate glass 70–75 wt%, silicon dioxide 1–5 wt%. | ||||
| Cerasmart 270 | GC Corp, Tokyo, Japan | CAD/CAM block | Bis-MEPP, UDMA, dimethacrylate co-monomers, silica and barium nano glass 71 wt% | ||||
| Initial LiSi Block | GC Corp, Tokyo, Japan | CAD/CAM block | Not available | ||||
| G-CEM LinkForce | GC Corp, Tokyo, Japan | Dual-cured, self-adhesive cement | Paste A: fluoroalumino silicate glass, initiator, UDMA, dimethacrylate, silicon dioxide. Paste B: silicon dioxide, UDMA, dimethacrylate, initiator, inhibitor | ||||
| MI Core Fiber Post | GC Corp, Tokyo, Japan | Regular fiber post | UDMA, PMMA, glass fibers | ||||
| Group | Post-Core Restoration | Final Crown Restoration |
|---|---|---|
| 1 | Gradia Core as post-core | Conventional direct PFC |
| 2 | Fiber post and Gradia Core | Conventional direct PFC |
| 3 | Fiber post and SFRC core | Conventional direct PFC |
| 4 | SFRC as post-core | Conventional direct PFC |
| 5 | Fiber post and Gradia Core | Cerasmart 270 CAD/CAM |
| 6 | Fiber post and SFRC core | Cerasmart 270 CAD/CAM |
| 7 | SFRC as post-core | Cerasmart 270 CAD/CAM |
| 8 | Fiber post and Gradia Core | LiSi Block CAD/CAM |
| 9 | Fiber post and SFRC core | LiSi Block CAD/CAM |
| 10 | SFRC as post-core | LiSi Block CAD/CAM |
| 11 | Sound teeth as control | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uctasli, S.; Boz, Y.; Sungur, S.; Vallittu, P.K.; Garoushi, S.; Lassila, L. Influence of Post-Core and Crown Type on the Fracture Resistance of Incisors Submitted to Quasistatic Loading. Polymers 2021, 13, 1130. https://doi.org/10.3390/polym13071130
Uctasli S, Boz Y, Sungur S, Vallittu PK, Garoushi S, Lassila L. Influence of Post-Core and Crown Type on the Fracture Resistance of Incisors Submitted to Quasistatic Loading. Polymers. 2021; 13(7):1130. https://doi.org/10.3390/polym13071130
Chicago/Turabian StyleUctasli, Sadullah, Yakup Boz, Sercan Sungur, Pekka K. Vallittu, Sufyan Garoushi, and Lippo Lassila. 2021. "Influence of Post-Core and Crown Type on the Fracture Resistance of Incisors Submitted to Quasistatic Loading" Polymers 13, no. 7: 1130. https://doi.org/10.3390/polym13071130
APA StyleUctasli, S., Boz, Y., Sungur, S., Vallittu, P. K., Garoushi, S., & Lassila, L. (2021). Influence of Post-Core and Crown Type on the Fracture Resistance of Incisors Submitted to Quasistatic Loading. Polymers, 13(7), 1130. https://doi.org/10.3390/polym13071130

