Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Procedures
2.2. Compressive Strength
2.3. X-ray Diffraction
2.4. Thermogravimetric/Differential Thermal Gravimetry
2.5. Solid-State Nuclear Magnetic Resonance
2.6. pH Measurement and Phenolphthalein Method
3. Results
3.1. Compressive Strength
3.2. XRD
3.3. TG/DTG Analyses
3.4. 29Si MAS NMR
3.5. pH and Neutralization Depth
4. Discussion on Compressive Strength Drop under High CO2 Conditions
5. Conclusions
- In the case of specimens using BFS and sodium silicate, the compressive strength is reduced by accelerated carbonation. This is based on the change in the pore structure of the specimen and the occurrence of cracks.
- In the case of specimens using BFS and sodium silicate, even in the environment without accelerated carbonation, some cracks were observed, but the compressive strength did not decrease. It is necessary to additionally observe the decrease in compressive strength in the long-term view of the formulation using only BFS and sodium silicate.
- In the case of the BFS and BFS with FA specimens, we confirmed that accelerated carbonation reduced the XRD peaks and amount of C–(N)–A–S–H produced by generating amorphous CaCO3 vaterite in addition to calcite. Further, we confirmed that nahcolite was produced at high Na+ concentrations.
- In the case of BFS and BFS with FA specimens, changes in the C–(N)–A–S–H structures were confirmed regardless of the type of alkali activator used. However, for FA specimens, the change in the chemical shift due to accelerated carbonation was small; hence, the change in the N-A-S-H structure was also considered to be small.
- B100_SH suppresses the permeation of CO2 by the formation of carbonate containing Na+, but considering that the solubility of carbonates containing Na+ is considerably higher than that of CaCO3, we need to perform exposure tests under real conditions with a water supply.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of the Environment. Environmental Statistics Collection (2017 Version) Global Environment. Available online: https://www.env.go.jp/doc/toukei/h29.html (accessed on 29 November 2020).
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Geopolymers. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Al Bakri, A.M.M.; Kamarudin, H.; Binhussain, M.; Nizar, I.K.; Rafiza, A.R.; Zarina, Y. Comparison of geopolymer fly ash and ordinary portland cement to the strength of concrete. Adv. Sci. Lett. 2013, 19, 3592–3595. [Google Scholar] [CrossRef]
- Aiken, T.A.; Sha, W.; Kwasny, J.; Soutsos, M.N. Resistance of geopolymer and Portland cement based systems to silage effluent attack. Cem Concr. Res. 2017, 92, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Albitar, M.; Ali, M.S.M.; Visintin, P.; Drechsler, M. Durability evaluation of geopolymer and conventional concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 2005, 35, 658–670. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 2010, 40, 334–339. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kelly, S.; Yao, Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des. 2004, 63, 584–592. [Google Scholar] [CrossRef]
- Sarker, P.K.; McBeath, S. Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr. Build. Mater. 2015, 90, 91–98. [Google Scholar] [CrossRef]
- Palomo, A.; Krivenko, P.; Lodeiro, I.G.; Kavalerova, E.; Maltseva, O.; Jiménez, A.F. A review on alkaline activation: New analytical perspectives. Mater. Constr. 2014, 64, e022. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, I.; Liégeois, M.; Rulmont, A.; Cloots, R.; Maseri, F. Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. J. Mater. Res. 2003, 18, 2571–2579. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Schneider, J.; Cincotto, M.A.; Panepucci, H. 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem. Concr. Res. 2001, 31, 993–1001. [Google Scholar] [CrossRef]
- Myers, R.J.; ‘Hôpital, E.L.; Provis, J.L.; Lothenbach, B. Effect of temperature and aluminium on calcium (alumino) silicate hydrate chemistry under equilibrium conditions. Cem. Concr. Res. 2015, 68, 83–93. [Google Scholar] [CrossRef]
- Zamorano, L.G.; Balonis, M.; Erdemli, B.; Neithalath, N.; Sant, G. C–(N)–S–H and N–A–S–H gels: Compositions and solubility data at 25 °C and 50 °C. J. Am. Ceram. Soc. 2017, 100, 2700–2711. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Kotwica, Ł.; Rózycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 2017, 155, 643–653. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; Zeadanic, M.E. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Chi, J.M.; Huang, R.; Yang, C.C. Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method. J. Mar. Sci. Technol. 2002, 10, 14–20. [Google Scholar]
- Lodeiro, I.G. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- Kim, J.; Kitagaki, R. The carbonation behavior of cement paste with sodium silicate as repair materials. J. Jpn. Concr. Inst. 2017, 38, 1603–1608. [Google Scholar]
- Puertas, F.; Palacios, M.; Vazquez, T. Carbonation process of alkali-activated slag mortars. J. Mater. Sci. 2006, 41, 3071–3082. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Walkley, B.; Nicolas, R.S.; Gehman, J.D.; Brice, D.G.; Kilcullen, A.R.; Duxson, P.; van Deventer, J.S.J. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 2013, 53, 127–144. [Google Scholar] [CrossRef]
- Song, K.I.; Song, J.K.; Lee, B.Y.; Yang, K.H. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar. Adv. Mater. Sci. Eng. 2014, 2014, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- Nedeljkovic, M. Carbonation Mechanism of Alkali-Activated Fly Ash and Slag Materials—In View of Long-Term Performance Predictions. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, February 2019. [Google Scholar]
- Khan, M.S.H.; Noushini, A.; Castel, A. Carbonation of a low-calcium fly ash geopolymer concrete. Mag. Concr. Res. 2016, 69, 24. [Google Scholar] [CrossRef]
- Japanese Industrial Standards, Method of Test for Compressive Strength of Concrete, JIS A 1108; Japanese Standards Association: Tokyo, Japan, 2018.
- Atis, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E. Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 2015, 96, 673–678. [Google Scholar] [CrossRef]
- Haha, M.B.; Lothenbach, B.; Saout, G.L.; Winnefeld, F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cem. Concr. Res. 2011, 41, 955–963. [Google Scholar] [CrossRef]
- Matsuda, A.; Maruyama, I.; Meawad, A.; Pareek, S.; Araki, Y. Reaction, Phase, and Microstructure of Fly Ash-Based Alkali Activated Materials. J. Concr. Technol. 2019, 17, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Nedeljkovic, M.; Zuo, Y.; Arbi, K.; Ye, G. Carbonation Resistance of Alkali-Activated Slag under Natural and Accelerated Conditions. J. Sustain. Metall. 2018, 4, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Lodeiro, I.G.; Palomo, A.; Jiménez, A.F.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Juengera, M.C.G.; Jennings, H.M. The use of nitrogen adsorption to assess the microstructure of cement paste. Cem. Concr. Res. 2001, 31, 883–892. [Google Scholar] [CrossRef]
Type | Surface Area (cm2/g) | Density (g/cm3) | Chemical Composition (Mass%) | |||||
---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | |||
BFS | 3930 | 2.91 | 43.36 | 34.03 | 14.36 | 0.83 | 6.51 | - |
FA | 4010 | 2.29 | 3.75 | 57.75 | 23.65 | 5.75 | 1.1 | 1.05 |
Index | Water/Binder | Binder:Sand | Binder | Alkali Activator | Water | Sand | Na2O/Binder | ||
---|---|---|---|---|---|---|---|---|---|
BFS | FA | WG | NaOH | ||||||
B100_SS | 0.4 | 1:2 | 669 | 0 | 167 | 0 | 192 | 1338 | 0.045 |
B100_SH1 | 665 | 0 | 0 | 106 | 242 | 1330 | 0.123 | ||
B100_SH2 | 667 | 0 | 0 | 38 | 258 | 1334 | 0.045 | ||
B50F50_SS | 322 | 322 | 163 | 0 | 186 | 1300 | 0.045 | ||
B50F50_SH1 | 324 | 324 | 0 | 103 | 235 | 1292 | 0.123 | ||
B50F50_SH2 | 324 | 324 | 0 | 37 | 252 | 1296 | 0.045 | ||
F100_SS | 0 | 625 | 158 | 0 | 180 | 1260 | 0.045 | ||
F100_SH1 | 0 | 630 | 0 | 99 | 228 | 1251 | 0.123 | ||
F100_SH2 | 0 | 629 | 0 | 36 | 243 | 1258 | 0.045 |
Index | Water/Binder | Binder | Alkali Activator | Water | Na2O/Binder | ||
---|---|---|---|---|---|---|---|
BFS | FA | WG | NaOH | ||||
B100_SS | 0.4 | 1369 | 0 | 342 | 0 | 392 | 0.045 |
B100_SH1 | 1349 | 0 | 0 | 215 | 491 | 0.123 | |
B100_SH2 | 1346 | 0 | 0 | 77 | 522 | 0.045 | |
B50F50_SS | 644 | 644 | 322 | 0 | 368 | 0.045 | |
B50F50_SH1 | 635 | 635 | 0 | 202 | 462 | 0.123 | |
B50F50_SH2 | 633 | 633 | 0 | 73 | 491 | 0.045 | |
F100_SS | 0 | 1214 | 304 | 0 | 348 | 0.045 | |
F100_SH1 | 0 | 1198 | 0 | 191 | 436 | 0.123 | |
F100_SH2 | 0 | 1196 | 0 | 67 | 465 | 0.045 |
Type | Mortar Specimen | Paste Specimen | |
---|---|---|---|
Size | φ50 × 100 mm | 40 × 40 × 160 mm3 | Powder |
measurement | Compressive strength | pH and neutralization depths | XRD TG-DTG 29Si MAS NMR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamazaki, Y.; Kim, J.; Kadoya, K.; Hama, Y. Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator. Polymers 2021, 13, 671. https://doi.org/10.3390/polym13040671
Yamazaki Y, Kim J, Kadoya K, Hama Y. Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator. Polymers. 2021; 13(4):671. https://doi.org/10.3390/polym13040671
Chicago/Turabian StyleYamazaki, Yuto, Jihoon Kim, Keisuke Kadoya, and Yukio Hama. 2021. "Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator" Polymers 13, no. 4: 671. https://doi.org/10.3390/polym13040671
APA StyleYamazaki, Y., Kim, J., Kadoya, K., & Hama, Y. (2021). Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator. Polymers, 13(4), 671. https://doi.org/10.3390/polym13040671