# Determination of Temperature-Dependent Coefficients of Viscosity and Surface Tension of Tamarind Seeds (Tamarindus indica L.) Polymer

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Purification of Tamarind Seed Polymer

#### 2.2. Temperature-Dependent Characterization of Tamarind Seed Polymer

^{2/3}= K (Tc − T)

^{−7}[J K

^{−1}mol

^{−2/3}]. For water, V = 18 mL/mol, and Tc = 647 K (347 °C). The temperature coefficient is unusually smaller for water, alcohol, and other associated liquids but is always negative for a pure substance.

## 3. Results and Discussion

^{−1}), C-H stretch (2925.81 cm

^{−1}), C-H rock (1384.79 cm

^{−1}), and C-H bend (1332.72 cm

^{−1}) peaks were observed in the IR spectra of the TSP [21]. The results of the IR spectral study were also supported by the study performed by Chawananorasest et al., showing an average molecular weight of the TSP ranging from 700 to 880 kDa [22].

#### 3.1. Effect of Temperature on Viscosity

^{2}= 0.936. The value of the EF of the gum was found to be 20.46 ± 1.06 kJ/mol. This value is within the range of values recorded by de Paula and Rodrigues for certain plant gums, including a gum with an EF value of 16.2 kJ/mol [26], A. marcocarpa gum with an EF value of 16.8 kJ/mol calculated by Silva et al. [27], and Albzia lebbac gum with an EF value of 15.9‒17.2 kJ/mol [28]. In general, higher EF values indicate that the polymer solution is less vulnerable to temperature changes and vice versa [29,30]. A low EF value denotes the existence of few intra- and intermolecular interactions in the polymer or gums being studied. In a study, the investigator showed that Ficus glumosa gum showed a very low EF value (1.915 kJ/mol) as compared to the EF value of Arabic gum (15 kJ/mol) [31]. The EF value of the gum in the present study was higher than the EF value of the Arabic gum and Ficus glumosa gum [31]. Therefore, based on the EF value, the gum used in the present study is deemed to be more suitable than Albzia lebbac gum, Ficus glumosa gum, and A. marcocarpa gum for commercial applications.

^{2}= 0.962. The values of ∆HV and ∆SV were calculated to be 23.66 ± 0.97 and −0.10 ± 0.01 kJ/mol, respectively.

#### 3.2. Effect of Temperature on Surface Tension

^{−7}[J K

^{−1}mol

^{−2/3}]. For water, V and Tc were estimated as 18 mL/mol and 647 K (347 °C), respectively. The surface tension was found to be 3.38 ± 0.33 N m

^{−1}× 10

^{−7}. In general, the temperature coefficient for alcohols, water, and other related liquids is slightly lower, but still negative for pure substances [39]. Fusion entropy increases the entropy of a substance while melting. As the degree of disorder rises in the transition from an ordered solid to a disorganized liquid structure, this is always positive. Fusion is a first-order phase change that occurs at a constant temperature [40]. Equations (7) and (8) were used to calculate the entropy of fusion (∆S). The entropy of fusion (∆S) is expressed in J mol

^{−1}K

^{−1}. It is expressed as Equation (9).

_{fus}= ∆H

_{fus}− T × ∆S

_{fus}< 0

_{fus}is the fusion enthalpy, T is the temperature, and ∆S

_{fus}is the entropy of fusion. At equilibrium, temperature is equal to the melting point, i.e., T = Tf [41].

_{fus}= ∆H

_{fus}− T × ∆S

_{fus}= 0

_{fus}= ∆H

_{fus}/Tf

^{−1}K

^{−1}. Table 1 summarizes the evaluated parameters of the gums and their results.

^{−1}[42], similar to the present study’s EF value, which was found to be 20.46 ± 1.06 kJ/mol. Varma et al. determined that Albizia lebbeck gum was used in the formulation of pH-sensitive drug-releasing O/W emulsions, which shows that the TSP can also be used in the preparation of pharmaceutical formulations [43]. Wientjes et al. have determined the activation energy of guar gum, which was found to be 10.0 kJ mol

^{−1}[44]. A commercial guar gum product was prepared—60 capsules that are sold under the brand Swanson and used for the treatment of digestive system problems. Both studies proved that the TSP, which has an activation energy of 20.46 ± 1.06 kJ/mol, which is similar to the above studies, can also be used for commercial product preparation.

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Alonso-Sande, M.; Teijeiro, D.; Remunan-Lopez, C.; Alonso, M.J. Glucomannan a promising polysaccharide for biopharmaceutical purposes. Eur. J. Pharm. Biopharm.
**2009**, 72, 453–462. [Google Scholar] [CrossRef] [PubMed] - Satturwar, P.M.; Fulzele, S.V.; Dorle, A.K. Biodegradation and in vivo biocompatibility of rosin: A natural film-forming polymer. AAPS Pharm. Sci. Tech.
**2003**, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] - Carmen Chifiriuc, M.; Mihai Grumezescu, A.; Grumezescu, V.; Bezirtzoglou, E.; Lazar, V.; Bolocan, A. Biomedical applications of natural polymers for drug delivery. Curr. Org. Chem.
**2014**, 18, 152–164. [Google Scholar] [CrossRef] - De Souza, R.; Zahedi, P.; Allen, C.J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv.
**2010**, 17, 365–375. [Google Scholar] [CrossRef] [PubMed] - Saettone, M.F.; Burgalassi, S.; Giannaccini, B.; Boldrini, E.; Bianchini, P.; Luciani, G. Ophthalmic Solutions Viscosified with Tamarind Seed Polysaccharide. U.S. Patent 6,056,950 A, 4 February 1997. [Google Scholar]
- El-Siddig, K.E.; Gunasena, H.P.M.; Prasad, B.A.; Pushpakumara, D.K.; Ramana, K.V.R.; Vijayanand, P. Tamarind: Tamarindus Indica; Southampton Centre for Underutilised Crops: Southampton, UK, 2006; pp. 13–27. [Google Scholar]
- Freitas, R.A.; Martin, S.; Santos, G.L.; Valenga, F.; Buckeridge, M.S.; Reicher, F. Physico-chemical properties of seed xyloglucans from different sources. Carbohydr. Polym.
**2005**, 60, 507–514. [Google Scholar] [CrossRef] - Singh, R.; Malviya, R.; Sharma, P.K. Extraction and characterization of tamarind seed polysaccharide as a pharmaceutical excipient. Pharmacogn. J.
**2011**, 3, 17–19. [Google Scholar] [CrossRef] [Green Version] - Malviya, R.; Srivastava, P.; Bansal, M.; Sharma, P.K. Formulation, evaluation and comparison of sustained release matrix tablets of diclofenac sodium using tamarind gum as release modifier. Asian J. Pharm. Clin. Res.
**2010**, 3, 238–241. [Google Scholar] [CrossRef] - Glicksman, M. Tamarind seed gum. In Food Hydrocoll; Glicksman, M., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1996; pp. 191–202. [Google Scholar]
- Srivastava, P.; Malviya, R.; Gupta, S.; Sharma, P.K. Evaluation of various natural gums as release modifiers in tablet formulations. Phcog. J.
**2010**, 2, 525–529. [Google Scholar] [CrossRef] - Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Rouillard, E.E.A. A Study of Boiling Parameters under Conditions of Laminar Non-Newtonian Flow with Particular Reference to Massecuite Boiling. Ph.D. Thesis, University of Natal, Durban, South Africa, October 1985. [Google Scholar]
- Hapanowicz, J. Proposition of non-standard method useful for viscosity measurements of unstable two-phase systems coupled with examples of its application. Measurement
**2020**, 164, 108113. [Google Scholar] [CrossRef] - Langer, R.S.; Peppas, N.A. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials.
**1981**, 2, 201–214. [Google Scholar] [CrossRef] - Ghelardi, E.; Tavanti, A.; Celandroni, F.; Lupetti, A.; Blandizzi, C.; Boldrini, E.; Campa, M.; Senesi, S. Effect of a novel mucoadhesive polysaccharide obtained from tamarind seeds on the intraocular penetration of gentamicin and ofloxacin in rabbits. J. Antimicrob. Chemother.
**2000**, 46, 831–834. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Stokes, G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Philos. Soc.
**1851**, 8, 1–83. [Google Scholar] - Shukla, A.K.; Bishnoi, R.S.; Kumar, M.; Fenin, V.; Jain, C.P. Applications of tamarind seeds polysaccharide-based copolymers in controlled drug delivery: An overview. Asian J. Pharm. Pharmacol.
**2018**, 4, 23–30. [Google Scholar] [CrossRef] - Malviya, R.; Sharma, P.K.; Dubey, S.K. Characterization of neem (Azadirachita indica) gum exudates using analytical tools and pharmaceutical approaches. Curr. Nutr. Food Sci.
**2019**, 15, 588–599. [Google Scholar] [CrossRef] - Katiyar, N.; Malviya, R.; Sharma, P.K. Pharmaceutical applications and formulation based patents of Tamarindus indica seed polysaccharide and their modified derivatives. Adv. Biol. Res.
**2014**, 8, 274–281. [Google Scholar] - Verma, S.; Bansal, J.; Kumar, N.; Malviya, R.; Sharma, P.K. Isolation and characterization studies of mucilage obtained from Trigonella foenum greacum l. seed and Tamarindus indica polysaccharide as a pharmaceutical excipient. J. Drug Deliv. Ther.
**2014**, 4, 106–109. [Google Scholar] [CrossRef] - Chawananorasest, K.; Saengtongdee, P.; Kaemchantuek, P. Extraction and characterization of tamarind (Tamarind indica L.) seed polysaccharides (TSP) from three difference sources. Molecules
**2016**, 21, 775. [Google Scholar] [CrossRef] - Anema, S.G.; Lowe, E.K.; Li, Y. Effect of pH on the viscosity of heated reconstituted skim milk. Int. Dairy J.
**2004**, 14, 541–548. [Google Scholar] [CrossRef] - Lee, D.W.; Ruths, M.; Israelachvili, J.N. Surface forces and nanorheology of molecularly thin films. In Nanotribology and Nanomechanics; Springer: Cham, Switzerland, 2017; pp. 457–518. [Google Scholar]
- Malviya, R.; Sharma, P.K.; Dubey, S.K. Kheri (Acacia chundra, family: Mimosaceae) gum: Characterization using analytical, mathematical and pharmaceutical approaches. Polim. Med.
**2017**, 47, 65–76. [Google Scholar] [CrossRef] - Paula, R.C.M.; Rodrigues, J.F. Composition and rheological properties of cashew tree gum, the exudates polysaccharide from Anacardium occidentale. Carbohydr. Polym.
**1995**, 26, 177–181. [Google Scholar] [CrossRef] - Silva, A.G.; Rodrigues, J.F.; De Paula, R.C.M. Structure-property relationships in food biopolymer gels and solutions. Polimeros
**1998**, 2, 34–39. [Google Scholar] [CrossRef] - Menon, A.R.R. Melt rheology of ethylene propylene diene rubber modified with propylene phosphorylated cashew nut shell liquid prepolymer. Iran. Polym. J.
**2003**, 12, 305–313. [Google Scholar] - Shaikh, M.; Shafique, M.; Aggarwal, B.R.; Aeooqui, M.F. Density, viscosity and activation parameters of viscous flow for cetrimide in ethanol+water system at 301.5 K. Rasayan. J. Chem.
**2011**, 4, 172–179. [Google Scholar] - Nair, S.V.; Oommen, Z.; Thomas, S. Melt elasticity and flow activation energy of nylon 6/polystyrene blends. Mater. Lett.
**2002**, 57, 475–480. [Google Scholar] [CrossRef] - Ameh, P.O. Physicochemical properties and rheological behaviour of Ficus glumosa gum in aqueous solution. Afr. J. Pure Appl. Chem.
**2013**, 7, 35–43. [Google Scholar] - Eddy, N.O.; Udofia, I.; Uzairu, A.; Ongenyi, A.O.; Obadimu, C. Physiochemical, spectroscopic and rheological studies on Eucalyptus citriodora (ec) gum. J. Polym. Biopolym. Phys. Chem.
**2014**, 2, 12–24. [Google Scholar] [CrossRef] - Acevedo, I.L.; Kartz, M. Viscosities and thermodynamics of various flows of some binary mixtures at different temperatures. Solut. Chem.
**1990**, 19, 1041–1052. [Google Scholar] [CrossRef] - Salehi, F.; Kashaninejad, M. Kinetics and thermodynamics of gum extraction from wild sage seed. Int. J. Food Eng.
**2014**. [Google Scholar] [CrossRef] - Boruah, A.K.; Nath, L.K. Extraction, purification and physicochemical evaluation of mucilage of Chrysophyllum lanceolatum (blume) dc fruits: An investigation for bioadhesive property. Int. J. Pharm. Pharm. Sci.
**2016**, 8, 282–288. [Google Scholar] - Salehi, F.; Kashaninejad, M.; Tadayyon, A.; Arabameri, F. Modeling of extraction process of crude polysaccharides from basil seeds (Ocimum basilicum L.) as affected by process variables. J. Food Sci. Technol.
**2015**, 52, 5220–5227. [Google Scholar] [CrossRef] [Green Version] - Eddy, N.O.; Ameh, P.O.; Gimba, C.E.; Ebenso, E.E. Rheological modeling and characterization of Ficus platyphylla gum exudates. J. Chem.
**2013**, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version] - Rott, N. Note on the history of the reynolds number. Annu. Rev. Fluid Mech.
**1990**, 22, 1–11. [Google Scholar] [CrossRef] - Tu, W.; Chen, Z.; Gao, Y.; Li, Z.; Zhang, Y.; Liu, R.; Tian, Y.; Wang, L.M. Glass transition and mixing thermodynamics of a binary eutectic system. Phys. Chem. Chem. Phys.
**2014**, 16, 3586–3592. [Google Scholar] [CrossRef] [PubMed] - Manjunath, M.; Gowda, D.V.; Kumar, P.; Srivastava, A.; Osmani, R.A.; Shinde, C.G. Guar gum and its pharmaceutical and biomedical applications. Adv. Sci. Eng. Med.
**2016**, 8, 589–602. [Google Scholar] [CrossRef] - Papon, P.; Leblond, J.; Meijer, P.H. Physics of Phase Transitions; Springer: Berlin/Heidelberg, Germany, 2002; pp. 185–209. [Google Scholar]
- De Paula, R.C.M.; Santana, S.A.; Rodrigues, J.F. Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydr. Polym.
**2001**, 44, 133–139. [Google Scholar] [CrossRef] - Varma, C.A.K.; Kumar, K.J. Formulation and optimization of pH sensitive drug releasing O/W emulsions using Albizia lebbeck L. seed polysaccharide. Int. J. Biol. Macromol.
**2018**, 116, 239–246. [Google Scholar] [CrossRef] [PubMed] - Wientjes, R.H.; Duits, M.H.; Jongschaap, R.J.; Mellema, J. Linear rheology of guar gum solutions. Macromolecules
**2000**, 33, 9594–9605. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) The variation in viscosity with temperature (°C), (

**b**) the effect of temperature (K) on the ln viscosity of the solution, (

**c**) the variation in ln viscosity with temperature (K), and (

**d**) the variation in ln [η/T] with temperature (1/T).

S.No. | Parameters | Results |
---|---|---|

1. | Activation energy | 20.46 ± 1.06 kJ/mol |

2. 3. 4. 5. | Change in entropy Change in enthalpy Entropy of fusion Gibb’s free energy | 23.66 ± 0.97 kJ/mol 0.10 ± 0.01 kJ/mol 0.86 ± 0.03 kJ mol ^{−1} K^{−1}55.46 ± 1.69 kJ/mole |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Malviya, R.; Jha, S.; Fuloria, N.K.; Subramaniyan, V.; Chakravarthi, S.; Sathasivam, K.; Kumari, U.; Meenakshi, D.U.; Porwal, O.; Sharma, A.;
et al. Determination of Temperature-Dependent Coefficients of Viscosity and Surface Tension of Tamarind Seeds (*Tamarindus indica* L.) Polymer. *Polymers* **2021**, *13*, 610.
https://doi.org/10.3390/polym13040610

**AMA Style**

Malviya R, Jha S, Fuloria NK, Subramaniyan V, Chakravarthi S, Sathasivam K, Kumari U, Meenakshi DU, Porwal O, Sharma A,
et al. Determination of Temperature-Dependent Coefficients of Viscosity and Surface Tension of Tamarind Seeds (*Tamarindus indica* L.) Polymer. *Polymers*. 2021; 13(4):610.
https://doi.org/10.3390/polym13040610

**Chicago/Turabian Style**

Malviya, Rishabha, Sheetal Jha, Neeraj Kumar Fuloria, Vetriselvan Subramaniyan, Srikumar Chakravarthi, Kathiresan Sathasivam, Usha Kumari, Dhanalekshmi Unnikrishnan Meenakshi, Omji Porwal, Akanksha Sharma,
and et al. 2021. "Determination of Temperature-Dependent Coefficients of Viscosity and Surface Tension of Tamarind Seeds (*Tamarindus indica* L.) Polymer" *Polymers* 13, no. 4: 610.
https://doi.org/10.3390/polym13040610