Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials
Abstract
:1. Introduction
2. Top–Down Lithographic Methodologies
2.1. Photolithography
2.1.1. Direct Laser Writing
2.1.2. UV and Extreme UV Lithography
2.1.3. X-ray Lithography
2.2. Electron Beam Lithography
2.3. Proton Beam Lithography
2.4. Ion Beam Lithography
Lithography | Type of Mask | Patterned Material | Resulting Pattern | Pattern Dimension | Ref. |
---|---|---|---|---|---|
DLW | NA | Doped P3HT | 1D, 2D gratings | 640 nm/pitch | [51] |
DLW | NA | PMAA doped with Ag+ | Lines/grooves | 1.2 μm/half-width | [40] |
DLW | NA | PI, PEEK, PEI, PC | Lines Microcavities | 6.2 μm/period 7.2 μm/diameter | [41] |
DLW | NA | HDPE/BZT | Lines | hundreds of micrometers/width | [50] |
DLW | NA | F4TCNQ-doped P3HT | Grooves | 2 μm/width | [38] |
DLW | NA | PHEMA | Gratings | 2.6 μm/period | [49] |
DLW | NA | PEEK/carbon fibers | Hierarchical structures | 1.5 μm/period | [23] |
DLW | NA | PDY-132, P3HT | Lines | 17 μm/width | [39] |
DLW | NA | Doped SZ2080 photoresist | Lines | 350 nm/width | [46] |
DLW | NA | Pre-patterned photoresist | Surface structures | 195 nm/period | [52] |
UVL | Photomask | Keratin photoresist | Various architectures | ≈3 μm/width | [1] |
UVL | Photomask | Polydiacetylene | Square patches | 5 μm × 5 μm | [56] |
UVL | PDMS colloidal mask | 5206E, ma-N photoresist | Nanoholes | 500 nm/diameter | [53] |
UVL | Digital mirrors | Nucleic acid | Linear/branched structures | micrometer resolution | [32] |
UVL | Digital mirrors | Polymer brush | Hypersurfaces | micrometer resolution | [58] |
UVL | Cr photomask | Photoresist | Lines | 102 nm/period | [57] |
EUVL | IMO228775 mask | n-CARs | Lines Circular patterns | 25 nm/width 25 nm/width | [54] |
XRL | Photomask | PSBA | Groove lines | ≈52 nm/period | [55] |
XRL | Si3N4 mask | BPS | Circular lines | ≈266 nm/width | [60] |
EBL | NA | PMMA | Grayscale patterns Horizontal patterns | 6 nm/height step 32 nm/width | [64] |
EBL | NA | PS evaporated resist | Lines, ratings | 30 nm/half-pitch | [24] |
EBL | NA | Biotinylated PEG | Pads | 10 μm range | [67] |
EBL | NA | Various star BCPs | Lines | 66 nm/width | [70] |
EBL | NA | ZEP520A resist | L-shaped lines Rectangular mesh | 60 nm/pitch 80 nm/pitch | [86] |
EBL | NA | SML resist | Dense gratings | 50 nm/half-pitch | [65] |
EBL | NA | mr-PosEBR | Grating lines Grayscale patterns | 29 nm/width 240 nm/height step | [68] |
EBL | NA | Teflon AF | L-shaped lines | 40 nm/half-pitch | [72] |
EBL | NA | Ppy/AQSANa/SSCA | Wires Dots | 130 nm/width 100 nm/diameter | [75] |
EBL | NA | Conjugated PF2/6 | Lines | 2 μm/width | [74] |
EBL | NA | PMMA | Dots | 16–30 nm/diameter | [73] |
EBL | NA | Quaterthiphene | Grating stripes | 20–500 nm/width | [76] |
EBL | NA | SU-8 polymer resist | Lines Pillars | 100 nm/width 250 nm/pitch | [2] |
EBL | NA | Teflon AF | Grooves | 50 nm/width | [17] |
EBL | NA | Sugar-based polymer | Moth-eye patterns | 120 nm/period | [69] |
EBL | NA | PMMA | Simulated lines | 2 nm/width | [71] |
PBL | NA | PMMA, SU-8 polymer resists | Lines Walls Pillars | 30 nm/width 50–60 nm/width 2 µm × 2 µm | [31] |
PBL | NA | PMMA | Holes | 1 µm × 1 µm | [80] |
IBL | NA | PAA-patterned PS | Lines | 100 μm/width | [83] |
IBL | Ni mesh mask | PMMA | Holes | micrometer/width | [79] |
IBL | NA | Hybrid n-CAR | Lines | 20 nm/width | [78] |
2.5. Soft Lithography
2.5.1. Nanoimprint Lithography
2.5.2. Micro and Nanocontact Printing Lithography
2.5.3. Dynamic Nanoinscribing
Lithography | Type of Mold | Patterned Material | Resulting Pattern | Pattern Dimension | Ref. |
---|---|---|---|---|---|
TNIL | PDMS | PLCL | Linear ridges/grooves | 3/3 μm/width | [111] |
TNIL | PDMS | Anisotropic PAM | Linear ridges/grooves | 30/30 μm/width | [97] |
TNIL | Silicon | P(VDF-TrFE) | Pillars | 65 nm/diameter | [110] |
TNIL | PDMS | Proteins | Lines | 700 nm/period | [114] |
TNIL | PDMS | Poly-DR1M | Pillars | 4 μm × 4 μm | [113] |
TNIL | PDMS | Cyclo-olefin polymer, PC | Grooves Moth-eye | 20 nm/width 347 nm/period | [127] |
TNIL | PDMS | PAM hydrogel | Grooves | 30 μm/width | [119] |
TNIL | PDMS | Nafion resin | Grooves | 800 nm/width | [120] |
TNIL | PDMS | Fluorinated polymer | Gratings | 760 nm/pitch | [121] |
TNIL | PDMS | PEDOT:PSS | Lines | 87 nm/width | [122] |
TNIL | Silicon | ETFE, PMMA, SU-8 | Recessed hierarchical gratings | ≈254 nm/width on ~2.18 μm/width | [128] |
TNIL | PDMS | PVP, PVAc, PVDF/PMMA | Lines | ≥6 μm/width | [123] |
TNIL | Silicon | PMMA | Gratings | 250 nm/width | [108] |
TNIL | PDMS | PEDOT:PSS, P3HT:PCBM | Lines | 340 nm/period | [94] |
TNIL | Silicon | P(VDF-TrFE-CFE) | Lines | 60–100 nm/width | [93] |
TNIL | Silicon | FEP, PVDF, PDFE, PFA, PCTFE | Dots | 500 nm/diameter 800 nm/period | [107] |
TNIL | PDMS | PS, PEDOT | Lines | 416 nm/width | [96] |
TNIL | PDMS | PS | Elliptical hemispheres | 279 nm/width | [100] |
TNIL | PDMS | Gelatin/genipin | Grooves Holes Pillars | 500 nm/width 500 nm/diameter 100 nm/diameter | [124] |
TNIL | Cyclodextrin-based, porous | Polylactide | Lines | 150 nm/width | [118] |
TNIL | PUA | HA | Lines Dots Holes | 200 nm/width 480 nm/diameter 265 nm/diameter | [3] |
TNIL | PDMS | PBMA | Lines, 2D grids Nanoholes | 10 nm/width 20 nm/diameter | [87] |
TNIL | PDMS | PLLA | Nanocups, nanocones | 750 nm/pitch | [115] |
UVNIL | PDMS | Metallopolymers | Nanodots | 460 nm/diameter | [136] |
UVNIL | Silicon | Hybrid polymer | Grooves | 30 nm/width | [137] |
UVNIL | Silicon | PEGDMA | Nanoneedles | 50 nm/diameter (tip) | [129] |
UVNIL | PUA | PUA | Ridges/grooves | 800/800 nm/width | [99] |
UVNIL | Silicon | PEG | Ridges/grooves | 3/3 μm/width | [98] |
UVNIL | PDMS | Poly(β-hydroxyl thio-ether) | Lines Stars Grids Pillars | ≈70 μm/width ≈38 μm/“diameter” 10 μm/width 200 nm/diameter | [130] |
UVNIL | PDMS | UV-curable polymer | Recessed pillars | 300 nm/diameter | [138] |
UVNIL | Bilayer h-PDMS/PDMS | Amonil/PMMA | Pillars Lines | 50 nm/diameter 50 nm/width | [134] |
UVNIL | PDMS | Ormostamp/Amonil | Holes | 350 nm/diameter | [157] |
UVNIL | Silicon | SSQ/PEG | Lines | 25 nm/width | [135] |
MCNIL | PDMS | mr-7010 polymer PEDOT:PSS | Nanowires | 53 nm/width 100 nm/width | [132] |
MCNIL | PDMS | Azopolymers | Pillars | 17 μm/diameter | [102] |
MCNIL | PDMS | Azopolymers | Bent pillars | 1 μm/diameter | [103] |
MCNIL | PDMS | PEG-PLA/PEL | Lines Squares Triangles Circles Stars | 590 nm/width 10 μm × 10 μm 30 μm/size 40 μm/diameter 40 μm/“diameter” | [141] |
μCP | PDMS, PVA | Protein/Sylgard 527 | Nanodots | 200 nm × 200 nm | [151] |
μCP | PDMS | Proteins/polymer | Nanodots | ≈200 nm/diameter | [152] |
μCP | PDMS | Biomolecules/PAS | Stripes Pads | ≈2 μm/width ≈7 μm/diameter | [147] |
μCP | PDMS | Proteins/PIPAAm | Lines | 20 μm/width | [149] |
μCP | PDMS | Au nanorods/PLL | Grains | ≈290 nm/diameter | [146] |
μCP | PDMS | PPy, PI, PEN, COC | Nanowires | ≈785 nm/width | [158] |
μCP | PDMS | Neutravidin/PLL-g-PEG biotin | Spherical vesicles | ≈62 nm/diameter | [150] |
μCP | Rigiflex/PET | Poly(4-vinyl phenol) | Lines | 400 nm/width | [155] |
DNI | SiO2 | PC, PET, PFA, PI | Lines | 700 nm/period | [156] |
2.6. Scanning Probe Lithography
2.6.1. Mechanical Scanning Probe Lithography
2.6.2. Thermal and Thermochemical Scanning Probe Lithography
2.6.3. Dip-Pen Scanning Probe Lithography
2.6.4. Oxidation Scanning Probe Lithography
2.7. Particle Lithography
2.8. Stencil Lithography
Lithography | Type of Mask | Patterned Material | Resulting Pattern | Pattern Dimension | Ref. |
---|---|---|---|---|---|
MSPL | NA | PMMA | Ridges | 30–100 nm/pitch | [164] |
MSPL | NA | PPA | Fractal carpets | 15 nm/pitch | [168] |
MSPL | NA | PGMA | Lines | ≈19 nm/period | [166] |
TSPL | NA | PPA, PS-b-PMMA | Lines | 10 nm/width | [170] |
TSPL | NA | PS-benzocyclobutene) | Lines | 15 nm/half-pitch | [169] |
TCSPL | NA | Methacrylate-based copolymer | Rectangles Squares Lines Dots | 4.5 μm × 1.5 μm 100 nm × 100 nm 8–9 nm/width 8 nm/diameter | [161] |
TCSPL | NA | Methacrylate-based copolymer | Lines Squares | <10 nm/width 1 μm × 1 μm | [162] |
TCSPL | NA | Methacrylate-based copolymer | Squares Triangles Lines | 6 μm × 6 μm ≈11.5 μm/size <1 μm/width | [172] |
TCSPL | NA | PPV | Lines | 70 nm/width | [171] |
DPSPL | NA | PMMA | Elongated dots Lines | ≈66 nm/width ≈80 nm/width | [173] |
DPSPL | NA | Lipids/SAMs | Dots | ≈1 μm/diameter | [176] |
DPSPL | NA | ODT/NLP 2000 | Arrays of dots | 3 μm/pitch | [27] |
DPSPL | NA | PEO-b-P2VP-based | Dots | 90 nm/diameter | [175] |
OSPL | NA | PS-b-PMMA | Lines | <10 nm/width | [179] |
OSPL | NA | Ferritin | Lines | 10 nm/width | [174] |
OSPL | NA | PMMA/PAG resist | Dots | ≈100 nm/diameter | [163] |
PL | PS particle mask | PAA/PEG | Nanocraters | 100 nm/diameter | [184] |
PL | Sulfate-latex particle mask | PDDA/PSS/PAX-XL60 | Patches | 200 nm/diameter | [186] |
PL | Hole Mask | Streptavidin proteins | Patches | 15 nm/diameter | [187] |
PL | PS particle mask | PVP | Vertical cylinders | 100 nm/diameter | [190] |
SL | Shadow mask | SU-8, PDMS, polyimide/Au | Nanodots Nanowires | 20 nm/width 65 nm/width | [191] |
SL | Shadow mask | PEDOT:PSS, PC, PDMS, PET/ZnO | Dots Zig-zag lines Honeycomb array | 400 nm/width 5.3 μm/width 3.2 μm/width (line) | [194] |
SL | Shadow mask | P3HT/F4TCNQ | Squares | 38 µm × 38 µm | [193] |
3. Bottom–Up Lithographic Methodologies
3.1. Block Copolymer Lithography Based on (Directed) Self-Assembly
3.2. Further Use of Assembled Block Copolymers as Lithography Templates
3.3. Polymer Crystallization as a Patterning Tool
3.4. Patterning via DNA Self-Assembly
4. Patterning through the Combination of Bottom–Up and Top–Down Methodologies
5. Other Less Conventional Lithographic Methods
6. Methods Utilized for Guided Deposition of Functional Materials into Periodic Surface Relief Structures
7. Multifunctional Structured Platforms (SPs) and their Applications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhu, S.; Zeng, W.; Meng, Z.; Luo, W.; Ma, L.; Li, Y.; Lin, C.; Huang, Q.; Lin, Y.; Liu, X.Y. Using Wool Keratin as a Basic Resist Material to Fabricate Precise Protein Patterns. Adv. Mater. 2019, 31, 1900870. [Google Scholar] [CrossRef] [PubMed]
- Vinje, J.; Beckwith, K.S.; Sikorski, P. Electron Beam Lithography Fabrication of SU-8 Polymer Structures for Cell Studies. J. Microelectromech. Syst. 2020, 29, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Zhao, Z.-J.; Hwang, S.H.; Kang, H.-J.; Ahn, J.; Jeon, S.; Bok, M.; Jeong, Y.; Kang, K.; Cho, I.; et al. Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate. ACS Nano 2020, 14, 2191–2201. [Google Scholar] [CrossRef] [PubMed]
- Saracut, V.; Giloan, M.; Gabor, M.; Astilean, S.; Farcau, C. Polarization-Sensitive Linear Plasmonic Nanostructures via Colloidal Lithography with Uniaxial Colloidal Arrays. ACS Appl. Mater. Interfaces 2013, 5, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, B.; Huang, L.; Huang, W.; Wang, Z.; Zhu, W.; Chen, Y.; Mao, Y.; Facchetti, A.; Marks, T.J. Breath figure–derived porous semiconducting films for organic electronics. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhou, J.; Liu, B. Engineering Surface Patterning of Colloidal Rings through Plateau–Rayleigh Instability. Angew. Chem. Int. Ed. 2019, 58, 16884–16888. [Google Scholar] [CrossRef]
- Barelli, M.; Repetto, D.; de Mongeot, F.B. Infrared Plasmonics via Self-Organized Anisotropic Wrinkling of Au/PDMS Nanoarrays. ACS Appl. Polym. Mater. 2019, 1, 1334–1340. [Google Scholar] [CrossRef]
- Park, S.-E.; Kim, S.; Kim, K.; Joe, H.-E.; Jung, B.; Kim, E.; Kim, W.; Min, B.-K.; Hwang, J. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods. Nanoscale 2012, 4, 7773–7779. [Google Scholar] [CrossRef]
- Fisslthaler, E.; Blümel, A.; Landfester, K.; Scherf, U.; List, E.J.W. Printing functional nanostructures: A novel route towards nanostructuring of organic electronic devices via soft embossing, inkjet printing and colloidal self assembly of semiconducting polymer nanospheres. Soft Matter 2008, 4, 2448–2453. [Google Scholar] [CrossRef]
- Shipway, A.N.; Katz, E.; Willner, I. Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications. ChemPhysChem 2000, 1, 18–52. [Google Scholar] [CrossRef]
- Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H. Controlled Particle Placement through Convective and Capillary Assembly. Langmuir 2007, 23, 11513–11521. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Arnoux, C.; Palmer, R.E. Guided Assembly of Colloidal Particles on Patterned Substrates. Langmuir 2001, 17, 7150–7155. [Google Scholar] [CrossRef]
- Yang, J.C.; Park, J.Y. Polymeric Colloidal Nanostructures Fabricated via Highly Controlled Convective Assembly and Their Use for Molecular Imprinting. ACS Appl. Mater. Interfaces 2016, 8, 7381–7389. [Google Scholar] [CrossRef]
- Cho, K.-H.; Chen, L.-J. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates. Nanotechnology 2011, 22, 445706. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.; Tebbe, M.; Kuttner, C.; Schnepf, M.J.; König, T.A.F.; Fery, A. Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discuss. 2016, 191, 159–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebbe, M.; Mayer, M.; Glatz, B.A.; Hanske, C.; Probst, P.T.; Müller, M.B.; Karg, M.; Chanana, M.; König, T.A.F.; Kuttner, C.; et al. Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas. Faraday Discuss. 2015, 181, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Shaali, M.; Lara-Avila, S.; Dommersnes, P.; Ainla, A.; Kubatkin, S.; Jesorka, A. Nanopatterning of Mobile Lipid Monolayers on Electron-Beam-Sculpted Teflon AF Surfaces. ACS Nano 2015, 9, 1271–1279. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, X.; Lee, K.Y.; Hwu, J.J.; Wago, K.; Kuo, D.S. Directed self-assembly for high-density bit-patterned media fabrication using spherical block copolymers. J. Micro/Nanolithogr. MEMS MOEMS 2013, 12, 031110. [Google Scholar] [CrossRef] [Green Version]
- Botiz, I.; Darling, S.B. Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material. Macromolecules 2009, 42, 8211–8217. [Google Scholar] [CrossRef]
- Rycenga, M.; Camargo, P.H.C.; Xia, Y. Template-assisted self-assembly: A versatile approach to complex micro- and nanostructures. Soft Matter 2009, 5, 1129–1136. [Google Scholar] [CrossRef]
- Hawkes, W.; Huang, D.; Reynolds, P.; Hammond, L.; Ward, M.; Gadegaard, N.; Marshall, J.F.; Iskratsch, T.; Palma, M. Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control. Faraday Discuss. 2019, 219, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology 2011, 22, 395102. [Google Scholar] [CrossRef] [PubMed]
- Hauschwitz, P.; Alamri, S.; Rostohar, D.; Kunze, T.; Brajer, J.; Kopecek, J.; Mocek, T. Fabrication of Functional Superhydrophobic Surfaces on Carbon Fibre Reinforced Plastics by IR and UV Direct Laser Interference Patterning. Appl. Surf. Sci. 2019, 508, 144817. [Google Scholar] [CrossRef]
- Zhang, J.; Con, C.; Cui, B. Electron Beam Lithography on Irregular Surfaces Using an Evaporated Resist. ACS Nano 2014, 8, 3483–3489. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasan, S.V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoeng. 2017, 3, 17075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Yue, K.; Hsieh, I.-F.; Li, Y.; Dong, X.-H.; Liu, C.; Xin, Y.; Wang, H.-F.; Shi, A.-C.; Newkome, G.R.; et al. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proc. Natl. Acad. Sci. USA 2013, 110, 10078–10083. [Google Scholar] [CrossRef] [Green Version]
- Haaheim, J.; Val, V.; Bussan, J.; Rozhok, S.; Jang, J.-W.; Fragala, J.; Nelson, M. Self-leveling two-dimensional probe arrays for Dip Pen Nanolithography ®. Scanning 2010, 32, 49–59. [Google Scholar] [CrossRef]
- Ramos, L.D.; Hempenius, M.A.; Vancso, G.J. Poly(ferrocenylsilanes) with Controlled Macromolecular Architecture by Anionic Polymerization: Applications in Patterning and Lithography; Springer: Tokyo, Japan, 2015; pp. 387–427. [Google Scholar]
- Mortelmans, T.; Kazazis, D.; Guzenko, V.A.; Padeste, C.; Braun, T.; Stahlberg, H.; Li, X.; Ekinci, Y. Grayscale e-beam lithography: Effects of a delayed development for well-controlled 3D patterning. Microelectron. Eng. 2020, 225, 111272. [Google Scholar] [CrossRef]
- Gierak, J.; Mazarov, P.; Bruchhaus, A.; Jede, R.; Bischoff, L. Review Article: Review of electro-hydro-dynamical ion sources and their applications to focused ion beam technology. J. Vac. Sci. Technol. B 2018, 36. [Google Scholar] [CrossRef]
- van Kan, J.; Bettiol, A.A.; Watt, F. Three-dimensional nanolithography using proton beam writing. Appl. Phys. Lett. 2003, 83, 1629–1631. [Google Scholar] [CrossRef] [Green Version]
- Hölz, K.; Schaudy, E.; Lietard, J.; Somoza, M.M. Multi-level patterning nucleic acid photolithography. Nat. Commun. 2019, 10, 3805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.; Schmidt, R.; Barton, J.E.; Hwang, D.J.; Gamble, L.J.; Castner, D.G.; Grigoropoulos, C.P.; Healy, K.E. Chemical Patterning of Ultrathin Polymer Films by Direct-Write Multiphoton Lithography. J. Am. Chem. Soc. 2011, 133, 6138–6141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.; Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2012, 7, 22–44. [Google Scholar] [CrossRef]
- Lippert, T.K.; Georgiou, S.; Kruger, J.; Zhang, Y. Polymers and Light; Springer: Berlin, Germany, 2003; Volume 168. [Google Scholar]
- Tian, X.; Jin, H.; Sainio, J.; Ras, R.H.A.; Ikkala, O. Droplet and Fluid Gating by Biomimetic Janus Membranes. Adv. Funct. Mater. 2014, 24, 6023–6028. [Google Scholar] [CrossRef]
- Castillejo, M.; Rebollar, E.; Oujja, M.; Sanz, M.; Selimis, A.; Sygletou, M.; Psycharakis, S.; Ranella, A.; Fotakis, C. Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration. Appl. Surf. Sci. 2012, 258, 8919–8927. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Bedolla-Valdez, Z.I.; Wang, L.; Rho, Y.; Chen, S.; Gonel, G.; Taurone, E.N.; Moulé, A.; Grigoropoulos, C.P. High-Speed Photothermal Patterning of Doped Polymer Films. ACS Appl. Mater. Interfaces 2019, 11, 41717–41725. [Google Scholar] [CrossRef] [Green Version]
- Yun, C.; Han, J.W.; Kang, M.H.; Kim, Y.H.; Kim, B.; Yoo, S. Effect of Laser-Induced Direct Micro-Patterning on Polymer Optoelectronic Devices. ACS Appl. Mater. Interfaces 2019, 11, 47143–47152. [Google Scholar] [CrossRef]
- Mulko, L.E.; Rossa, M.; Aranguren Abrate, J.P.; Pino, G.A. Micropatterning of fluorescent silver nanoclusters in polymer films by Laser Interference. Appl. Surf. Sci. 2019, 485, 141–146. [Google Scholar] [CrossRef]
- Lasagni, A.F.; Acevedo, D.F.; Barbero, C.A.; Muecklich, F. One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning. Adv. Eng. Mater. 2007, 9, 99–103. [Google Scholar] [CrossRef]
- Ulrich, H.; Wijnaendts-van-Resandt, R.W.; Rensch, C.; Ehrensperger, W. Direct writing laser lithography for production of microstructures. Microelectron. Eng. 1987, 6, 77–84. [Google Scholar] [CrossRef]
- Nam, S.H.; Park, J.; Jeon, S. Rapid and Large-Scale Fabrication of Full Color Woodpile Photonic Crystals via Interference from a Conformal Multilevel Phase Mask. Adv. Funct. Mater. 2019, 29, 1904971. [Google Scholar] [CrossRef]
- Roszkiewicz, A.; Jain, A.; Teodorczyk, M.; Nasalski, W. Formation and Characterization of Hole Nanopattern on Photoresist Layer by Scanning Near-Field Optical Microscope. Nanomaterials 2019, 9, 1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.R.; King, G.M.; Ulrich, T.A.; Halsey, W.; Alchenberger, D.; Perkins, T.T. Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl. Opt. 2007, 46, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Yulianto, E.; Chatterjee, S.; Purlys, V.; Mizeikis, V. Imaging of latent three-dimensional exposure patterns created by direct laser writing in photoresists. Appl. Surf. Sci. 2019, 479, 822–827. [Google Scholar] [CrossRef]
- Tong, Q.C.; Nguyen, D.T.T.; Do, M.T.; Luong, M.H.; Journet, B.; Ledoux-Rak, I.; Lai, N.D. Direct laser writing of polymeric and metallic nanostructures via optically induced local thermal effect. Appl. Phys. Lett. 2016, 108, 183104. [Google Scholar] [CrossRef]
- Tillet, G.; Ameduri, B.; Boutevin, B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 2011, 36, 191–217. [Google Scholar] [CrossRef]
- Sola, D.; Alamri, S.; Lasagni, A.F.; Artal, P. Fabrication and characterization of diffraction gratings in ophthalmic polymers by using UV Direct Laser Interference Patterning. Appl. Surf. Sci. 2019, 476, 128–135. [Google Scholar] [CrossRef]
- Lafleur, S.S.D.; Shen, L.; Kamphuis, E.J.T.; Houben, S.J.A.; Balzano, L.; Severn, J.R.; Schenning, A.P.H.J.; Bastiaansen, C.W.M. Optical Patterns on Drawn Polyethylene by Direct Laser Writing. Macromol. Rapid Commun. 2019, 40, 1800811. [Google Scholar] [CrossRef]
- Jacobs, I.E.; Aasen, E.W.; Nowak, D.; Li, J.; Morrison, W.; Roehling, J.D.; Augustine, M.P.; Moulé, A.J. Direct-Write Optical Patterning of P3HT Films Beyond the Diffraction Limit. Adv. Mater. 2017, 29, 1603221. [Google Scholar] [CrossRef]
- Ehrhardt, M.; Lai, S.; Lorenz, P.; Zimmer, K. Guiding of LIPSS formation by excimer laser irradiation of pre-patterned polymer films for tailored hierarchical structures. Appl. Surf. Sci. 2019, 506, 144785. [Google Scholar] [CrossRef]
- Fang, M.; Lin, H.; Cheung, H.-Y.; Xiu, F.; Shen, L.; Yip, S.P.; Pun, E.Y.-B.; Wong, C.-Y.; Ho, J.C. Polymer-Confined Colloidal Monolayer: A Reusable Soft Photomask for Rapid Wafer-Scale Nanopatterning. ACS Appl. Mater. Interfaces 2014, 6, 20837–20841. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, V.S.V.; Singh, V.; Kalyani, V.; Parameswaran, P.C.; Sharma, S.; Ghosh, S.; Gonsalves, K.E. A hybrid polymeric material bearing a ferrocene-based pendant organometallic functionality: Synthesis and applications in nanopatterning using EUV lithography. RSC Adv. 2014, 4, 59817–59820. [Google Scholar] [CrossRef]
- Halappa, C.C.; Park, S.-J. Pattern formation using polystyrene benzaldimine self-assembled monolayer by soft X-ray. Surf. Interface Anal. 2018, 51, 408–412. [Google Scholar] [CrossRef]
- He, C.; Feng, Z.; Shan, S.; Wang, M.; Chen, X.; Zou, G. Highly enantioselective photo-polymerization enhanced by chiral nanoparticles and in situ photopatterning of chirality. Nat. Commun. 2020, 11, 1188. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, B.; Ke, L.; Deng, J.; Chum, C.C.; Teo, S.L.; Shen, L.; Maier, S.A.; Teng, J. High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens. Nano Lett. 2012, 12, 1549–1554. [Google Scholar] [CrossRef]
- Carbonell, C.; Valles, D.; Wong, A.M.; Carlini, A.S.; Touve, M.A.; Korpanty, J.; Gianneschi, N.C.; Braunschweig, A.B. Polymer brush hypersurface photolithography. Nat. Commun. 2020, 11, 1244. [Google Scholar] [CrossRef] [PubMed]
- Jeon, T.Y.; Jeon, H.C.; Lee, S.Y.; Shim, T.S.; Kwon, J.-D.; Park, S.-G.; Yang, S.-M. 3D Hierarchical Architectures Prepared by Single Exposure Through a Highly Durable Colloidal Phase Mask. Adv. Mater. 2014, 26, 1422–1426. [Google Scholar] [CrossRef]
- Brigo, L.; Pistore, A.; Grenci, G.; Carpentiero, A.; Romanato, F.; Brusatin, G. New hybrid organic–inorganic sol–gel positive resist. Microelectron. Eng. 2010, 87, 947–950. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Park, J.; Kim, T.; Kang, S.H.; Kim, H.; Shin, J.; Jeon, S.; Hong, S.W. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures. ACS Nano 2016, 10, 4609–4617. [Google Scholar] [CrossRef]
- El Zubir, O.; Xia, S.; Ducker, R.E.; Wang, L.; Mullin, N.; Cartron, M.L.; Cadby, A.J.; Hobbs, J.K.; Hunter, C.N.; Leggett, G.J. From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups. Langmuir 2017, 33, 8829–8837. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.B.; Park, S.-W.; Kang, H.N.; Mondkar, H.S.; Sohn, K.; Kim, H.-M.; Kim, K.-B.; Lee, H. Triphenylsulfonium Salt Methacrylate Bound Polymer Resist for Electron Beam Lithography. Polymer 2014, 55, 3599–3604. [Google Scholar] [CrossRef]
- Kirchner, R.; Guzenko, V.; Schift, H. Single-digit 6-nm multilevel patterns by electron beam grayscale lithography. Adv. Opt. Technol 2019, 8, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.A.; Dew, S.K.; Stepanova, M. SML resist processing for high-aspect-ratio and high-sensitivity electron beam lithography. Nanoscale Res. Lett. 2013, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Gangnaik, A.S.; Georgiev, Y.M.; Holmes, J.D. New Generation Electron Beam Resists: A Review. Chem. Mater. 2017, 29, 1898–1917. [Google Scholar] [CrossRef]
- Wu, X.; Teng, F.; Libera, M. Functional Changes during Electron-Beam Lithography of Biotinylated Poly(ethylene glycol) Thin Films. ACS Macro Lett. 2019, 8, 1252–1256. [Google Scholar] [CrossRef]
- Pfirrmann, S.; Kirchner, R.; Lohse, O.; Guzenko, V.A.; Voigt, A.; Harder, I.; Kolander, A.; Schift, H.; Gruetzner, G. mr-PosEBR: A novel positive tone resist for high resolution electron beam lithography and 3D surface patterning. Proc SPIE 2016, 9779. [Google Scholar] [CrossRef]
- Takei, S.; Oshima, A.; Oyama, T.G.; Ito, K.; Sugahara, K.; Kashiwakura, M.; Kozawa, T.; Tagawa, S. Organic solvent-free Sugar-Based Transparency Nanopatterning Material Derived from Biomass for Eco-Friendly Optical Biochips Using Green Lithography. In Proceedings of the SPIE; The International Society for Optical Engineering: Washington, DC, USA, 2014; Volume 9129. [Google Scholar] [CrossRef]
- Wieberger, F.; Kolb, T.; Neuber, C.; Ober, C.; Schmidt, H.-W. Nanopatterning with tailored moleculeS. In Proceedings of the SPIE Advanced Lithography; The International Society for Optical Engineering: Washington, DC, USA, 2014; Volume 9051. [Google Scholar] [CrossRef]
- Yasuda, M.; Tada, K.; Kotera, M. Multiphysics Simulation of Nanopatterning in Electron Beam Lithography. J. Photopolym. Sci. Technol. 2016, 29, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.A.; Lami, S.K.; Ansary, A.; Strachan, D.R.; Brill, J.W.; Hastings, J.T. Altering the radiation chemistry of electron-beam lithography with a reactive gas: A study of Teflon AF patterning under water vapor. Nanotechnology 2019, 30, 305301. [Google Scholar] [CrossRef]
- Muhammad, M.; Buswell, S.C.; Dew, S.K.; Stepanova, M. Nanopatterning of PMMA on Insulating Surfaces with Various Anticharging Schemes Using 30 keV Electron Beam Lithography. J. Vac. Sci. Technol. B 2011, 29. [Google Scholar] [CrossRef]
- Fisslthaler, E.; Sezen, M.; Plank, H.; Blümel, A.; Sax, S.; Grogger, W.; List-Kratochvil, E.J. Direct Sub-Micrometer-Patterning of Conjugated Polymers and Polymer Light-Emitting Devices by Electron Beam Lithography. Macromol. Chem. Phys. 2010, 211, 1402–1407. [Google Scholar] [CrossRef]
- Mahmoodian, M.; Hajihoseini, H.; Mohajerzadeh, S.; Fathipour, M. Nano patterning and fabrication of single polypyrrole nanowires by electron beam lithography. Synth. Met. 2019, 249, 14–24. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Pisignano, D.; Burini, A.; Spearman, P.; Tavazzi, S. Electron-Beam Nanopatterning and Spectral Modulation of Organic Molecular Light-Emitting Single Crystals. Langmuir 2014, 30, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.N.; Owen, J.H.G.; Lake, J.; Fuchs, E. Next generation of extreme-resolution electron beam lithography. J. Vac. Sci. Technol. B 2019, 37, 061605. [Google Scholar] [CrossRef]
- Reddy, P.G.; Thakur, N.; Lee, C.-L.; Chien, S.-W.; Parameswaran, P.C.; Ghosh, S.; Tsai, K.-Y.; Gonsalves, K.E. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness. AIP Adv. 2017, 7, 085314. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Poker, D.B.; Gonsalves, K.E.; Batina, N. Micro/nano machining of polymeric substrates by ion beam techniques. Microelectron. Eng. 2003, 65, 153–161. [Google Scholar] [CrossRef]
- Cutroneo, M.; Havranek, V.; Macková, A.; Semian, V.; Torrisi, L.; Calcagno, L. Micro-patterns fabrication using focused proton beam lithography. Nucl. Instrum. Methods Phys. Res. B 2015, 371, 344–349. [Google Scholar] [CrossRef]
- Winston, D.; Cord, B.M.; Ming, B.; Bell, D.C.; Dinatale, W.F.; Stern, L.A.; Vladár, A.E.; Postek, M.T.; Mondol, M.; Yang, J.K.W.; et al. Scanning-Helium-Ion-Beam Lithography with Hydrogen Silsesquioxane Resist. J. Vac. Sci. Technol. B 2009, 27, 2702–2706. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.M.; Hunt, M.S.; DeRose, G.A.; Alty, H.R.; Li, J.; Wertheim, A.; De Rose, L.; Timco, G.A.; Scherer, A.; Yeates, S.G.; et al. Plasma-Etched Pattern Transfer of Sub-10 nm Structures Using a Metal–Organic Resist and Helium Ion Beam Lithography. Nano Lett. 2019, 19, 6043–6048. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.-T.; Oh, M.-S.; Jung, C.-H.; Choi, J.-H. Direct patterning of poly(acrylic acid) on polymer surfaces by ion beam lithography for the controlled adhesion of mammalian cells. Biotechnol. Lett. 2014, 36, 2135–2142. [Google Scholar] [CrossRef]
- Quan, Y.-J.; Kim, M.-S.; Kim, Y.; Ahn, S.-H. Colour-tunable 50% strain sensor using surface-nanopatterning of soft materials via nanoimprinting with focused ion beam milling process. CIRP Ann. 2019, 68, 595–598. [Google Scholar] [CrossRef]
- Watt, F.; Bettiol, A.A.; van Kan, J.A.; Teo, E.J.; Breese, M.H. Ion beam lithography and nanofabrication: A review. Int. J. Nanosci. 2005, 4, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Tobing, L.Y.M.; Tjahjana, L.; Zhang, D.H. Large contrast enhancement by sonication assisted cold development process for low dose and ultrahigh resolution patterning on ZEP520A positive tone resist. J. Vac. Sci. Technol. A. 2012, 30, 051601. [Google Scholar] [CrossRef]
- Pandey, A.; Tzdaka, S.; Yehuda, D.; Schvartzman, M. Soft thermal nanoimprint with 10 nm feature size. Soft Matter 2019, 15, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Teyssèdre, H.; Landis, S.; Thanner, C.; Laure, M.; Khan, J.; Bos, S.; Eibelhuber, M.; Chouiki, M.; May, M.; Brianceau, P.; et al. A full-process chain assessment for nanoimprint technology on 200-mm industrial platform. Adv. Opt. Technol. 2017, 6, 277–292. [Google Scholar] [CrossRef]
- Lim, S.H.; Low, H.Y.; Tan, W.S. Novel soft stamp development for direct micro- and nano-patterning of macroscopic curved surfaces. J. Vac. Sci. Technol. B 2016, 34, 011602. [Google Scholar] [CrossRef]
- Lee, J.H.; Na, M.; Kim, J.; Yoo, K.; Park, J.; Kim, J.D.; Oh, D.K.; Lee, S.; Youn, H.; Kwak, M.K.; et al. Rapid and conformal coating of polymer resins by airbrushing for continuous and high-speed roll-to-roll nanopatterning: Parametric quality controls and extended applications. Nano Converg. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Kooy, N.; Mohamed, K.; Pin, L.T.; Guan, O.S. A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 2014, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint of Sub-25 Nm Vias and Trenches in Polymers. Appl. Phys. Lett. 1995, 67, 3114–3116. [Google Scholar] [CrossRef] [Green Version]
- Engel, L.; Krylov, S.; Shacham-Diamand, Y. Thermoplastic nanoimprint lithography of electroactive polymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) for micro/nanoscale sensors and actuators. J. Micro Nanolithogr MEMS MOEMS 2014, 13, 033011. [Google Scholar] [CrossRef]
- Emah, J.B.; George, N.J.; Akpan, U.B. Interfacial Surface Modification via Nanoimprinting to Increase Open-Circuit Voltage of Organic Solar Cells. J. Electron. Mater. 2017, 46, 4989–4998. [Google Scholar] [CrossRef]
- Weinman, S.T.; Fierce, E.M.; Husson, S.M. Nanopatterning commercial nanofiltration and reverse osmosis membranes. Sep. Purif. Technol. 2018, 209, 646–657. [Google Scholar] [CrossRef]
- Park, C.N.; Na, J.; Kim, E. Cross Stacking of Nanopatterned PEDOT Films for Use as Soft Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 28802–28809. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, X.; Zhang, L.; Yang, J.; Cui, W.; Yang, Y.; Zhang, H. Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells. Appl. Mater. Today 2019, 18, 100468. [Google Scholar] [CrossRef]
- Gong, H.Y.; Park, J.; Kim, W.; Kim, J.; Lee, J.Y.; Koh, W.-G. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS Appl. Mater. Interfaces 2019, 11, 47695–47706. [Google Scholar] [CrossRef] [PubMed]
- Chaterji, S.; Kim, P.; Choe, S.H.; Tsui, J.H.; Lam, C.H.; Ho, D.S.; Baker, A.B.; Kim, D.H. Synergistic Effects of Matrix Nanotopography and Stiffness on Vascular Smooth Muscle Cell Function. Tissue Eng. Part A 2014, 20, 2115–2126. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Zhang, J.; Ren, Z.; Zhang, X.; Zhang, X.; Zhu, D.; Wang, Z.; Han, F.; Wang, X.; et al. Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. J. Mater. Chem. 2010, 20, 152–158. [Google Scholar] [CrossRef]
- Jang, S.; Kim, M.; Kang, Y.S.; Choi, Y.W.; Kim, S.M.; Sung, Y.-E.; Choi, M. Facile Multiscale Patterning by Creep-Assisted Sequential Imprinting and Fuel Cell Application. ACS Appl. Mater. Interfaces 2016, 8, 11459–11465. [Google Scholar] [CrossRef]
- Choi, J.; Jo, W.; Lee, S.Y.; Jung, Y.S.; Kim, S.-H.; Kim, H.-T. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. ACS Nano 2017, 11, 7821–7828. [Google Scholar] [CrossRef]
- Jo, W.; Choi, J.; Kang, H.S.; Kim, M.; Baik, S.; Lee, B.J.; Pang, C.; Kim, H.-T. Programmable Fabrication of Submicrometer Bent Pillar Structures Enabled by a Photoreconfigurable Azopolymer. ACS Appl. Mater. Interfaces 2020, 12, 5058–5064. [Google Scholar] [CrossRef]
- Ding, G.; Wang, K.; Xh, L.; Wang, C.; Hu, Z.; Liu, J. Nanoimprinting-induced molecular orientation in poly(3-hexylthiophene) nanogratings and its extraordinary retention after thermal annealing. Polym. Chem. 2017, 8, 2666–2674. [Google Scholar] [CrossRef]
- Woo, J.Y.; Jo, S.; Oh, J.H.; Kim, J.T.; Han, C.-S. Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Appl. Surf. Sci. 2019, 484, 317–325. [Google Scholar] [CrossRef]
- Ok, J.G.; Shin, Y.J.; Park, H.J.; Guo, L.J. A step toward next-generation nanoimprint lithography: Extending productivity and applicability. Appl. Phys. A 2015, 121, 343–356. [Google Scholar] [CrossRef]
- Ferchichi, A.K.; Panabière, M.; Desplats, O.; Gourgon, C. Fabrication of superhydrophobic surfaces on flexible fluorinated foils by using dual-scale patterning. Mater. Res. Express 2014, 1, 025704. [Google Scholar] [CrossRef]
- Schleunitz, A.; Spreu, C.; Vogler, M.; Atasoy, H.; Schift, H. Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures. J. Vac. Sci. Technol. B 2011, 29. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Gangopadhyay, P.; Munoz, R.; Peyghambarian, N. Nanoimprinted photonic devices. In Proceedings of the SPIE Advanced Lithography; SPIE—The International Society for Optical Engineering: Washington, DC, USA, 2010; Volume 7788, p. 778802-1. [Google Scholar]
- Cai, R.; Antohe, V.-A.; Nysten, B.; Piraux, L.; Jonas, A.M. Thermally Induced Flexo-Type Effects in Nanopatterned Multiferroic Layers. Adv. Funct. Mater. 2020, 30, 1910371. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, Y.; Duan, Y.; Yu, X.; Shi, H.; Nakkala, J.R.; Zuo, X.; Hong, L.; Mao, Z.; Gao, C. Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly(d,l-lactide-co-caprolactone) Conduits Promote Peripheral Nerve Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 7915–7930. [Google Scholar] [CrossRef]
- Whitworth, G.L.; Zhang, S.; Stevenson, J.R.Y.; Ebenhoch, B.; Samuel, I.D.W.; Turnbull, G.A. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Appl. Phys. Lett. 2015, 107, 163301. [Google Scholar] [CrossRef] [Green Version]
- Puliafito, A.; Ricciardi, S.; Pirani, F.; Čermochová, V.; Boarino, L.; De Leo, N.; Primo, L.; Descrovi, E. Driving Cells with Light-Controlled Topographies. Adv. Sci. 2019, 6, 1801826. [Google Scholar] [CrossRef]
- Sánchez de Alcázar, D.; Romera, D.; Castro-Smirnov, J.; Sousaraei, A.; Casado, S.; Espasa, A.; Morant-Miñana, M.C.; Hernandez, J.J.; Rodríguez, I.; Costa, R.D.; et al. Engineered protein-based functional nanopatterned materials for bio-optical devices. Nanoscale Adv. 2019, 1, 3980–3991. [Google Scholar] [CrossRef] [Green Version]
- Peer, A.; Dhakal, R.; Biswas, R.; Kim, J. Nanoscale Patterning of Biopolymers for Functional Biosurfaces and Controlled Drug Release. Nanoscale 2016, 8, 18654–18664. [Google Scholar] [CrossRef]
- Yang, B.; Cai, F.; Huang, S.; Yu, H. Athermal and Soft Multi-Nanopatterning of Azopolymers: Phototunable Mechanical Properties. Angew. Chem. Int. Ed. 2020, 59, 4188. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Huntington, M.D.; Zhou, W.; Yang, J.-C.; Odom, T.W. Programmable Soft Lithography: Solvent-Assisted Nanoscale Embossing. Nano Lett. 2011, 11, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Takei, S.; Hanabata, M. High-resolution nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using gas permeable mold. AIP Advances 2017, 7, 035110. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Zhang, L.; Chen, S.; Sun, Z.; Li, S.; Zhang, L.; Yang, Y. Construction of Biofunctionalized Anisotropic Hydrogel Micropatterns and Their Effect on Schwann Cell Behavior in Peripheral Nerve Regeneration. ACS Appl. Mater. Interfaces 2019, 11, 37397–37410. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.S.T.; Choi, E.; Gray, K.; Macadangdang, J.; Ahn, E.H.; Clark, E.C.; Laflamme, M.A.; Wu, J.C.; Murry, C.E.; Tung, L.; et al. NanoMEA: A Tool for High-Throughput, Electrophysiological Phenotyping of Patterned Excitable Cells. Nano Lett. 2020, 20, 1561–1570. [Google Scholar] [CrossRef]
- Takakuwa, M.; Heo, S.W.; Fukuda, K.; Tajima, K.; Park, S.; Umezu, S.; Someya, T. Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics. Small Methods 2020, 4, 1900762. [Google Scholar] [CrossRef]
- ElMahmoudy, M.; Charrier, A.M.; Malliaras, G.G.; Sanaur, S. Facile Nanopatterning of PEDOT:PSS Thin Films. Adv. Mater. Technol. 2018, 3, 1700344. [Google Scholar] [CrossRef]
- Adamkiewicz, W.; Siek, M.M.; Mazur, T.W.; Lach, S.; Grzybowski, B.A. Additive Contact Polarization of Nonferroelectric Polymers for Patterning of Multilevel Memory Elements. ACS Appl. Mater. Interfaces 2020, 12, 1504–1510. [Google Scholar] [CrossRef]
- Makita, R.; Akasaka, T.; Tamagawa, S.; Yoshida, Y.; Miyata, S.; Miyaji, H.; Sugaya, T. Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants. Beilstein J. Nanotechnol. 2018, 9, 1735–1754. [Google Scholar] [CrossRef] [Green Version]
- Merino, S.; Retolaza, A.; Trabadelo, V.; Cruz, A.; Heredia, P.; Alduncín, J.A.; Mecerreyes, D.; Fernández-Cuesta, I.; Borrisé, X.; Pérez-Murano, F. Protein patterning on the micro- and nanoscale by thermal nanoimprint lithography on a new functionalized copolymer. J. Vac. Sci. Technol. B. 2009, 27, 2439–2443. [Google Scholar] [CrossRef]
- Wang, Z.; Hansen, C.; Ge, Q.; Maruf, S.H.; Ahn, D.U.; Qi, H.J.; Ding, Y. Programmable, Pattern-Memorizing Polymer Surface. Adv. Mater. 2011, 23, 3669–3673. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.; Schvartzman, M. Direct Resistless Soft Nanopatterning of Freeform Surfaces. ACS Appl. Mater. Interfaces 2019, 11, 43494–43499. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.S.L.; Lee, Y.-Y.; Low, H.Y. Recessed area patterning via nanoimprint lithography. J. Vac. Sci. Technol. B 2011, 29, 060602. [Google Scholar] [CrossRef]
- Park, H.-H.; Sun, K.; Seong, M.; Kang, M.; Park, S.; Hong, S.; Jung, H.; Jang, J.; Kim, J.; Jeong, H.E. Lipid-Hydrogel-Nanostructure Hybrids as Robust Biofilm-Resistant Polymeric Materials. ACS Macro Lett. 2018, 8, 64–69. [Google Scholar] [CrossRef]
- Yeo, H.; Khan, A. Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography Applications. J. Am. Chem. Soc. 2020, 142, 3479–3488. [Google Scholar] [CrossRef]
- Leitgeb, M.; Nees, D.; Ruttloff, S.; Palfinger, U.; Götz, J.; Liska, R.; Belegratis, M.R.; Stadlober, B. Multi-Length Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light Assisted Nanoimprint Lithography. ACS Nano 2016, 10, 4926–4941. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, Y.; Berenschot, J.W.; Tas, N.R.; Reinhoudt, D.N.; Huskens, J. Large-Area Nanoscale Patterning of Functional Materials by Nanomolding in Capillaries. Adv. Funct. Mater. 2010, 20, 2519–2526. [Google Scholar] [CrossRef]
- Lan, H.; Liu, H. UV-nanoimprint lithography: Structure, materials and fabrication of flexible molds. J. Nanosci. Nanotechnol. 2013, 13, 3145–3172. [Google Scholar] [CrossRef]
- Chen, J.; Shi, J.; Cattoni, A.; Decanini, D.; Liu, Z.; Chen, Y.; Haghiri-Gosnet, A.-M. A versatile pattern inversion process based on thermal and soft UV nanoimprint lithography techniques. Microelectron. Eng. 2010, 87, 899–903. [Google Scholar] [CrossRef]
- Lee, B.K.; Kawai, T.; Chung, B.H. Direct Nanopatterning of Silsesquioxane/Poly(ethylene glycol) Blends with High Stability and Nonfouling Properties. Macromol. Biosci. 2011, 11, 600–606. [Google Scholar] [CrossRef]
- Gong, T.; Gao, Z.; Wanli, B.; Tai, F.; Liang, W.; Liang, W.; Dong, Q.; Dong, C. Co-containing and Pt-containing polymer blend to ferromagnetic CoPt NPs: Synthesis, characterization and patterning study by nanoimprint lithography. J. Organomet. Chem. 2016, 819, 237–241. [Google Scholar] [CrossRef]
- Fernandez-Cuesta, I.; Palmarelli, A.L.; Liang, X.; Zhang, J.; Dhuey, S.; Olynick, D.; Cabrini, S. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting. J. Vac. Sci. Technol. B 2011, 29. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Jiang, C.; Li, X.; Ye, F.; Yuan, W. Controllable fabrication of periodic arrays of high-aspect-ratio micro-nano hierarchical structures and their superhydrophobicity. J. Micromech. Microeng. 2013, 23, 095027. [Google Scholar] [CrossRef]
- Koo, S.; Lee, S.H.; Kim, J.D.; Hong, J.G.; Baac, H.W.; Kwak, M.K.; Ok, J.G. Controlled Airbrush Coating of Polymer Resists in Roll-to-Roll Nanoimprinting with Regimented Residual Layer Thickness. Int. J. Precis. Eng. Manuf. 2016, 17, 943–947. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Gogurla, N.; Bhandaru, N.; Ray, S.K.; Mukherjee, R. Enhanced Performance of Hybrid Self-biased Heterojunction Photodetector on Soft-lithographically Patterned Organic Platform. Nanotechnology 2018, 29, 505301. [Google Scholar] [CrossRef]
- Jeong, H.-H.; Lee, J.-H.; Lee, C.-S.; Jang, H.; Yang, Y.-H.; Kim, Y.-H.; Huh, K.M. Fabrication of Selective Anti-Biofouling Surface for Micro/Nanopatterning of Proteins. Macromol. Res. 2010, 18, 868–875. [Google Scholar] [CrossRef]
- García, J.R.; Singh, A.; García, A.J. High Fidelity Nanopatterning of Proteins onto Well-Defined Surfaces Through Subtractive Contact Printing. Methods Cell Biol. Part A 2014, 119, 277–292. [Google Scholar]
- Lamping, S.; Buten, C.; Ravoo, B.J. Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry. Acc. Chem. Res. 2019, 52, 1336–1346. [Google Scholar] [CrossRef]
- Ding, Y.; Garland, S.; Howland, M.; Revzin, A.; Pan, T. Universal Nanopatternable Interfacial Bonding. Adv. Mater. 2011, 23, 5551–5556. [Google Scholar] [CrossRef]
- Kaufmann, T.; Ravoo, B.J. Stamps, inks and substrates: Polymers in microcontact printing. Polym. Chem. 2010, 1, 371–387. [Google Scholar] [CrossRef]
- Kang, T.H.; Lee, S.; Kwon, J.A.; Song, J.; Choi, I. Photothermally Enhanced Molecular Delivery and Cellular Positioning on Patterned Plasmonic Interfaces. ACS Appl. Mater. Interfaces 2019, 11, 36420–36427. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xia, J.; Luo, S.; Zhang, P.; Xiao, Z.; Liu, T.; Guan, J. Versatile Surface Micropatterning and Functionalization Enabled by Microcontact Printing of Poly(4-aminostyrene). Langmuir 2014, 30, 13483–13490. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, K.; Wang, X.; An, B.; Cui, M.; Pu, J.; Wei, S.; Xue, S.; Ye, H.; Zhao, Y.; et al. Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. Nano Lett. 2019, 19, 8399–8408. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jallerat, Q.; Szymanski, J.M.; Feinberg, A.W. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces. Nat. Methods 2015, 12, 134–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Jackman, J.A.; Xu, X.; Weiss, P.S.; Cho, N.-J. Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS Appl. Mater Interfaces 2019, 11, 13984–13990. [Google Scholar]
- MacNearney, D.; Mak, B.; Ongo, G.; Kennedy, T.E.; Juncker, D. Nanocontact Printing of Proteins on Physiologically Soft Substrates to Study Cell Haptotaxis. Langmuir 2016, 32, 13525–13533. [Google Scholar] [CrossRef] [Green Version]
- Ricoult, S.G.; Pla-Roca, M.; Safavieh, R.; Lopez-Ayon, M.G.; Grutter, P.; Kennedy, T.E.; Juncker, D. Large Dynamic Range Digital Nanodot Gradients of Biomolecules Made by Low-Cost Nanocontact Printing for Cell Haptotaxis. Small 2013, 9, 3308–3313. [Google Scholar] [CrossRef]
- Garcia-Cruz, A.; Lee, M.; Zine, N.; Sigaud, M.; Marote, P.; López, M.; Bausells, J.; Jaffrezic-Renault, N.; Errachid, A. Biopatterning of antibodies on poly(pyrrole)-nanowires using nanocontact printing: Surface characterization. Mater. Sci. Eng.: C 2018, 91, 466–474. [Google Scholar] [CrossRef]
- Kusaka, Y.; Takei, A.; Fukasawa, T.; Ishigami, T.; Fukuda, N. Mechanisms of Adhesive Micropatterning of Functional Colloid Thin Layers. ACS Appl. Mater. Interfaces 2019, 11, 40602–40612. [Google Scholar] [CrossRef]
- Choi, S.-J.; Park, J.-Y. High-Aspect-Ratio Imageable Top-Surface Lithography Using UV-Assisted Inkless Contact Printing. Small 2010, 6, 371–375. [Google Scholar] [CrossRef]
- Oh, D.K.; Lee, S.; Lee, S.H.; Lee, W.; Yeon, G.; Lee, N.; Han, K.-S.; Jung, S.; Kim, D.H.; Lee, D.-Y.; et al. Tailored Nanopatterning by Controlled Continuous Nanoinscribing with Tunable Shape, Depth, and Dimension. ACS Nano 2019, 13, 11194–11202. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, H.-H.; Choi, K.-B.; Kim, G.; Lim, H. Fabrication of hybrid structures using UV roll-typed liquid transfer imprint lithography for large areas. Microelectron. Eng. 2014, 127, 72–76. [Google Scholar] [CrossRef]
- Garcia-Cruz, A.; Lee, M.; Marote, P.; Zine, N.; Sigaud, M.; Bonhommé, A.; Pruna, R.; Lopez, M.; Bausells, J.; Jaffrezic-Renault, N.; et al. Large area in situ fabrication of poly(pyrrole)-nanowires on flexible thermoplastic films using nanocontact printing. Mater. Res. Express 2016, 3, 085018. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Carbonell, C.; Braunschweig, A.B. Towards scanning probe lithography-based 4D nanoprinting by advancing surface chemistry, nanopatterning strategies, and characterization protocols. Chem. Soc. Rev. 2016, 45, 6289–6310. [Google Scholar] [CrossRef]
- Bocharova, V.; Agapov, A.L.; Tselev, A.; Collins, L.; Kumar, R.; Berdzinski, S.; Strehmel, V.; Kisliuk, A.; Kravchenko, I.I.; Sumpter, B.G.; et al. Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field. Adv. Funct. Mater. 2015, 25, 805–811. [Google Scholar] [CrossRef]
- Liu, X.; Kumar, M.; Calo, A.; Albisetti, E.; Zheng, X.; Manning, K.B.; Elacqua, E.; Weck, M.; Ulijn, R.V.; Riedo, E. Sub-10 nm Resolution Patterning of Pockets for Enzyme Immobilization with Independent Density and Quasi-3D Topography Control. ACS Appl. Mater. Interfaces 2019, 11, 41780–41790. [Google Scholar] [CrossRef]
- Liu, X.; Kumar, M.; Calo, A.; Albisetti, E.; Zheng, X.; Manning, K.B.; Elacqua, E.; Weck, M.; Ulijn, R.V.; Riedo, E. High-throughput Enzyme Nanopatterning. Faraday Discuss. 2019, 219, 33–43. [Google Scholar] [CrossRef]
- Oh, Y.; Choi, C.; Noh, K.; Villwock, D.; Jin, S.; Kwon, G.; Lee, H. Multitip atomic force microscope lithography system for high throughput nanopatterning. J. Vac. Sci. Technol. B 2011, 29. [Google Scholar] [CrossRef]
- Shim, W.; Brown, K.A.; Zhou, X.; Rasin, B.; Liao, X.; Schmucker, A.L.; Mirkin, C.A. Plow and Ridge Nanofabrication. Small 2013, 9, 3058–3062. [Google Scholar] [CrossRef]
- Ngunjiri, J.; Garno, J.C. AFM-based lithography for nanoscale protein assays. Anal. Chem. 2008, 80, 1361–1369. [Google Scholar]
- Sulkanen, A.R.; Sung, J.; Robb, M.J.; Moore, J.S.; Sottos, N.R.; Liu, G.-Y. Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores. J. Am. Chem. Soc. 2019, 141, 4080–4085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, R.; Knoll, A.W.; Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol. 2014, 9, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, P.C.; Knoll, A.W.; Holzner, F.; Despont, M.; Duerig, U. Rapid turnaround scanning probe nanolithography. Nanotechnology 2011, 22, 275306. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.; Hedrick, J.L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A.W. Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes. Science 2010, 328, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, S.; Lorenzoni, M.; Evangelio, L.; Fernández-Regúlez, M.; Ryu, Y.K.; Rawlings, C.; Spieser, M.; Knoll, A.W.; Perez-Murano, F. Thermal scanning probe lithography for the directed self-assembly of block copolymers. Nanotechnology 2017, 28, 175301. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Kim, S.; Underwood, W.; Giordano, A.; Henderson, C.; Dai, Z.; King, W.; Marder, S.; Riedo, E. Direct writing and characterization of poly(p-phenylene vinylene) nanostructures. Appl. Phys. Lett. 2009, 95, 233108. [Google Scholar] [CrossRef]
- Albisetti, E.; Carroll, K.M.; Lu, X.; Curtis, J.E.; Petti, D.; Bertacco, R.; Riedo, E. Thermochemical scanning probe lithography of protein gradients at the nanoscale. Nanotechnology 2016, 27, 315302. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhou, X.; Xie, Z.; Gao, T.; Zheng, Z. Construction of 3D Polymer Brushes by Dip-Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and High-Speed Patterning. Small 2014, 11, 613–621. [Google Scholar] [CrossRef]
- Martínez, R.V.; Martínez, J.; Chiesa, M.; Garcia, R.; Coronado, E.; Pinilla-Cienfuegos, E.; Tatay, S. Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles. Adv. Mater. 2010, 22, 588–591. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.; Huo, F.; Zheng, Z.; Giam, L.R.; Shim, W.; Mirkin, C.A. Scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2010, 107, 20202–20206. [Google Scholar] [CrossRef] [Green Version]
- Gavutis, M.; Navikas, V.; Rakickas, T.; Vaitekonis, Š.; Valiokas, R. Lipid dip-pen nanolithography on self-assembled monolayers. J. Micromech. Microeng. 2016, 26, 025016. [Google Scholar] [CrossRef]
- Wu, C.-C.; Reinhoudt, D.N.; Otto, C.; Subramaniam, V.; Velders, A.H. Patterning: Strategies for Patterning Biomolecules with Dip-Pen Nanolithography. Small 2011, 7, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Hirtz, M.; Harald, F.; Zheng, Z. Development of Dip-Pen Nanolithography (DPN) and Its Derivatives. Small 2019, 15, 1900564. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Regúlez, M.; Evangelio, L.; Lorenzoni, M.; Fraxedas, J.; Pérez-Murano, F. Sub-10 nm Resistless Nanolithography for Directed Self-Assembly of Block Copolymers. ACS Appl. Mater. Interfaces 2014, 6, 21596–21602. [Google Scholar] [CrossRef]
- Liu, H.; Hoeppener, S.; Schubert, U.S. Reversible Nanopatterning on Polypyrrole Films by Atomic Force Microscope Electrochemical Lithography. Adv. Funct. Mater. 2015, 26, 614–619. [Google Scholar] [CrossRef]
- Ryu, Y.K.; Garcia, r. Advanced oxidation scanning probe lithography. Nanotechnology 2017, 28, 142003. [Google Scholar] [CrossRef]
- Saner, C.K.; Lu, L.; Zhang, D.; Garno, J.C. Chemical approaches for nanoscale patterning based on particle lithography with proteins and organic thin films. Nanotechnol. Rev. 2015, 4, 129–143. [Google Scholar] [CrossRef]
- Hu, C.; Lan, Y.; West, K.R.; Scherman, O.A. Cucurbit (8) uril-Regulated Nanopatterning of Binary Polymer Brushes via Colloidal Templating. Adv. Mater. 2015, 27, 7957–7962. [Google Scholar] [CrossRef] [Green Version]
- Valsesia, A.; Colpo, P.; Meziani, T.; Bretagnol, F.; Lejeune, M.; Rossi, F.; Bouma, A.; Parajo, M.G. Selective Immobilization of Protein Clusters on Polymeric Nanocraters. Adv. Funct. Mater. 2006, 16, 1242–1246. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, J.; Li, L.; Wang, Y.; Wang, D.; Chen, L.; Zhang, Y.; Du, Y. Architecture design and applications of nanopatterned arrays based on colloidal lithography. J. Appl. Phys. 2019, 126, 141101. [Google Scholar] [CrossRef]
- Andersen, A.S.; Zheng, W.F.; Sutherland, D.S.; Jiang, X.Y. Versatile multiple protein nanopatterning within a microfluidic channel for cell recruitment studies. Lab Chip 2015, 15, 4524–4532. [Google Scholar] [CrossRef] [PubMed]
- Lum, W.; Gautam, D.; Chen, J.; Sagle, L.B. Single molecule protein patterning using hole mask colloidal lithography. Nanoscale 2019, 11, 16228–16234. [Google Scholar] [CrossRef] [PubMed]
- Highland, Z.L.; Garno, J.C. Spatially selective binding of green fluorescent protein on designed organosilane nanopatterns prepared with particle lithography. Biointerphases 2017, 12. [Google Scholar] [CrossRef]
- Friedl, A.; Adam, P.; Leshkov, S.; Homola, J. Fabrication of Nanoplasmonic Arrays with Square Symmetry Using Spin-Coating Method. Nanosci. Nanotechnol. 2011, 11, 2528–2532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Lai, Y.-Y.; Chao, Y.-C.; Zan, H.-W.; Meng, H.-F.; Horng, S.-f.; Chang, C.-H. Large-area nano-patterning and fabrication of vertical transistor array by non-close-packed polystyrene spheres. ACS Appl. Mater. Interfaces 2015, 7, 18899–18903. [Google Scholar] [CrossRef]
- Vazquez-Mena, O.; Sannomiya, T.; Tosun, M.; Villanueva, L.G.; Savu, V.; Voros, J.; Brugger, J. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano 2012, 6, 5474–5481. [Google Scholar] [CrossRef]
- Vazquez-Mena, O.; Gross, L.; Shenqi, X.; Villanueva, L.G.; Brugger, J. Resistless nanofabrication by stencil lithography: A review. Microelectron. Eng. 2015, 132, 236–254. [Google Scholar] [CrossRef]
- Li, J.; Holm, D.M.; Guda, S.; Bedolla-Valdez, Z.I.; Gonel, G.; Jacobs, I.E.; Dettmann, M.A.; Saska, J.; Mascal, M.; Moulé, A.J. Effect of processing conditions on additive DISC patterning of P3HT films. J. Mater. Chem. C 2018, 7, 302–313. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Stawski, T.M.; Unnikrishnan, S.; Veldhuis, S.A.; Ten Elshof, A. Micro and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma. J. Mater. Chem. 2012, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Shin, W.H.; Park, T.W.; Choi, Y.J.; Yoon, Y.J.; Park, S.H.; Lim, J.-H.; Kwon, J.-D.; Lee, J.W.; Kwon, S.-H.; et al. Hierarchical multi-level block copolymer patterns by multiple self-assembly. Nanoscale 2019, 11, 8433–8441. [Google Scholar] [CrossRef]
- Nickmans, K.; Schenning, A.P.H.J. Directed Self-Assembly of Liquid-Crystalline Molecular Building Blocks for Sub-5 nm Nanopatterning. Adv. Mater. 2018, 30, 1703713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.D.; Millett, P.C. Directed Self-Assembly in Diblock Copolymer Thin Films for Uniform Hemisphere Pattern Formation. Macromolecules 2019, 52, 9495–9503. [Google Scholar] [CrossRef]
- Verduzco, R.; Botiz, I.; Pickel, D.L.; Kilbey, S.M.; Hong, K.; Dimasi, E.; Darling, S.B. Polythiophene-block-polyfluorene and Polythiophene-block-poly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules 2011, 44, 530–539. [Google Scholar] [CrossRef]
- Cushen, J.D.; Otsuka, I.; Bates, C.M.; Halila, S.; Fort, S.; Rochas, C.; Easley, J.A.; Rausch, E.L.; Thio, A.; Borsali, R.; et al. Oligosaccharide/Silicon-Containing Block Copolymers with 5 nm Features for Lithographic Applications. ACS Nano 2012, 6, 3424–3433. [Google Scholar] [CrossRef] [PubMed]
- Antoine, S.; Aissou, K.; Mumtaz, M.; Pécastaings, G.; Buffeteau, T.; Fleury, G.; Hadziioannou, G. Nanoscale Archimedean Tilings Formed by 3-Miktoarm Star Terpolymer Thin Films. Macromol. Rapid Commun. 2019, 40, 1800860. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.G.; Choi, J.; Cha, S.K.; Lee, G.Y.; Jin, H.M.; Hwang, H.S.; Yun, T.; Kang, J.; Han, K.H.; Kim, J.H.; et al. Conformal 3D Nanopatterning by Block Copolymer Lithography with Vapor-Phase Deposited Neutral Adlayer. ACS Nano 2019, 13, 13092–13099. [Google Scholar] [CrossRef] [PubMed]
- Bai, P.; Kao, J.; Chen, J.-H.; Mickelson, W.; Zettl, A.; Xu, T. Nanostructures on graphene using supramolecule and supramolecular nanocomposites. Nanoscale 2014, 6, 4503–4507. [Google Scholar] [CrossRef]
- Botiz, I.; Darling, S.B. Rational Design of Nanostructured Hybrid Materials for Photovoltaics. Mater. Res. Soc. Symp. Proc. 2009, 1190, 211–216. [Google Scholar] [CrossRef]
- Botiz, I.; Martinson, A.B.F.; Darling, S.B. Minimizing Lateral Domain Collapse in Etched Poly(3-hexylthiophene)-block-Polylactide Thin Films for Improved Optoelectronic Performance. Langmuir 2010, 26, 8756–8761. [Google Scholar] [CrossRef]
- Lane, A.P.; Yang, X.; Maher, M.J.; Blachut, G.; Asano, Y.; Someya, Y.; Mallavarapu, A.; Sirard, S.M.; Ellison, C.J.; Willson, C.G. Directed Self-Assembly and Pattern Transfer of Five Nanometer Block Copolymer Lamellae. ACS Nano 2017, 11, 7656–7665. [Google Scholar] [CrossRef]
- Ghoshal, T.; Senthamaraikannan, R.; Shaw, M.T.; Holmes, J.D.; Morris, M.A. An insitu Hard Mask Block Copolymer Approach for the Fabrication of Ordered, Large Scale, Horizontally Aligned, Si Nanowire Arrays on Si Substrate; SPIE—The International Society for Optical Engineering: Washington, DC, USA, 2014; Volume 9051. [Google Scholar]
- Di Mauro, A.E.; Striccoli, M.; Depalo, N.; Fanizza, E.; Cano, L.; Ingrosso, C.; Agostiano, A.; Curri, M.L.; Tercjak, A. Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates. Soft Matter 2014, 10, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Mawélé Loudy, C.; Allouche, J.; Bousquet, A.; Martinez, H.; Billon, L. A nanopatterned dual reactive surface driven by block copolymer self-assembly. Nanoscale 2020, 12, 7532–7537. [Google Scholar] [CrossRef] [PubMed]
- Liedel, C.; Ober, C.K. Nanopatterning of Stable Radical Containing Block Copolymers for Highly Ordered Functional Nanomeshes. Macromolecules 2016, 49, 5884–5892. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, J.Y.; Kim, S.O. Directed self-assembly of block copolymers for universal nanopatterning. Soft Matter 2013, 9, 2780–2786. [Google Scholar] [CrossRef]
- Kim, J.H.; Jin, H.M.; Yang, G.G.; Han, K.H.; Yun, T.; Shin, J.Y.; Jeong, S.-J.; Kim, S.O. Smart Nanostructured Materials based on Self-Assembly of Block Copolymers. Adv. Funct. Mater. 2020, 30, 1902049. [Google Scholar] [CrossRef]
- Ferrarese Lupi, F.; Giammaria, T.J.; Seguini, G.; Vita, F.; Francescangeli, O.; Sparnacci, K.; Antonioli, D.; Gianotti, V.; Laus, M.; Perego, M. Fine Tuning of Lithographic Masks through Thin Films of PS-b-PMMA with Different Molar Mass by Rapid Thermal Processing. ACS Appl. Mater. Interfaces 2014, 6, 7180–7188. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, C.; Liu, Y.; Deng, H. Fast Self-Assembly of Polystyrene-b-Poly(fluoro meth0acrylate) into Sub-5 nm Microdomains for Nanopatterning Applications. J. Mater. Chem. C 2019, 7, 2535–2540. [Google Scholar] [CrossRef]
- Luo, Y.; Montarnal, D.; Treat, N.J.; Hustad, P.D.; Christianson, M.D.; Kramer, E.J.; Fredrickson, G.H.; Hawker, C.J. Enhanced Block Copolymer Phase Separation Using Click Chemistry and Ionic Junctions. ACS Macro Lett. 2015, 4, 1332–1336. [Google Scholar] [CrossRef]
- Guliyeva, A.; Vayer, M.; Warmont, F.; Faugère, A.M.; Andreazza, P.; Takano, A.; Matsushita, Y.; Sinturel, C. Thin Films with Perpendicular Tetragonally Packed Rectangular Rods Obtained from Blends of Linear ABC Block Terpolymers. ACS Macro Lett. 2018, 7, 789–794. [Google Scholar] [CrossRef]
- Williges, C.; Chen, W.; Morhard, C.; Spatz, J.P.; Brunner, R. Increasing the Order Parameter of Quasi-Hexagonal Micellar Nanostructures by Ultrasound Annealing. Langmuir 2013, 29, 989–993. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, K.; Chen, W.-C.; Wei, B.; Borsali, R. Robust Sub-10 nm Pattern of Standing Sugar Cylinders via Rapid “Microwave Cooking”. Macromolecules 2019, 52, 8751–8758. [Google Scholar] [CrossRef]
- Wakayama, H.; Yonekura, H. Block copolymer-based nanocomposites with exotic self-assembled structures induced by a magnetic field. Macromol. Res. 2017, 25, 201–205. [Google Scholar] [CrossRef]
- Jin, H.M.; Park, D.Y.; Jeong, S.-J.; Lee, G.Y.; Kim, J.Y.; Mun, J.H.; Cha, S.K.; Lim, J.; Kim, J.S.; Kim, K.H.; et al. Flash Light Millisecond Self-Assembly of High χ Block Copolymers for Wafer-Scale Sub-10 nm Nanopatterning. Adv. Mat. 2017, 29, 1700595. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Nunns, A.; Gwyther, J.; Davis, R.L.; Manners, I.; Chaikin, P.M.; Register, R.A. Large-Area Nanosquare Arrays from Shear-Aligned Block Copolymer Thin Films. Nano Lett. 2014, 14, 5698–5705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Seo, T.; Rincon-Delgadillo, P.; Matsumiya, T.; Kawaue, A.; Maehashi, T.; Gronheid, R.; Nealey, P.F. Directed Self-Assembly of PS-b-PMMA with Ionic Liquid Addition; SPIE—The International Society for Optical Engineering: Washington, DC, USA, 2016; Volume 9779. [Google Scholar]
- Kim, D.H.; Kim, S.Y. Effective Morphology Control of Block Copolymers and Spreading Area-Dependent Phase Diagram at the Air/Water Interface. J. Phys. Chem. Lett. 2017, 8, 1865–1871. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Moon, H.-S.; Kim, B.H.; Kim, J.Y.; Yu, J.; Lee, S.; Lee, M.G.; Choi, H.; Kim, S.O. Ultralarge-Area Block Copolymer Lithography Enabled by Disposable Photoresist Prepatterning. ACS Nano 2010, 4, 5181–5186. [Google Scholar] [CrossRef]
- Brassat, K.; Lindner, J.K.N. Nanoscale Block Copolymer Self-Assembly and Microscale Polymer Film Dewetting: Progress in Understanding the Role of Interfacial Energies in the Formation of Hierarchical Nanostructures. Adv. Mater. Interfaces 2020, 7, 1901565. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Jo, S.; Ryu, D.Y.; Choi, S.-H.; Choe, Y.; Khan, A.; Huh, J.; Bang, J. Molecular Tailoring of Poly(styrene-b-methyl methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 nm Features. ACS Macro Lett. 2017, 6, 1386–1391. [Google Scholar] [CrossRef]
- Kennemur, J.G.; Yao, L.; Bates, F.S.; Hillmyer, M.A. Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography. Macromolecules 2014, 47, 1411–1418. [Google Scholar] [CrossRef]
- Barreda, L.; Shen, Z.; Chen, Q.P.; Lodge, T.P.; Siepmann, J.I.; Hillmyer, M.A. Synthesis, Simulation, and Self-Assembly of a Model Amphiphile To Push the Limits of Block Polymer Nanopatterning. Nano Lett. 2019, 19, 4458–4462. [Google Scholar] [CrossRef]
- Chen, Q.P.; Barreda, L.; Oquendo, L.E.; Hillmyer, M.A.; Lodge, T.P.; Siepmann, J.I. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains. ACS Nano 2018, 12, 4351–4361. [Google Scholar] [CrossRef] [PubMed]
- Marencic, A.P.; Register, R.A. Controlling Order in Block Copolymer Thin Films for Nanopatterning Applications. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 277–297. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Darling, S.B. Optoelectronics using block copolymers. Mater. Today 2010, 13, 42–51. [Google Scholar] [CrossRef]
- Vanderlaan, M.E.; Hillmyer, M.A. “Uncontrolled” Preparation of Disperse Poly(lactide)-block-poly(styrene)-block-poly(lactide) for Nanopatterning Applications. Macromolecules 2016, 49, 8031–8040. [Google Scholar] [CrossRef]
- Rahman, A.; Majewski, P.W.; Doerk, G.; Black, C.T.; Yager, K.G. Non-native three-dimensional block copolymer morphologies. Nat. Commun. 2016, 7, 13988. [Google Scholar] [CrossRef]
- Subramanian, A.; Tiwale, N.; Doerk, G.; Kisslinger, K.; Nam, C.-Y. Enhanced Hybridization and Nanopatterning via Heated Liquid-Phase Infiltration into Self-Assembled Block Copolymer Thin Films. ACS Appl. Mater. Interfaces 2020, 12, 1444–1453. [Google Scholar] [CrossRef]
- Kim, M.; Safron, N.S.; Han, E.; Arnold, M.S.; Gopalan, P. Electronic Transport and Raman Scattering in Size-Controlled Nanoperforated Graphene. ACS Nano 2012, 6, 9846–9854. [Google Scholar] [CrossRef]
- Mei, S.; Li, C.Y. Terraced and Smooth Gradient Polymer Brushes via a Polymer Single-Crystal Assisted Grafting-To Method. Angew. Chem. Int. Ed. 2018, 57, 15758–15761. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, M.; Li, Z.; Li, Q.; Mao, C. Patterning Nanoparticles with DNA Molds. ACS Appl. Mater. Interfaces 2019, 11, 13853–13858. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, B.H.; Hwang, J.O.; Jeong, S.-J.; Shin, D.O.; Mun, J.H.; Choi, Y.J.; Jin, H.M.; Kim, S.O. Flexible and Transferrable Self-Assembled Nanopatterning on Chemically Modified Graphene. Adv. Mater. 2013, 25, 1331–1335. [Google Scholar] [CrossRef]
- Segal-Peretz, T.; Winterstein, J.; Doxastakis, M.; Ramírez-Hernández, A.; Biswas, M.; Ren, J.; Suh, H.S.; Darling, S.B.; Liddle, J.A.; Elam, J.W.; et al. Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography. ACS Nano 2015, 9, 5333–5347. [Google Scholar] [CrossRef] [PubMed]
- Borah, D.; Cummins, C.; Rasappa, S.; Watson, S.M.D.; Pike, A.R.; Horrocks, B.R.; Fulton, D.A.; Houlton, A.; Liontos, G.; Ntetsikas, K.; et al. Nanoscale silicon substrate patterns from self-assembly of cylinder forming poly(styrene)-block-poly(dimethylsiloxane) block copolymer on silane functionalized surfaces. Nanotechnology 2016, 28, 044001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.G.D.; Tu, K.-H.; Niroui, F.; Xu, W.; Zhou, S.; Wang, X.; Bulović, V.; Ross, C.A.; Warner, J.H.; Grossman, J.C. Photoluminescent Arrays of Nanopatterned Monolayer MoS2. Adv. Funct. Mater. 2017, 27, 1703688. [Google Scholar] [CrossRef]
- Vora, A.; Schmidt, K.; Alva, G.; Arellano, N.; Magbitang, T.; Chunder, A.; Thompson, L.E.; Lofano, E.; Pitera, J.W.; Cheng, J.Y.; et al. Orientation Control of Block Copolymers Using Surface Active, Phase-Preferential Additives. ACS Appl. Mater. Interfaces 2016, 8, 29808–29817. [Google Scholar] [CrossRef]
- Yao, L.; Oquendo, L.E.; Schulze, M.W.; Lewis, R.M.; Gladfelter, W.L.; Hillmyer, M.A. Poly(cyclohexylethylene)-block-Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2016, 8, 7431–7439. [Google Scholar] [CrossRef]
- Mun, J.H.; Cha, S.K.; Kim, H.; Moon, H.-S.; Kim, J.Y.; Jin, H.M.; Choi, Y.J.; Baek, J.E.; Shin, J.; Kim, S.O. Nanodomain Swelling Block Copolymer Lithography for Morphology Tunable Metal Nanopatterning. Small 2014, 10, 3742–3749. [Google Scholar] [CrossRef]
- Azoulay, R.; Shomrat, N.; Weisbord, I.; Atiya, G.; Segal-Peretz, T. Metal Oxide Heterostructure Array via Spatially Controlled–Growth within Block Copolymer Templates. Small 2019, 15, 1904657. [Google Scholar] [CrossRef]
- Han, H.; Jeong, B.; Park, T.H.; Cha, W.; Cho, S.M.; Kim, Y.; Kim, H.H.; Kim, D.; Ryu, D.Y.; Choi, W.K.; et al. Highly Photoluminescent and Environmentally Stable Perovskite Nanocrystals Templated in Thin Self-Assembled Block Copolymer Films. Adv. Funct. Mater. 2019, 29, 1808193. [Google Scholar] [CrossRef]
- Liu, S.S.Y.; Ludwigs, S. Electrochemical Manipulation of Aligned Block Copolymer Templates. Macromol. Rapid Commun. 2020, 41, 1900485. [Google Scholar] [CrossRef]
- Rasappa, S.; Schulte, L.; Borah, D.; Hulkkonen, H.; Ndoni, S.; Salminen, T.; Senthamaraikannan, R.; Morris, M.A.; Niemi, T. Morphology evolution of PS- b -PDMS block copolymer and its hierarchical directed self-assembly on block copolymer templates. Microelectron. Eng. 2018, 192, 1–7. [Google Scholar] [CrossRef]
- Rasappa, S.; Hulkkonen, H.; Schulte, L.; Ndoni, S.; Reuna, J.; Salminen, T.; Niemi, T. High molecular weight block copolymer lithography for nanofabrication of hard mask and photonic nanostructures. J Colloid Interface Sci. 2019, 15, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Jin, H.M.; Kim, D.-H.; Han, K.H.; Yang, G.G.; Lee, G.Y.; Lee, G.S.; Choi, J.Y.; Kim, I.-D.; Kim, S.O. 2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography. Adv. Funct. Mater. 2018, 28, 1804508. [Google Scholar] [CrossRef]
- Bigall, N.C.; Nandan, B.; Gowd, E.B.; Horechyy, A.; Eychmüller, A. High-Resolution Metal Nanopatterning by Means of Switchable Block Copolymer Templates. ACS Appl. Mater. Interfaces 2015, 7, 12559–12569. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Mun, J.H.; Lee, S.W.; An, H.; Kim, H.Y.; Kim, S.O.; Park, J.Y. Compositional effect of two-dimensional monodisperse AuPd bimetallic nanoparticle arrays fabricated by block copolymer nanopatterning on catalytic activity of CO oxidation. Chem. Commun. 2018, 54, 13734–13737. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jeon, S.-B.; Kim, J.Y.; Seol, M.-L.; Kim, S.; Choi, Y.-K. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 2015, 12, 331–338. [Google Scholar] [CrossRef]
- Mir, S.H.; Rydzek, G.; Nagahara, L.A.; Khosla, A.; Mokarian-Tabari, P. Review—Recent Advances in Block-Copolymer Nanostructured Subwavelength Antireflective Surfaces. J. Electrochem. Soc. 2019, 167, 037502. [Google Scholar] [CrossRef]
- Darko, C.; Botiz, I.; Reiter, G.; Breiby, D.; Andreasen, J.; Roth, S.; Smilgies, D.M.; Metwalli, E.; Papadakis, C. Crystallization in diblock copolymer thin films at different degrees of supercooling. Phys. Rev. 2009, 79, 041802. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Zhigadlo, N.D.; Kumar, A.; Baklar, M.A.; Karpinski, J.; Smith, P.; Kreouzis, T.; Stingelin, N. Enhanced Charge-Carrier Mobility in High-Pressure-Crystallized Poly(3-hexylthiophene). Macromolecules 2011, 44, 1221–1225. [Google Scholar] [CrossRef]
- Rahimi, K.; Botiz, I.; Stingelin, N.; Kayunkid, N.; Sommer, M.; Koch, F.P.V.; Nguyen, H.; Coulembier, O.; Dubois, P.; Brinkmann, M.; et al. Controllable Processes for Generating Large Single Crystals of Poly(3-hexylthiophene). Angew. Chem. Int. Ed. 2012, 51, 11131–11135. [Google Scholar] [CrossRef]
- Brambilla, L.; Tommasini, M.; Botiz, I.; Rahimi, K.; Agumba, J.O.; Stingelin, N.; Zerbi, G. Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals. Macromolecules 2014, 47, 6730–6739. [Google Scholar] [CrossRef]
- Botiz, J.; Schlaad, H.; Reiter, G. Processes of Ordered Structure Formation in Polypeptide Thin Film Solutions. In Advances Polymer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 242. [Google Scholar]
- Botiz, I.; Grozev, N.; Schlaad, H.; Reiter, G. The influence of protic non-solvents present in the environment on structure formation of poly(γ-benzyl-l-glutamate) in organic solvents. Soft Matter 2008, 4, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Grozev, N.; Botiz, I.; Reiter, G. Morphological instabilities of polymer crystals. Eur. Phys. J. E 2008, 27, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Astilean, S.; Stingelin, N. Altering the emission properties of conjugated polymers. Polym. Int. 2016, 65, 157–163. [Google Scholar] [CrossRef]
- Botiz, I.; Stingelin, N. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. Materials 2014, 7, 2273–2300. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Zhang, X.; Yoshie, N. Formation of nanostructured thin films of immiscible polymer blends by directional crystallization onto a crystallizable organic solvent. Colloid Polym. Sci. 2015, 293, 2165–2169. [Google Scholar] [CrossRef]
- Du, K.; Park, M.; Ding, J.; Hu, H.; Zhang, Z. Sub-10 nm Patterning with DNA Nanostructures: A Short Perspective. Nanotechnology 2017, 28, 442501. [Google Scholar] [CrossRef] [Green Version]
- Howorka, S. DNA Nanoarchitectonics: Assembled DNA at Interfaces. Langmuir 2013, 29, 7344–7353. [Google Scholar] [CrossRef]
- Jeong, J.W.; Hur, Y.H.; Kim, H.-J.; Kim, J.M.; Park, W.I.; Kim, M.J.; Kim, B.J.; Jung, Y.S. Proximity Injection of Plasticizing Molecules to Self-Assembling Polymers for Large-Area, Ultrafast Nanopatterning in the Sub-10-nm Regime. ACS Nano 2013, 7, 6747–6757. [Google Scholar] [CrossRef]
- Garnier, J.D.; Arias-Zapata, J.; Marconot, O.; Arnaud, S.; Böhme, S.; Girardot, C.; Buttard, D.; Zelsmann, M. Sub-10 nm Silicon Nanopillar Fabrication Using Fast and Brushless Thermal Assembly of PS-b-PDMS Diblock Copolymer. ACS Appl. Mater. Interfaces 2016, 8, 9954–9960. [Google Scholar] [CrossRef]
- Rasappa, S.; Schulte, L.; Ndoni, S.; Niemi, T. Directed self-assembly of a high-chi block copolymer for the fabrication of optical nanoresonators. Nanoscale 2018, 10, 18306–18314. [Google Scholar] [CrossRef]
- Park, S.-M.; Liang, X.; Harteneck, B.D.; Pick, T.E.; Hiroshiba, N.; Wu, Y.; Helms, B.A.; Olynick, D.L. Sub-10 nm Nanofabrication via Nanoimprint Directed Self-Assembly of Block Copolymers. ACS Nano 2011, 5, 8523–8531. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Kim, M.; Safron, N.S.; Han, E.; Arnold, M.S.; Gopalan, P. A Facile Route for Fabricating Graphene Nanoribbon Array Transistors Using Graphoepitaxy of a Symmetric Block Copolymer; SPIE—The International Society for Optical Engineering: Washington, DC, USA, 2015; Volume 9428. [Google Scholar]
- Jin, C.; Olsen, B.C.; Luber, E.J.; Buriak, J.M. Nanopatterning via Solvent Vapor Annealing of Block Copolymer Thin Films. Chem. Mater. 2017, 29, 176–188. [Google Scholar] [CrossRef]
- Choi, C.; Go, M.; Park, S.Y.; Kang, S.; Seo, Y.; Lee, J.; Kim, J.K. Dual Nanopatterns Consisting of Both Nanodots and Nanoholes on a Single Substrate. ACS Appl. Mater. Interfaces 2019, 11, 44636–44641. [Google Scholar] [CrossRef] [PubMed]
- Michman, E.; Langenberg, M.; Stenger, R.; Oded, M.; Schvartzman, M.; Müller, M.; Shenhar, R. Controlled Spacing between Nanopatterned Regions in Block Copolymer Films Obtained by Utilizing Substrate Topography for Local Film Thickness Differentiation. ACS Appl. Mater. Interfaces 2019, 11, 35247–35254. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.; Kim, M.-J.; Park, J.-W. Graphoepitaxial Assembly of Block Copolymer for Bending Stripe Patterns. Macromol. Theory Simul. 2019, 28, 1900009. [Google Scholar] [CrossRef]
- Borah, D.; Cummins, C.; Rasappa, S.; Senthamaraikannan, R.; Salaün, M.; Zelsmann, M.; Liontos, G.; Ntetsikas, K.; Avgeropoulos, A.; Morris, M.A. Nanopatterning via Self-Assembly of a Lamellar-Forming Polystyrene-block-Poly(dimethylsiloxane) Diblock Copolymer on Topographical Substrates Fabricated by Nanoimprint Lithography. Nanomaterials 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Arpin, K.A.; Pikul, J.H.; King, W.P.; Fan, H.; Braun, P.V. Template directed assembly of dynamic micellar nanoparticles. Soft Matter 2011, 7, 10252–10257. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhou, J.; Yang, Z.; Zhang, Y.; Deng, H. Ultra-Fast Block Copolymers for Sub-5 nm Lithographic Patterning. J. Photopolym. Sci. Technol. 2018, 31, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Byeon, K.-J.; Kim, J.Y.; Kim, J.; Jin, H.M.; Cho, J.-Y.; Jeong, S.-J.; Shin, J.; Lee, H.; Kim, S.O. Negative-Tone Block Copolymer Lithography by In Situ Surface Chemical Modification. Small 2014, 10, 4207–4212. [Google Scholar] [CrossRef]
- Lee, Y.-A.L.; Pryamitsyn, V.; Rhee, D.; de la Cruz, M.O.; Odom, T.W. Strain-Dependent Nanowrinkle Confinement of Block Copolymers. Nano Lett. 2020, 20, 1433–1439. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lim, J.; Jin, H.M.; Kim, B.H.; Jeong, S.-J.; Choi, D.S.; Li, D.J.; Kim, S.O. 3D Tailored Crumpling of Block-Copolymer Lithography on Chemically Modified Graphene. Adv. Mater. 2016, 28, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.M.A.; Miranda, M.A.; Gonçalves, G.E.; Bianchi, R.F.; Bianchi, A.G.C.; Cuba, C.; Neves, B.R.A.; Pinto, E.S. Partially ordered porous structures on layer-by-layer polyaniline/poly(vinyl sulfate sodium) ultrathin films: Easy fabrication of robust submicroscopic patterning. J. Appl. Polym. Sci. 2019, 137, 48597. [Google Scholar] [CrossRef]
- Hyun, D.C.; Moon, G.D.; Cho, E.C.; Jeong, U. Repeated Transfer of Colloidal Patterns by Using Reversible Buckling Process. Adv. Funct. Mater. 2009, 19, 2155–2162. [Google Scholar] [CrossRef]
- Lu, C.; Möhwald, H.; Fery, A. A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 2007, 3, 1530–1536. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, B.J.; Peng, B.; Li, W.; Wang, Y.; Li, M.; Omenetto, F.G. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc. Natl. Acad. Sci. USA 2019, 116, 21361–21368. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Ma, T.; Li, T.; Ma, X.; Yin, J.; Jiang, X. Dynamic Interpenetrating Polymer Network (IPN) Strategy for Multiresponsive Hierarchical Pattern of Reversible Wrinkle. ACS Appl. Mater. Interfaces 2019, 11, 15977–15985. [Google Scholar] [CrossRef]
- Hou, H.; Yin, J.; Jiang, X. Smart Patterned Surface with Dynamic Wrinkles. Acc. Chem. Res. 2019, 52, 1025–1035. [Google Scholar] [CrossRef]
- Xia, Y.N.; Yin, Y.; Lu, Y.; McLellan, J. Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures. Adv. Funct. Mater. 2003, 13, 907–918. [Google Scholar] [CrossRef]
- Yin, Y.; Xia, Y. Self-Assembly of Spherical Colloids into Helical Chains with Well-Controlled Handedness. J. Am. Chem. Soc. 2003, 125, 2048–2049. [Google Scholar] [CrossRef]
- Yin, Y.; Lu, Y.; Gates, B.; Xia, Y. Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. J. Am. Chem. Soc. 2001, 123, 8718–8729. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhang, X.; Yang, B. Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays. Adv. Mater. 2010, 22, 4249–4269. [Google Scholar] [CrossRef] [PubMed]
- Muangnapoh, T.; Weldon, A.L.; Gilchrist, J.F. Enhanced colloidal monolayer assembly via vibration-assisted convective deposition. Appl. Phys. Lett. 2013, 103, 181603. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Björk, M.T.; Liddle, J.A.; Sönnichsen, C.; Boussert, B.; Alivisatos, A.P. Integration of Colloidal Nanocrystals into Lithographically Patterned Devices. Nano Lett. 2004, 4, 1093–1098. [Google Scholar] [CrossRef]
- Lotito, V.; Zambelli, T. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv. Colloid Interface Sci. 2017, 246, 217–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, W. A Review on Inorganic Nanostructure Self-Assembly. J. Nanosci. Nanotechnol. 2010, 10, 1563–1583. [Google Scholar] [CrossRef] [Green Version]
- Fleck, N.A.; McMeeking, R.M.; Kraus, T. Convective Assembly of a Particle Monolayer. Langmuir 2015, 31, 13655–13663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, F.; Stebe, K.J. Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity. Langmuir 2004, 20, 3062–3067. [Google Scholar] [CrossRef]
- Hind, K.; Kostcheev, S.; Turover, D.; Salas-Montiel, R.; Nomenyo, K.; Gokarna, A.; Lerondel, G. Topology assisted self-organization of colloidal nanoparticles: Application to 2D large-scale nanomastering. Beilstein J. Nanotechnol. 2014, 5, 1203–1209. [Google Scholar]
- Kim, Y.H.; Park, J.; Yoo, P.J.; Hammond, P.T. Selective Assembly of Colloidal Particles on a Nanostructured Template Coated with Polyelectrolyte Multilayers. Adv. Mater. 2007, 19, 4426–4430. [Google Scholar] [CrossRef]
- Eral, H.B.; Augustine, D.M.; Duits, M.H.G.; Mugele, F. Suppressing the coffee stain effect: How to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matter 2011, 7, 4954–4958. [Google Scholar] [CrossRef]
- Hajian, S.; Zhang, X.; Khakbaz, P.; Tabatabaei, S.; Maddipatla, D.; Narakathu, B.B.; Blair, R.G.; Atashbar, M.Z. Development of a Fluorinated Graphene-Based Resistive Humidity Sensor. IEEE Sens. J. 2020, 20, 7517–7524. [Google Scholar] [CrossRef]
- Dai, Q.; Frommer, J.; Berman, D.; Virwani, K.; Davis, B.; Cheng, J.Y.; Nelson, A. High-Throughput Directed Self-Assembly of Core–Shell Ferrimagnetic Nanoparticle Arrays. Langmuir 2013, 29, 7472–7477. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.S.; Park, S. Oriented colloidal-crystal thin films of polystyrene spheres via spin coating. J. Semicond. 2015, 36, 023001. [Google Scholar] [CrossRef]
- Nisticò, R.; Scalarone, D.; Magnacca, G. Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous Mesoporous Mater. 2017, 248, 18–29. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, X.; Wang, L.; Wang, J.; Shang, Q.; Zhang, X.; Huang, L.; Jie, J. Wafer-Scale Precise Patterning of Organic Single-Crystal Nanowire Arrays via a Photolithography-Assisted Spin-Coating Method. Adv. Mater. 2015, 27, 7305–7312. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Song, Y. Self-assembly of latex particles for colloidal crystals. Particuology 2011, 9, 559–565. [Google Scholar] [CrossRef]
- Fustin, C.-A.; Glasser, G.; Spiess, H.W.; Jonas, U. Parameters Influencing the Templated Growth of Colloidal Crystals on Chemically Patterned Surfaces. Langmuir 2004, 20, 9114–9123. [Google Scholar] [CrossRef]
- Juillerat, F.; Solak, H.H.; Bowen, P.; Hofmann, H. Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 2005, 16, 1311–1316. [Google Scholar] [CrossRef]
- Heo, S.-W.; Lee, J.Y.; Song, H.-J.; Ku, J.-R.; Moon, D.-K. Patternable brush painting process for fabrication of flexible polymer solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3041–3046. [Google Scholar] [CrossRef]
- Lim, J.-E.; Lee, S.-M.; Kim, S.-S.; Kim, T.-W.; Koo, H.-W.; Kim, H.-K. Brush-paintable and highly stretchable Ag nanowire and PEDOT:PSS hybrid electrodes. Sci. Rep. 2017, 7, 14685. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Zhang, F.; Di, C.-a.; Wang, J.; Zhu, D.B. All-brush-painted top-gate organic thin-film transistors. J. Mater. Chem. C 2013, 1, 3072–3077. [Google Scholar] [CrossRef]
- Hur, J.; Won, Y.-Y. Fabrication of high-quality non-close-packed 2D colloid crystals by template-guided Langmuir–Blodgett particle deposition. Soft Matter 2008, 4, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Milionis, A.; Martiradonna, L.; Anyfantis, G.C.; Davide Cozzoli, P.; Bayer, I.S.; Fragouli, D.; Athanassiou, A. Control of the water adhesion on hydrophobic micropillars by spray coating technique. Colloid Polym. Sci. 2013, 291, 401–407. [Google Scholar] [CrossRef]
- Keller, S.S.; Bosco, F.G.; Boisen, A. Ferromagnetic shadow mask for spray coating of polymer patterns. Microelectron. Eng. 2013, 110, 427–431. [Google Scholar] [CrossRef]
- Leordean, C.; Marta, B.; Gabudean, A.-M.; Focsan, M.; Botiz, I.; Astilean, S. Fabrication of highly active and cost effective SERS plasmonic substrates by electrophoretic deposition of gold nanoparticles on a DVD template. Appl. Surf. Sci. 2015, 349, 190–195. [Google Scholar] [CrossRef]
- Sharma, V.; Xia, D.; Wong, C.C.; Carter, W.C.; Chiang, Y.-M. Templated self-assembly of non-close-packed colloidal crystals: Toward diamond cubic and novel heterostructures. J. Mater. Res. 2011, 26, 247–253. [Google Scholar] [CrossRef]
- Chen, Z.M.; Gang, T.; Yan, X.; Li, X.; Zhang, J.H.; Wang, Y.F.; Chen, X.; Sun, Z.Q.; Zhang, K.; Zhao, B.; et al. Ordered Silica Microspheres Unsymmetrically Coated with Ag Nanoparticles, and Ag-Nanoparticle-Doped Polymer Voids Fabricated by Microcontact Printing and Chemical Reduction. Adv. Mater. 2006, 18, 924–929. [Google Scholar] [CrossRef]
- Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J.K.; et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877. [Google Scholar] [CrossRef]
- Chuang, V.P.; Cheng, J.Y.; Savas, T.A.; Ross, C.A. Three-Dimensional Self-Assembly of Spherical Block Copolymer Domains into V-Shaped Grooves. Nano Lett. 2006, 6, 2332–2337. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Zhang, F.; Chuang, V.P.; Mayes, A.M.; Ross, C.A. Self-Assembled One-Dimensional Nanostructure Arrays. Nano Lett. 2006, 6, 2099–2103. [Google Scholar] [CrossRef]
- Hung, A.M.; Micheel, C.M.; Bozano, L.D.; Osterbur, L.W.; Wallraff, G.M.; Cha, J.N. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 2010, 5, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kershner, R.J.; Bozano, L.D.; Micheel, C.M.; Hung, A.M.; Fornof, A.R.; Cha, J.N.; Rettner, C.T.; Bersani, M.; Frommer, J.; Rothemund, P.W.K.; et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 2009, 4, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, J.; Zhu, D.; Li, X.; Zhang, X.; Wang, T.; Yang, B. A Universal Approach To Fabricate Ordered Colloidal Crystals Arrays Based on Electrostatic Self-Assembly. Langmuir 2010, 26, 17936–17942. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handrea-Dragan, M.; Botiz, I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers 2021, 13, 445. https://doi.org/10.3390/polym13030445
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers. 2021; 13(3):445. https://doi.org/10.3390/polym13030445
Chicago/Turabian StyleHandrea-Dragan, Madalina, and Ioan Botiz. 2021. "Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials" Polymers 13, no. 3: 445. https://doi.org/10.3390/polym13030445
APA StyleHandrea-Dragan, M., & Botiz, I. (2021). Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers, 13(3), 445. https://doi.org/10.3390/polym13030445