Preparation and Characterization of Super-Absorbing Gel Formulated from κ-Carrageenan–Potato Peel Starch Blended Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Potato Peel Starch
2.3. Preparation of κ-Carrageenan and κ-Carrageenan/Starch Blend
2.4. Characterization
2.4.1. Structural Characterization
2.4.2. Water Uptake, Swelling Ratios, and Water Contact Angle
2.4.3. In Vitro Testing of Biodegradability
3. Results and Discussion
3.1. FTIR Spectra
3.2. Raman Scattering Spectra
3.3. In Vitro Biodegradability Test
3.4. SEM Micrograph
3.5. Surface Roughness
3.6. Water Uptake and Contact Angle
3.7. Tensile Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karana, E. Characterization of ‘natural’ and ‘high-quality’ materials to improve perception of bio-plastics. J. Clean. Prod. 2012, 37, 316–325. [Google Scholar] [CrossRef]
- Sarasa, J.; Gracia, J.M.; Javierre, C. Study of the biodisintegration of a bioplastic material waste. Bioresour. Technol. 2009, 100, 3764–3768. [Google Scholar] [CrossRef] [PubMed]
- Luengo, J.M.; García, B.; Sandoval, A.; Naharro, G.; Olivera, E.R. Bioplastics from microorganisms. Curr. Opin. Microbiol. 2003, 6, 251–260. [Google Scholar] [CrossRef]
- El Kadi, S. Bioplastic Production form Inexpensive Sources Bacterial Biosynthesis, Cultivation System, Production and Biodegrability; VDM (Verlag Dr. Muller) Publishing House: New York, NY, USA, 2010. [Google Scholar]
- Schulze, C.; Juraschek, M.; Herrmann, C.; Thiede, S. Energy analysis of bioplastics processing. Procedia CIRP 2017, 61, 600–605. [Google Scholar] [CrossRef]
- Kaith, B.; Jindal, R.; Jana, A.; Maiti, M. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers—Evaluation of thermal, physico-chemical and mechanical properties. Bioresour. Technol. 2010, 101, 6843–6851. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Dafe, A.; Etemadi, H.; Zarredar, H.; Mahdavinia, G.R. Development of novel carboxymethyl cellulose/κ-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. Int. J. Biol. Macromol. 2017, 97, 299–307. [Google Scholar] [CrossRef]
- Perumal, P.; Selvin, P.C. Red algae-derived κ-carrageenan-based proton-conducting electrolytes for the wearable electrical devices. J. Solid State Electrochem. 2020, 24, 2249–2260. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N.; Thiyagu, T.T. Preparation, characterization and mechanical properties of κ-carrageenan/SiO2 nanocomposite films for antimicrobial food packaging. Bull. Mater. Sci. 2017, 40, 609–614. [Google Scholar] [CrossRef]
- Roldán-Carrillo, T.; Rodrıguez-Vázquez, R.; Dıaz-Cervantes, D.; Vázquez-Torres, H.; Manzur-Guzmán, A.; Torres-Domınguez, A. Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: Enzyme production. Bioresour. Technol. 2003, 86, 1–5. [Google Scholar] [CrossRef]
- Ma, X.; Chang, P.R.; Yu, J.; Stumborg, M. Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr. Polym. 2009, 75, 1–8. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Tupa, M.; Maldonado, L.; Vázquez, A.; Foresti, M.L. Simple organocatalytic route for the synthesis of starch esters. Carbohydr. Polym. 2013, 98, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Tye, Y.Y.; Saurabh, C.K.; Leh, C.P.; Lai, T.K.; Chong, E.W.N.; Nurul Fazita, M.R.; Mohd Hafiidz, J.; Banerjee, A.; Syakir, M.I. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polym. Lett. 2017, 11, 244–265. [Google Scholar] [CrossRef]
- Torres, M.D.; Domínguez, H. Valorisation of potato wastes. Int. J. Food Sci. Technol. 2020, 55, 2296–2304. [Google Scholar] [CrossRef]
- Mushtaq, Q.; Tabssum, F.; Qazi, J.I.; Irfan, M. Potato peels: A potential food waste for amylase production. J. Food Process. Eng. 2016, 40, 12512. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, S.; Zhong, F.; Yokoyama, W.; Huang, D.; Li, Y. Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan. Carbohydr. Polym. 2021, 268, 118264. [Google Scholar] [CrossRef]
- Abdillah, A.A.; Charles, A.L. Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int. J. Biol. Macromol. 2021, 191, 618–626. [Google Scholar] [CrossRef]
- Zhang, C.; Chi, W.; Meng, F.; Wang, L. Fabricating an anti-shrinking κ-carrageenan/sodium carboxymethyl starch film by incorporating carboxylated cellulose nanofibrils for fruit preservation. Int. J. Biol. Macromol. 2021, 191, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Ta, L.P.; Bujna, E.; Antal, O.; Ladányi, M.; Juhász, R.; Szécsi, A.; Kun, S.; Sudheer, S.; Gupta, V.K.; Nguyen, Q.D. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. Int. J. Biol. Macromol. 2021, 183, 1136–1144. [Google Scholar] [CrossRef]
- De Barizão, C.; Crepaldi, M.I.; de Oliveira, S.O.; de Oliveira, A.C.; Martins, A.F.; Garcia, P.S.; Bonafé, E.G. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int. J. Biol. Macromol. 2020, 165, 582–590. [Google Scholar] [CrossRef]
- Abu-Saied, M.; Taha, T.H.; El-Deeb, N.M.; Hafez, E. Polyvinyl alcohol/Sodium alginate integrated silver nanoparticles as probable solution for decontamination of microbes contaminated water. Int. J. Biol. Macromol. 2018, 107, 1773–1781. [Google Scholar] [CrossRef]
- Abu-Saied, M.A.; Elzatahry, A.A.; El-Khatib, K.M.; Hassan, E.A.; El-Sabbah, M.M.; Drioli, E.; Eldin, M.S.M. Preparation and characterization of novel grafted cellophane-phosphoric acid-doped membranes for proton exchange membrane fuel-cell applications. J. Appl. Polym. Sci. 2012, 123, 3710–3724. [Google Scholar] [CrossRef]
- Abu-Saied, M.; Khalil, K.A.; Al-Deyab, S.S. Preparation and characterization of poly vinyl acetate nanofiber doping copper metal. Int. J. Electrochem. Sci. 2012, 7, 2019–2027. [Google Scholar]
- Eldin, M.S.M.; Tamer, T.M.; Abu Saied, M.A.; Soliman, E.A.; Madi, N.K.; Ragab, I.; Fadel, I. Click grafting of chitosan onto PVC surfaces for biomedical applications. Adv. Polym. Technol. 2018, 37, 38–49. [Google Scholar] [CrossRef]
- Samin, R.; Nuawi, M.; Haris, S.; Ghani, J. Statistical investigation for cutting force and surface roughness of S45C steel in turning processes by I-kazTM method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; p. 012028. [Google Scholar]
- Abu-Saied, M.; El-Desouky, E.; Soliman, E.; El-Naim, G.A. Novel sulphonated poly (vinyl chloride)/poly (2-acrylamido-2-methylpropane sulphonic acid) blends-based polyelectrolyte membranes for direct methanol fuel cells. Polym. Test. 2020, 89, 106604. [Google Scholar] [CrossRef]
- Zhao, S.; Tsen, W.-C.; Hu, F.; Zhong, F.; Liu, H.; Wen, S.; Zheng, G.; Qin, C.; Gong, C. Layered double hydroxide-coated silica nanospheres with 3D architecture-modified composite anion exchange membranes for fuel cell applications. J. Mater. Sci. 2020, 55, 2967–2983. [Google Scholar] [CrossRef]
- Abu-Saied, M.; Soliman, E.; Desouki, E. Development of Proton Exchange Membranes Based on Chitosan Blended with Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) for Fuel Cells applications. Mater. Today Commun. 2020, 25, 101536. [Google Scholar] [CrossRef]
- Nogalska, A.; Trojanowska, A.; Tylkowski, B.; Garcia-Valls, R. Surface characterization by optical contact anglemeasuring system. Phys. Sci. Rev. 2020, 5, 83. [Google Scholar]
- Abu-Saied, M.; Soliman, E.A.; Abualnaj, K.M.; el Desouky, E. Highly Conductive Polyelectrolyte Membranes Poly (vinyl alcohol)/Poly (2-acrylamido-2-methyl propane sulfonic acid)(PVA/PAMPS) for Fuel Cell Application. Polymers 2021, 13, 2638. [Google Scholar] [CrossRef]
- Pereira, L.; Gheda, S.F.; Ribeiro-Claro, P.J.A. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013, 2013, 537202. [Google Scholar] [CrossRef]
- Volery, P.; Besson, R.; Schaffer-Lequart, C. Characterization of commercial carrageenans by fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J. Agric. Food Chem. 2004, 52, 7457–7463. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Hassan, M.E.; Yang, Q.; Xiao, Z. Covalent immobilization of glucoamylase enzyme onto chemically activated surface of κ-carrageenan. Bull. Natl. Res. Cent. 2019, 43, 102. [Google Scholar] [CrossRef] [Green Version]
- Thakur, R.; Saberi, B.; Pristijono, P.; Golding, J.; Stathopoulos, C.; Scarlett, C.; Bowyer, M.; Vuong, Q. Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties. Int. J. Biol. Macromol. 2016, 93, 952–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L. Identification of phycocolloids by vibrational spectroscopy. World Seaweed Resources—An Authoritative Reference System; ETI Information Services Ltd.: London, UK, 2006; pp. 1–22. [Google Scholar]
- Pereira, L.; Amado, A.M.; Ribeiro-Claro, P.J.; van de Velde, F. Vibrational spectroscopy (FTIR-ATR and FT-Raman)-a rapid and useful tool for phycocolloid analysis. In Proceedings of the BIODEVICES 2009-Proceedings of the 2º International Conference on Biomedical Electronics and Devices, Porto, Portugal, 14–17 January 2009. [Google Scholar]
- Namdeo, M.; Bajpai, S. Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B Enzym. 2009, 59, 134–139. [Google Scholar] [CrossRef]
- Kohlhepp, G. Análise da situação da produção de etanol e biodiesel no Brasil. Estudos Avançados 2010, 24, 223–253. [Google Scholar] [CrossRef]
- Arikan, E.B.; Bilgen, H.D. Production of bioplastic from potato peel waste and investigation of its biodegradability. Int. Adv. Res. Eng. J. 2019, 3, 93–97. [Google Scholar]
- Sujka, M.; Jamroz, J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocoll. 2013, 31, 413–419. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Selvasekarapandian, S.; Premalatha, M.; Monisha, S.; Boopathi, G.; Aristatil, G.; Arun, A.; Madeswaran, S. Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 2016, 23, 2775–2780. [Google Scholar] [CrossRef]
- Olímpio, F.; Mendes, A.A.; Trevisan, M.; Garcia, J. Preparation and Delayed Release Study on Pancreatin Encapsulated into Alginate, Carrageenan and Pectin Hydrogels. J. Braz. Chem. Soc. 2020, 31, 320–330. [Google Scholar] [CrossRef]
Sample | Roughness (μm) (A) | Roughness (μm) (B) |
---|---|---|
Carr | 0.25 ± 0.02 | 0.50 ± 0.05 |
Carr: starch 2:1 | 0.49 ± 0.05 | 0.87 ± 0.03 |
Carr: starch 1:1 | 0.82 ± 0.04 | 1.11 ± 0.07 |
Carr: starch 1:2 | 1.1 ± 0.03 | 1.57 ± 0.08 |
Sample | SR%(A) | WU% (A) | WU% (B) | SR% (B) |
---|---|---|---|---|
Carr | 33.41 ± 2 | 48 ± 4 | 60 ± 5 | 40.21 ± 2 |
Carr: starch 2:1 | 40.14 ± 3 | 70 ± 2 | 78± 3 | 51.36 ± 1 |
Carr: starch 1:1 | 42.11 ± 2 | 90 ± 4 | 110 ± 2 | 60.11 ± 0.5 |
Carr: starch 1:2 | 54.35 ± 5 | 150 ± 5 | 180 ± 4 | 70.28 ± 1 |
Sample | Mean Theta θ (A) | Mean Theta θ (B) |
---|---|---|
Carr | 84 ± 3 | 70 ± 5 |
Carr: starch 2:1 | 70 ± 2 | 60 ± 5 |
Carr: starch 1:1 | 65 ± 4 | 45 ± 2 |
Carr: starch 1:2 | 60 ± 5 | 35 ± 2 |
Sample | Tensile Strength (MPa) | Elongation at Break (mm) |
---|---|---|
Carr | 5.61 ± 2 | 5.34 ± 2 |
Carr: starch 2:1 | 7.24 ± 1 | 3.11 ± 1 |
Carr: starch 1:1 | 10.11 ± 3 | 2.01 ± 0.5 |
Carr: starch 1:2 | 4.35 ± 1 | 1.80 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, M.; A. Abu-Saied, M.; H. Taha, T.; Elnouby, M.; A. El Desouky, E.; Alamri, S.; Shati, A.; Alrumman, S.; Alghamdii, H.; Al-Khatani, M.; et al. Preparation and Characterization of Super-Absorbing Gel Formulated from κ-Carrageenan–Potato Peel Starch Blended Polymers. Polymers 2021, 13, 4308. https://doi.org/10.3390/polym13244308
Moustafa M, A. Abu-Saied M, H. Taha T, Elnouby M, A. El Desouky E, Alamri S, Shati A, Alrumman S, Alghamdii H, Al-Khatani M, et al. Preparation and Characterization of Super-Absorbing Gel Formulated from κ-Carrageenan–Potato Peel Starch Blended Polymers. Polymers. 2021; 13(24):4308. https://doi.org/10.3390/polym13244308
Chicago/Turabian StyleMoustafa, Mahmoud, M. A. Abu-Saied, Tarek H. Taha, Mohamed Elnouby, Eman A. El Desouky, Saad Alamri, Ali Shati, Sulaiman Alrumman, Huda Alghamdii, Mohmed Al-Khatani, and et al. 2021. "Preparation and Characterization of Super-Absorbing Gel Formulated from κ-Carrageenan–Potato Peel Starch Blended Polymers" Polymers 13, no. 24: 4308. https://doi.org/10.3390/polym13244308