Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- ethoxylated lauryl alcohol, ROKAnol L80/50 W (PCC Rokita; Brzeg Dolny, Poland); 3700 g/mol
- 2.
- copolymer of ethylene oxide and propylene oxide, ROKAmer 2950 (PCC Rokita; Brzeg Dolny, Poland); 2950 g/mol
- 3.
- ethoxylated stearic acid, ROKAcet S 24 (PCC Rokita; Brzeg Dolny, Poland); 1340 g/mol
- 4.
- bis(2-ethylhexyl) adipate, Ergoplast ADO (Boryszew; Sochaczew, Poland); 370 g/mol
- 5.
- bis(2-ethylhexyl) sebacate, Ergoplast SDO (Boryszew; Sochaczew, Poland); 426 g/mol
- 6.
- triethyl citrate, TEC (Sigma-Aldrich; Saint Louis, MO, USA); 276 g/mol
- ∆H-difference between the enthalpy of melting and cold crystallization the tested sample
- -
- linear density (segment method) according to PN-P-04653:1997
- -
- breaking tenacity according to PN-EN ISO 2062:2010 method A
- -
- breaking force and elongation at break according to PN-EN ISO 2062:2010 method A
- -
- initial tensile modulus according to PN-P-04669:1984
3. Results and Discussion
3.1. Characteristics of the Modified Regranulates
3.2. SEC-MALS Analysis
3.3. Mechanical Testing
3.4. FTIR-ATR Analysis
3.5. SEM Analysis
3.6. Thermal Gravimetric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Strungaru, S.; Jijie, R.; Nicoara, M.; Plavan, G.; Faggio, C. Micro- (nano) plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology. Trends Anal. Chem. 2019, 110, 116–128. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.P.; Hoellein, T.J.; Sapp, M.; Tagg, A.S.; Ju-Nam, Y.; Ojeda, J.J. Microplastic-associated biofilms: A comparison of freshwater and marine environments. In Freshwater Microplastics; Wagner, M., Lambert, S., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; Volume 58, pp. 181–201. [Google Scholar] [CrossRef] [Green Version]
- Communication from The Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan; For A Cleaner and More Competitive Europe; Brussels, Belgium. 2020. Available online: http://ww.w.xploit-eu.com/pdfs/Europe%202020%20Flagship%20Initiative%20INNOVATION.pdf (accessed on 11 September 2021).
- Choi, B.; Yoo, S.; Park, S. Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea. Sustainability 2018, 10, 2369. [Google Scholar] [CrossRef] [Green Version]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, G.Z. Thinking green: Sustainable polymers from renewable resources. Polymers 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Ioannidou, S.M.; Pateraki, C.; Ladakis, D.; Papapostolou, H.; Tsakona, M.; Vlysidis, A.; Kookos, I.K.; Koutinas, A. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour. Technol. 2020, 307, 123093. [Google Scholar] [CrossRef]
- Reddy, M.M.; Vivekanandhana, S.; Misra, M.; Bhatia, S.K.; Mohanty, A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689. [Google Scholar] [CrossRef]
- Alvarado, N.; Romero, J.; Torres, A.; de Dicastillo, C.L.; Rojas, A.; Galotto, M.J.; Guarda, A. Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material. J. Food Eng. 2018, 217, 1–10. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit. Rev. Food Sci. Nutr. 2020, 2640–2658. [Google Scholar] [CrossRef] [PubMed]
- Prambauer, M.; Wendeler, C.; Weitzenböck, J.; Burgstaller, C. Biodegradable geotextiles–An overview of existing and potential materials. Geotext. Geomembr. 2019, 47, 48–5949. [Google Scholar] [CrossRef]
- European Bioplastics 11.09.2020. Available online: www.european-bioplastics.org/market/ (accessed on 11 September 2021).
- Shankar, S.; Wang, L.-F.; Rhim, J.W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. C 2018, 93, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Jiang, S.Y.; Yan, W.; He, M.; Qin, J.; Qin, S.H.; Yu, J. Crystallization morphology regulation on enhancing heat resistance of polylactic acid. Polymers 2020, 12, 1563. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Aguilar, M.; Puig, R.; Sazdovski, I.; Fullana-I-Palmer, P. Polylactic acid/polycaprolactone blends: On the path to circular economy, substituting single-use commodity plastic products. Materials 2020, 13, 2655. [Google Scholar] [CrossRef] [PubMed]
- Vanaei, H.; Shirinbayan, M.; Deligant, M.; Raissi, K.; Fitoussi, J.; Khelladi, S.; Tcharkhtchi, A. Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication. Polym. Eng. Sci. 2020, 60, 8. [Google Scholar] [CrossRef]
- Marczak, D.; Lejcuś, K.; Misiewicz, J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 20. [Google Scholar] [CrossRef]
- Rocha, D.B.; de Carvalho, J.S.; de Oliveira, S.A.; dos Santos Rosa, D. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018, 135, 46660. [Google Scholar] [CrossRef]
- Krucińska, J.; Gutowska, A.; Ciechańska, D.; Lichocik, M. Biodegradowalne wyroby włókniste. Recykling 2014, 7–8, 32–34. [Google Scholar]
- Lunt, J.; Shafer, A.L. Polylactic acid polymers from coin. Applications in the textiles industry. J. Ind. Text. 2000, 29, 191–205. [Google Scholar]
- Available online: www.all3dp.com/1/pla-plastic-material-polylactic-acid/ (accessed on 13 September 2020).
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Kosior, E.; Crescenzi, I. Solutions to the plastic waste problem on land and in the oceans. In Plastic Waste and Recycling; Academic Press: Burlington, MA, USA, 2020; pp. 415–446. [Google Scholar] [CrossRef]
- Available online: https://packagingeurope.com/extended-responsibility-part-2-how-far-have-we-come/ (accessed on 8 October 2021).
- Matthews, C.; Moran, F.; Amit, K.; Jaiswal, A.K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Benetto, E.; Jury, C.; Igos, E.; Carton, J.; Hild, P.; Vergne, C.; Di Martino, J. Using atmospheric plasma to design multilayer film from polylactic acid and thermoplastic starch: A screening life cycle assessment. J. Clean. Prod. 2015, 87, 953–960. [Google Scholar] [CrossRef]
- Ingrao, C.; Tricase, C.; Cholewa-Wójcik, A.; Kawecka, A.; Rana, R.; Siracusa, V. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Sci. Total Environ. 2015, 537, 385–398. [Google Scholar] [CrossRef]
- Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of bio-based plastics on current recycling of plastics. Sustainability 2018, 10, 1487. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, M.; Langensiepen, F.; Seide, G. Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant. J. Therm. Anal. Calorim. 2020, 139, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, A.; Tausif, M.; Tahir, H.R.; Basit, A.; Bhatti, M.R.A.; Abbas, G. Polylactic acid/Lyocell fibre as an eco-friendly alternative to Polyethylene terephthalate/Cotton fibre blended yarns and knitted fabrics. J. Text. Inst. 2019. [Google Scholar] [CrossRef]
- Ongaro, A.E.; Di Giuseppe, D.; Kermanizadeh, A.; Crespo, A.M.; Mencattini, A.; Ghibelli, L.; Mancini, V.; Wlodarczyk, K.L.; Hand, D.P.; Martinelli, E.; et al. Polylactic is a sustainable, low absorption, low autofluorescence alternative to other plastics for microfluidic and organ-on-chip applications. Anal. Chem. 2020, 92, 9. [Google Scholar] [CrossRef]
- Anders, D.; Nowak, L. Assessment of the composting process with animal waste. PAN Crac. 2008, 9, 35–46. (in Polish). [Google Scholar]
- Żuchowska, D.; Steller, R.; Meissner, W. Polymer composites susceptible to (bio) degradation. Polimery 2007, 52, 524–526. [Google Scholar] [CrossRef] [Green Version]
- Elsawy, M.A.; Kim, K.H.; Park, J.W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Sülar, V.; Devrim, G. Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. Fibres Text. East. Europe 2019, 27, 100–111. [Google Scholar] [CrossRef]
- Kalita, N.K.; Nagar, M.K.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. Biodegradation of modified Poly(lactic acid) based biocomposite films under thermophilic composting conditions. Polym. Test. 2019, 76, 522–536. [Google Scholar] [CrossRef]
- Sedničková, M.; Pekařová, S.; Kucharczyk, P.; Bočkaj, J.; Janigováp, I.; Kleinová, A.; Jochec-Mošková, D.; Omaníková, L.; Perďochová, D.; Koutný, M.; et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018, 113, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Houwink, R. Procceedings of the XI Congress of Pure and Applied Chemistry, London, UK, 17–24 July 1947; Conference Publication; Hepworth: London, UK, 1947; pp. 575–583. [Google Scholar]
- Tanrattanakul, V.; Bunkaew, P. Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid) and natural rubber. Express Polym. Lett. 2014, 8, 387–396. [Google Scholar] [CrossRef]
- Labrecque, L.V.; Kumar, R.A.; Dave, V.; Gross, R.A.; McCarthy, S.P. Citrate Esters as Plasticizers for Poly(lactic acid). J. Appl. Polym. Sci. 1997, 66, 1507–1513. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltrán, M. Mechanisms of Plasticizers Action. Handb. Plast. 2012, 119–133. [Google Scholar] [CrossRef]
- Pearce, E.M. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1978, 1978. [Google Scholar] [CrossRef]
- Cadogan, D.F.; Howick, C.J. Plasticizers. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar] [CrossRef]
- Mustapa, I.R.; Shanks, R.A.; Kong, I. Poly(lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties. Int. J. Adv. Sci. Eng. Technol. 2013, 3, 192–199. [Google Scholar]
- Aslan, S.; Calandrelli, L.; Laurienzo, P.; Malinconico, M.; Migliaresi, C. Poly(D,L-lactic acid)/poly(ε-caprolactone) blend membranes: Preparation and morphological characterization. J. Mater. Sci. 2000, 35, 1615–1622. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kieml, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley&Sons: New York, NY, USA, 2005; ISBN 0-471-39362-2. [Google Scholar]
- Miros-Kudra, P.; Gzyra-Jagieła, K.; Kudra, M. Physicochemical assessment of the biodegradability of agricultural nonwovens made of PLA. Fibres Text. East. Eur. 2021, 1, 26–34. [Google Scholar] [CrossRef]
- Cohn, D.; Younes, H.J. Biodegradable PEO/PLA block copolymers. J. Biomed. Mater. Res. 1988, 22, 993. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Lee, K.H.; Jin, B.S. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Eur. Polym. J. 2001, 37, 907. [Google Scholar] [CrossRef]
- Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y. Structural changes and crystallization dynamics of Poly(L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 2004, 37, 6433–6439. [Google Scholar] [CrossRef]
Physical Properties | ASTM Method | |
---|---|---|
Specific Gravity, g/cm3 | 1.24 | D792 |
Relative Viscosity | 3.1 | CD Internal Viscotek Method |
Melt Index (210 °C), g/10 min | 15–30 | ASTM D1238 |
Glass Transition Temperature °C | 55–60 | ASTM D3417 |
Crystalline Melt Temperature °C | 160–170 | ASTM D3418 |
Sample | Thermal Analysis | ||||||
---|---|---|---|---|---|---|---|
Tg, °C | ∆Cp, J/gK | TCC, oC | ∆HCC, J/g | Tm, °C | ∆Hm, J/g | ∆Hc, j/g | |
base PLA | 60.0 | 0.50 | 123.9 | −42.1 | 165.9 | 42.2 | 0 |
1 | 41.8 | 0.49 | 92.1 | −39.5 | 165.6 | 40.4 | −0.8 |
2 | 34.9 | 0.41 | 86.2 | −38.3 | 163.8 | 43.5 | −5.2 |
3 | 34.1 | 0.44 | 87.9 | −38.6 | 163.4 | 42.6 | −4.0 |
4 | 39.7 | 0.47 | 93.6 | −33.7 | (152.0) 161.9 | 34.8 | 1.1 |
5 | 48.1 | 0.52 | 102.6 | −36.9 | (156.7) 165.2 | 38.2 | −1.2 |
6 | 35.7 | 0.52 | 104.1 | −34.8 | (150.2) 161.6 | 36.2 | −1.3 |
Sample | TG Analysis | |||
---|---|---|---|---|
T1, oC | Tmax, oC | T2, oC | ∆m, % | |
base PLA | 334.0 | 355.4 | 369.1 | 99.0 |
1 | 317.6 | 341.9 | 352.1 | 95.1 |
2 | 299.2 | 325.4 | 339.6 | 96.3 |
3 | 301.4 | 339.0 | 356.9 | 97.0 |
4 | 331.8 | 356.4 | 364.1 | 98.7 |
5 | 325.3 | 356.8 | 371.7 | 99.3 |
6 | 323.9 | 351.8 | 368.6 | 98.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gzyra-Jagieła, K.; Sulak, K.; Draczyński, Z.; Podzimek, S.; Gałecki, S.; Jagodzińska, S.; Borkowski, D. Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry. Polymers 2021, 13, 3651. https://doi.org/10.3390/polym13213651
Gzyra-Jagieła K, Sulak K, Draczyński Z, Podzimek S, Gałecki S, Jagodzińska S, Borkowski D. Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry. Polymers. 2021; 13(21):3651. https://doi.org/10.3390/polym13213651
Chicago/Turabian StyleGzyra-Jagieła, Karolina, Konrad Sulak, Zbigniew Draczyński, Stepan Podzimek, Stanisław Gałecki, Sylwia Jagodzińska, and Dominik Borkowski. 2021. "Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry" Polymers 13, no. 21: 3651. https://doi.org/10.3390/polym13213651
APA StyleGzyra-Jagieła, K., Sulak, K., Draczyński, Z., Podzimek, S., Gałecki, S., Jagodzińska, S., & Borkowski, D. (2021). Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry. Polymers, 13(21), 3651. https://doi.org/10.3390/polym13213651