A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of HNTs-UiO66 (H-U)
2.3. Fabrication of EP Thermosets
2.4. Characterization and Measurements
3. Results and Discussion
3.1. Characterization of H-U
3.2. Thermal Properties
3.3. Mechanical Properties
3.4. Flame Retardant Performance
3.5. Flame Retardant Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, S.; Liu, Z.; Wang, J. Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine-trione and piperidine. J. Therm. Anal. Calorim. 2019, 139, 1099–1110. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Gergely, A.; Bertóti, I.; Török, T.; Pfeifer, É.; Kálmán, E. Corrosion protection with zinc-rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole-deposited alumina monohydrate particles. Prog. Org. Coat. 2013, 76, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites–processing, properties and applications: A review. Compos. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- Huo, S.; Yang, S.; Wang, J.; Cheng, J.; Zhang, Q.; Hu, Y.; Ding, G.; Zhang, Q.; Song, P.; Wang, H. A Liquid Phosphaphenanthrene-Derived Imidazole for Improved Flame Retardancy and Smoke Suppression of Epoxy Resin. Acs Appl. Polym. Mater. 2020, 2, 3566–3575. [Google Scholar] [CrossRef]
- Rakotomalala, M.; Wagner, S.; Doring, M. Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications. Materials 2010, 3, 4300–4327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Compos. Part B Eng. 2019, 165, 406–416. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H.; Lv, P.; Jie, G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445. [Google Scholar] [CrossRef]
- Ran, L.; Wang, X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym. Degrad. Stab. 2009, 94, 617–624. [Google Scholar] [CrossRef]
- Peng, W.; Lei, C.A.; Hang, X.A.; Tz, A. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin-ScienceDirect. Polym. Degrad. Stab. 2020, 171. [Google Scholar] [CrossRef]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Synthesis and properties of thermosetting polymers from a phosphorous-containing fatty acid derivative. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 5630–5644. [Google Scholar] [CrossRef]
- Zhang, K.; Shen, M.M.; Wu, K.; Liu, H.F.; Zhang, Y. Comparative study on flame retardancy and thermal degradation of phosphorus- and silicon-containing epoxy resin composites. J. Polym. Res. 2011, 18, 2061–2070. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Wang, S.; Peng, Y.; Cao, L.; Liu, X. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin-ScienceDirect. Compos. Part B Eng. 2020, 190. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114. [Google Scholar] [CrossRef]
- Huo, S.; Yang, S.; Wang, J.; Cheng, J.; Zhang, Q.; Hu, Y.; Ding, G.; Zhang, Q.; Song, P. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. J. Hazard Mater. 2020, 386, 121984. [Google Scholar] [CrossRef]
- Qian, L.-J.; Ye, L.-J.; Xu, G.-Z.; Liu, J.; Guo, J.-Q. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 2011, 96, 1118–1124. [Google Scholar] [CrossRef]
- Huang, X.; Wei, W.; Wei, H.; Li, Y.; Gu, X.; Tang, X. Preparation of heat-moisture resistant epoxy resin based on phosphazene. J. Appl. Polym. Sci. 2013, 130, 248–255. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Huo, S.; Wang, M.; Wang, J.; Zhang, B. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polym. Degrad. Stab. 2016, 128, 89–98. [Google Scholar] [CrossRef]
- García, F.J.; García Rodríguez, S.; Kalytta, A.; Reller, A. Study of Natural Halloysite from the Dragon Mine, Utah (USA). Z. Anorg. Allg. Chem. 2009, 635, 790–795. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- Zhi, L.; Liu, L.; Alejandro, J.G.; Wang, D.Y. Bioinspired polydopamine-induced assembly of ultrafine Fe(OH)3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polym. Chem. 2017, 8, 3926–3936. [Google Scholar] [CrossRef]
- Brondani, D.; Scheeren, C.W.; Dupont, J.; Vieira, I.C. Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor. Analyst 2012, 137, 3732–3739. [Google Scholar] [CrossRef] [PubMed]
- Mukai, M.; Ma, W.; Ideta, K.; Takahara], A. Preparation and characterization of boronic acid- functionalized halloysite nanotube/poly(vinyl alcohol) nanocomposites. Polymer 2019, 178. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Jia, D. Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur. Polym. J. 2006, 42, 1362–1369. [Google Scholar] [CrossRef]
- Wu, F.; Zheng, J.; Ou, X.; Liu, M. Two in One: Modified Polyurethane Foams by DipDip nanotuf Halloysite Nanotubes with Acceptable Flame Retardancy and Absorbency. Macromol. Mater. Eng. 2019, 304. [Google Scholar] [CrossRef]
- Lecouvet, B.; Sclavons, M.; Bailly, C.; Bourbigot, S. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym. Degrad. Stab. 2013, 98, 2268–2281. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O'Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, K.; Tian, C.; Huang, X.; Huang, W.; Zhang, H. Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. Chem. Commun. 2016, 52, 1555–15562. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Prakash, M.; Kumar, R.M.; Subramaman, V. Density functional studies on the hydrogen storage capacity of boranes and alanes based cages. Int. J. Hydrog. Energy 2012, 37, 9730–9741. [Google Scholar] [CrossRef]
- Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269–9290. [Google Scholar] [CrossRef]
- Rocca, J.D.; Liu, D.; Lin, W. Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Sai, T.; Ran, S.; Guo, Z.; Yan, H.; Zhang, Y.; Song, P.; Zhang, T.; Wang, H.; Fang, Z. Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate. Compos. Part B-Eng. 2020, 197. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. A novel Co(II)-based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhang, L.; Yang, Y.; Wang, D.-Y. Green Synthesis of Biomass Phytic Acid-Functionalized UiO-66-NH2 Hierarchical Hybrids toward Fire Safety of Epoxy Resin. Acs Sustain. Chem. Eng. 2020, 8, 994–1003. [Google Scholar] [CrossRef]
- Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J. Mater. Chem. B 2016, 4, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Sai, T.; Ran, S.; Guo, Z.; Fang, Z. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos. Part B Eng. 2019, 176. [Google Scholar] [CrossRef]
- Yang, S.; Huo, S.; Wang, J.; Zhang, B.; Wang, J.; Ran, S.; Fang, Z.; Song, P.; Wang, H. A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate. Compos. Part B Eng. 2021, 207. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 2289–2294. [Google Scholar] [CrossRef]
- Liu, M.X.; Guo, B.C.; Du, M.L.; Cai, X.J.; Jia, D.M. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 2007, 18, 9. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Yu, B.; Xing, W.; Guo, W.; Qiu, S.; Wang, X.; Lo, S.; Hu, Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process. J. Mater. Chem. A 2016, 4, 7330–7340. [Google Scholar] [CrossRef]
- Huo, S.; Zhou, Z.; Jiang, J.; Sai, T.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem. Eng. J. 2022, 427. [Google Scholar] [CrossRef]
- Koerner, H.; Misra, D.; Tan, A.; Drummy, L.; Mirau, P. Montmorillonite-thermoset nanocomposites via cryo-compounding. Polymer 2006, 47, 3426–3435. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Galy, J.; Gérard, J.; Boué, F.; Barthel, H. Structural investigations of pyrogenic silica–epoxy composites: Combining small-angle neutron scattering and transmission electron microscopy. Polymer 2007, 48, 949–958. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, H.; Wu, J.; Ye, L. High impact strength epoxy nanocomposites with natural nanotubes. Polymer 2007, 48, 6426–6433. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Tati, A.; Bahlakeh, G.; Ramezanzadeh, B. Construction of an epoxy composite coating with exceptional thermo-mechanical properties using Zr-based NH2-UiO-66 metal-organic framework (MOF): Experimental and DFT-D theoretical explorations. Chem. Eng. J. 2021, 408. [Google Scholar] [CrossRef]
Sample ID | EP/wt% | DDS/wt% | H-U/wt% | HPCP/wt% |
---|---|---|---|---|
EP/DDS | 75.2 | 24.8 | - | - |
EP/DDS/HPCP-9 | 68.4 | 22.6 | - | 9.0 |
EP/DDS/HPCP-8/H-U-1 | 68.4 | 22.6 | 1.0 | 8.0 |
EP/DDS/HPCP-7/H-U-2 | 68.4 | 22.6 | 2.0 | 7.0 |
EP/DDS/HPCP-6/H-U-3 | 68.4 | 22.6 | 3.0 | 6.0 |
Atmosphere. | Sample | T5% (°C) | Tmax1 (°C) | Rmax1 (%/min) | Tmax1 (°C) | Rmax2 (%/min) | CY (%) |
---|---|---|---|---|---|---|---|
N2 | EP/DDS | 391 | 433 | 29.5 | - | - | 14.8 |
EP/DDS/HPCP−9 | 339 | 399 | 20.7 | - | - | 20.0 | |
EP/DDS/HPCP-8/H−U−1 | 341 | 403 | 19.0 | - | - | 21.5 | |
EP/DDS/HPCP-7/H−U−2 | 348 | 406 | 23.8 | - | - | 20.8 | |
EP/DDS/HPCP-6/H−U−3 | 350 | 416 | 21.9 | - | - | 19.6 | |
HPCP | 362 | 431 | 36.6 | - | - | 1.6 | |
H−U | 147 | 538 | 1.8 | - | - | 63.9 | |
Air | EP/DDS | 306 | 338 | 7.2 | 537 | 9.3 | 0.3 |
EP/DDS/HPCP−9 | 295 | 330 | 11.0 | 540 | 10.5 | 1.8 | |
EP/DDS/HPCP-8/H−U−1 | 302 | 332 | 9.9 | 539 | 10.0 | 3.0 | |
EP/DDS/HPCP-7/H−U−2 | 308 | 338 | 10.6 | 550 | 10.1 | 2.3 | |
EP/DDS/HPCP-6/H−U−3 | 306 | 339 | 11.3 | 542 | 10.3 | 2.3 | |
HPCP | 332 | 415 | 30.1 | - | - | 0 | |
H−U | 106 | 468 | 5.1 | - | - | 49.4 |
Sample | Tensile Strength (MPa) | Elastic Modulus (MPa) | Flexural Strength (MPa) | Flexural Modulus (MPa) | E′ (MPa) | Tg (°C) |
---|---|---|---|---|---|---|
EP/DDS | 71.2 ± 5.3 | 213 ± 100 | 109.0 ± 1.9 | 2932 ± 104 | 2642 | 225 |
EP/DDS/HPCP−9 | 58.6 ± 8.4 | 213 ± 71 | 91.5 ± 4.6 | 3124 ±143 | 2352 | 206 |
EP/DDS/HPCP−8/H−U−1 | 62.4 ± 2.4 | 281 ± 128 | 107.5 ± 2.8 | 3164 ± 107 | 2450 | 204 |
EP/DDS/HPCP−7/H−U−2 | 68.8 ± 7.5 | 343 ± 120 | 108.0 ± 5.0 | 2779 ± 120 | 2525 | 205 |
EP/DDS/HPCP−6/H−U−3 | 60.2 ± 2.1 | 514 ± 101 | 111.1 ± 6.6 | 3124 ± 115 | 2652 | 204 |
Sample | LOI (%) | UL-94 | TTI (s) | pHRR (kW/m2) | THR (MJ/m2) | ||
---|---|---|---|---|---|---|---|
t1 (s) | t2 (s) | Rating | |||||
EP/DDS | 24.5 | 80 | - | NR | 100 | 942 | 84.4 |
EP/DDS/HPCP−9 | 28.4 | - | - | NR | 80 | 481 | 40.7 |
EP/DDS/HPCP−8/H−U−1 | 31.6 | 7 | 12 | V-1 | 82 | 604 | 44.2 |
EP/DDS/HPCP−7/H−U−2 | 33.7 | 11 | 8 | V-1 | 81 | 586 | 64.9 |
EP/DDS/HPCP−6/H−U−3 | 35.2 | 3 | 3 | V-0 | 92 | 658 | 51.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Huo, S.; Zheng, Y.; Yang, C.; Yan, H.; Ran, S.; Fang, Z. A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin. Polymers 2021, 13, 3648. https://doi.org/10.3390/polym13213648
Jiang J, Huo S, Zheng Y, Yang C, Yan H, Ran S, Fang Z. A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin. Polymers. 2021; 13(21):3648. https://doi.org/10.3390/polym13213648
Chicago/Turabian StyleJiang, Jiawei, Siqi Huo, Yi Zheng, Chengyun Yang, Hongqiang Yan, Shiya Ran, and Zhengping Fang. 2021. "A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin" Polymers 13, no. 21: 3648. https://doi.org/10.3390/polym13213648
APA StyleJiang, J., Huo, S., Zheng, Y., Yang, C., Yan, H., Ran, S., & Fang, Z. (2021). A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin. Polymers, 13(21), 3648. https://doi.org/10.3390/polym13213648