Purification of Colon Carcinoma Cells from Primary Colon Tumor Using a Filtration Method via Porous Polymeric Filters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Materials
2.3. Formation of PLGA/SK Filters
2.4. Characterization of Filters
2.5. Cultivation of Colon Carcinoma Cell Lines
2.6. Isolation of Primary Colon Carcinoma Cells from Patient Colon Tumor Tissues
2.7. Purification of CSCs (CICs) by the Filtration Method
2.8. Colony-Forming Unit Analysis
2.9. CEA Production Analysis
2.10. Statistical Assay
3. Results
3.1. Filter Characterization
3.2. Permeation of Colon Carcinoma HT-29 Cells by the Filtration Method via PLGA/SK and NM Filters
3.3. CSC Marker Expression of Colon Carcinoma HT-29 Cells after Cell Filtration via the NM and PLGA/SK Filters by the Filtration Method
3.4. Colony-Forming Unit Analysis of the Colon Carcinoma HT-29 Cells Filtered via the NM and PLGA/SK Filters by the Filtration Method
3.5. CEA Production by Colon Carcinoma HT-29 Cells Filtered via the NM-11 and PLGA/SK Filters by the Filtration Protocol
3.6. Establishment of the Primary Colon Carcinoma Cell Lines from Colon Tumors
3.7. Purification of CSCs from Primary Colon Carcinoma Cells Established from Patient Colon Tumor Tissues by a Filtration Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.C.; Ling, Q.D.; Yu, W.C.; Hung, C.M.; Kao, T.C.; Huang, Y.W.; Higuchi, A. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells. Drug Des. Dev. Ther. 2013, 7, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Trumpp, A.; Wiestler, O.D. Mechanisms of Disease: Cancer stem cells--targeting the evil twin. Nat. Clin. Pract. Oncol. 2008, 5, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.J.; Rodriguez-Bravo, V.; Galsky, M.; Cordon-Cardo, C.; Domingo-Domenech, J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2014, 33, 4451–4463. [Google Scholar] [CrossRef] [Green Version]
- Karamboulas, C.; Ailles, L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim. Biophys. Acta 2013, 1830, 2481–2495. [Google Scholar] [CrossRef]
- Suzuka, J.; Tsuda, M.; Wang, L.; Kohsaka, S.; Kishida, K.; Semba, S.; Sugino, H.; Aburatani, S.; Frauenlob, M.; Kurokawa, T.; et al. Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nat. Biomed. Eng. 2021, 5, 914–925. [Google Scholar] [CrossRef]
- Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018, 25, 20. [Google Scholar] [CrossRef]
- Jordan, C.T.; Guzman, M.L.; Noble, M. Cancer stem cells. N. Engl. J. Med. 2006, 355, 1253–1261. [Google Scholar] [CrossRef]
- Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauss, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Kreso, A.; Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell 2014, 14, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: An evolving concept. Nat. Rev. Cancer. 2012, 12, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, S.; Wei, X. Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine 2012, 7, 597–615. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Cao, F.; Wang, X.; Hou, Y.; Zhao, H.; Liu, Y. Establishment and characterization of a new human colon cancer cell line, PUMC-CRC1. Sci. Rep. 2021, 11, 13122. [Google Scholar] [CrossRef]
- Sung, T.C.; Huang, W.L.; Ban, L.K.; Lee, H.H.; Wang, J.H.; Su, H.Y.; Jen, S.H.; Chang, Y.H.; Yang, J.M.; Higuchi, A.; et al. Enrichment of cancer-initiating cells from colon cancer cells through porous polymeric membranes by a membrane filtration method. J. Mater. Chem. B 2020, 8, 10577–10585. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Kawazoe, N.; Lin, X.; Dong, J.; Chen, G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 2010, 31, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.H.; Kuo, P.Y.; Hsieh, H.J.; Hsien, T.Y.; Hou, L.T.; Lai, J.Y.; Wang, D.M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 2004, 25, 129–138. [Google Scholar] [CrossRef]
- Chen, D.C.; Chen, L.Y.; Ling, Q.D.; Wu, M.H.; Wang, C.T.; Kumar, S.S.; Chang, Y.; Munusamy, M.A.; Alarfajj, A.A.; Wang, H.C.; et al. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials 2014, 35, 4278–4287. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Z.; Lee, K.; Yang, Y.N.; Kawazoe, N.; Chen, G.P. PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication 2020, 12, 025027. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Lee, K.; Chen, Y.; Yang, Y.N.; Kawazoe, N.; Chen, G.P. Preparation of Stepwise Adipogenesis-Mimicking ECM-Deposited PLGA-Collagen Hybrid Meshes and Their Influence on Adipogenic Differentiation of hMSCs. ACS Biomater. Sci. Eng. 2019, 5, 6099–6108. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, K.; Kawazoe, N.; Yang, Y.; Chen, G. PLGA-collagen-ECM hybrid scaffolds functionalized with biomimetic extracellular matrices secreted by mesenchymal stem cells during stepwise osteogenesis-co-adipogenesis. J. Mater. Chem. B 2019, 7, 7195–7206. [Google Scholar] [CrossRef]
- Agarwal, S.; Mohamed, M.S.; Mizuki, T.; Maekawa, T.; Sakthi Kumar, D. Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy. J. Mater. Chem. B 2019, 7, 5896–5919. [Google Scholar] [CrossRef]
- Liu, P.M.; Sun, L.; Liu, P.Y.; Yu, W.Q.; Zhang, Q.H.; Zhang, W.B.; Ma, J.; Liu, P.S.; Shen, J. Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold-cell/tissue interactions. J. Mater. Chem. B 2018, 6, 7605–7613. [Google Scholar] [CrossRef]
- Eslamian, M.; Khorrami, M.; Yi, N.; Majd, S.; Abidian, M.R. Electrospinning of Highly Aligned Fibers for Drug Delivery Applications. J. Mater. Chem. B 2019, 7, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.X.; Li, Y.; Cao, H.J.; Long, J.; Wang, X.L.; Li, L.; Li, C.R.; Jia, Q.Y.; Teng, B.; Tang, T.T.; et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials 2019, 197, 207–219. [Google Scholar] [CrossRef]
- Lin, Z.J.; Wu, J.; Qiao, W.; Zhao, Y.; Wong, K.H.M.; Chu, P.K.; Bian, L.M.; Wu, S.L.; Zheng, Y.F.; Cheung, K.M.C.; et al. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018, 174, 1–16. [Google Scholar] [CrossRef]
- Lin, S.; Cui, L.; Chen, G.; Huang, J.; Yang, Y.; Zou, K.; Lai, Y.; Wang, X.; Zou, L.; Wu, T.; et al. PLGA/beta-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials 2019, 196, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, A.; Yang, S.-T.; Li, P.-T.; Tamai, M.; Tagawa, Y.-i.; Chang, Y.; Chang, Y.; Ling, Q.-D.; Hsu, S.-T. Direct ex vivo expansion of hematopoietic stem cells from umbilical cord blood on membranes. J. Membr. Sci. 2010, 351, 104–111. [Google Scholar] [CrossRef]
- Higuchi, A.; Sekiya, M.; Gomei, Y.; Sakurai, M.; Chen, W.-Y.; Egashira, S.; Matsuoka, Y. Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J. Biomed. Mater. Res. A 2008, 85, 853–861. [Google Scholar] [CrossRef]
- Higuchi, A.; Wang, C.-T.; Ling, Q.D.; Lee, H.H.-c.; Kumar, S.S.; Chang, Y.; Alarfaj, A.A.; Munusamy, M.A.; Hsu, S.T.; Wu, G.-J.; et al. A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci. Rep. 2015, 5, 10217. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.R.; Heish, C.W.; Liu, C.-H.; Muduli, S.; Li, H.F.; Higuchi, A.; Kumar, S.S.; Alarfaj, A.A.; Munusamy, M.A.; Hsu, S.-T.; et al. Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Sci. Rep. 2017, 7, 40069. [Google Scholar] [CrossRef]
- Higuchi, A.; Chuang, C.-W.; Ling, Q.-D.; Huang, S.-C.; Wang, L.-M.; Chen, H.; Chang, Y.; Wang, H.-C.; Bing, J.T.; Chang, Y.; et al. Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. J. Membr. Sci. 2011, 366, 286–294. [Google Scholar] [CrossRef]
- Wu, C.H.; Lee, F.-K.; Kumar, S.; Ling, Q.D.; Chang, Y.; Chang, Y.; Wang, H.-C.; Chen, H.; Chen, D.C.; Hsu, S.-T.; et al. The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials 2012, 33, 8228–8239. [Google Scholar] [CrossRef] [PubMed]
- Horibata, S.; Vo, T.V.; Subramanian, V.; Thompson, P.R.; Coonrod, S.A. Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. J. Vis. Exp. 2015, e52727. [Google Scholar] [CrossRef] [Green Version]
- Borowicz, S.; Van Scoyk, M.; Avasarala, S.; Karuppusamy Rathinam, M.K.; Tauler, J.; Bikkavilli, R.K.; Winn, R.A. The soft agar colony formation assay. J. Vis. Exp. 2014, e51998. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Li, D.; Gu, W.; Liu, A.; Cheng, X. Formation of spherical cancer stem-like cell colonies with resistance to chemotherapy drugs in the human malignant fibrous histiocytoma NMFH-1 cell line. Oncol. Lett. 2015, 10, 3323–3331. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Sun, X.; Liu, G.; Cheng, K.; Lv, Z.; Sun, C.; Xiu, D.; Liu, L. Comprehensive analysis of marker gene detection and computed tomography for the diagnosis of human lung cancer. Oncol. Lett. 2018, 16, 4400–4406. [Google Scholar] [CrossRef] [Green Version]
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Tsunekuni, K.; Konno, M.; Haraguchi, N.; Koseki, J.; Asai, A.; Matsuoka, K.; Kobunai, T.; Takechi, T.; Doki, Y.; Mori, M.; et al. CD44/CD133-Positive Colorectal Cancer Stem Cells are Sensitive to Trifluridine Exposure. Sci. Rep. 2019, 9, 14861. [Google Scholar] [CrossRef]
- Wang, C.X.; Xie, J.P.; Gu, J.S.; Manning, H.C.; Gore, J.C.; Guo, N. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol. Rep. 2012, 28, 1301–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, F.; Sheng, W.Q.; Du, X. CD133: A cancer stem cells marker, is used in colorectal cancers. World J. Gastroenterol. 2013, 19, 2603–2611. [Google Scholar] [CrossRef]
- Gao, C.-F.; Xie, Q.; Su, Y.-L.; Koeman, J.; Khoo, S.K.; Gustafson, M.; Knudsen, B.S.; Hay, R.; Shinomiya, N.; Woude, G.F.V. Proliferation and invasion: Plasticity in tumor cells. Proc. Natl. Acad. Sci. USA 2005, 102, 10528–10533. [Google Scholar] [CrossRef] [Green Version]
- Ju, S.-Y.; Chiou, S.-H.; Su, Y. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Res. 2014, 12, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, V.; Jain, M.V. In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. Methods Mol. Biol. 2018, 1692, 89–95. [Google Scholar] [CrossRef]
- Zhang, D.H.; Shadrin, I.Y.; Lam, J.; Xian, H.-Q.; Snodgrass, H.R.; Bursac, N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 2013, 34, 5813–5820. [Google Scholar] [CrossRef] [Green Version]
- Muller, P.; Gaebel, R.; Lemcke, H.; Wiekhorst, F.; Hausburg, F.; Lang, C.; Zarniko, N.; Westphal, B.; Steinhoff, G.; David, R. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS((R)) purified stem cell products. Biomaterials 2017, 135, 74–84. [Google Scholar] [CrossRef]
- Shen, M.-J.; Olsthoorn, R.C.L.; Zeng, Y.; Bakkum, T.; Kros, A.; Boyle, A.L. Magnetic-Activated Cell Sorting Using Coiled-Coil Peptides: An Alternative Strategy for Isolating Cells with High Efficiency and Specificity. ACS Appl. Mater. Interfaces 2021, 13, 11621–11630. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Goswami, U.; Paul, A.; Chattopadhyay, A. Crystalline assembly of gold nanoclusters for mitochondria targeted cancer theranostics. J. Mater. Chem. B 2018, 6, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.O.; Jo, H.; Yu, J.H.; Gambhir, S.S.; Pratx, G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 2018, 177, 139–148. [Google Scholar] [CrossRef]
- Takayama, K.; Hagihara, Y.; Toba, Y.; Sekiguchi, K.; Sakurai, F.; Mizuguchi, H. Enrichment of high-functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. Biomaterials 2018, 161, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Inada, E.; Saitoh, I.; Kubota, N.; Iwase, Y.; Kiyokawa, Y.; Shibasaki, S.; Noguchi, H.; Yamasaki, Y.; Sato, M. piggyBac Transposon-Based Immortalization of Human Deciduous Tooth Dental Pulp Cells with Multipotency and Non-Tumorigenic Potential. Int. J. Mol. Sci. 2019, 20, 4904. [Google Scholar] [CrossRef] [Green Version]
- Hwang, G.H.; Park, S.M.; Han, H.J.; Kim, J.S.; Yun, S.P.; Ryu, J.M.; Lee, H.J.; Chang, W.; Lee, S.-J.; Choi, J.-H.; et al. Purification of small molecule-induced cardiomyocytes from human induced pluripotent stem cells using a reporter system. J. Cell. Physiol. 2017, 232, 3384–3395. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.V.; Kensah, G.; Rotaermel, A.; Baraki, H.; Kutschka, I.; Zweigerdt, R.; Martin, U.; Haverich, A.; Gruh, I.; Martens, A. Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS ONE 2017, 12, e0173222. [Google Scholar] [CrossRef] [PubMed]
- Salick, M.R.; Napiwocki, B.N.; Sha, J.; Knight, G.T.; Chindhy, S.A.; Kamp, T.J.; Ashton, R.S.; Crone, W.C. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 2014, 35, 4454–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Abbreviation | Catalog No. | Company |
---|---|---|---|
Polymer | |||
Poly(lactide-co-glycolic acid) (lactide:glycolic = 75:25) | PLGA | P1941 | Sigma-Aldrich (St. Louis, MO, USA) |
Silk screen | Silk | 170 mesh | Yuzawaya, Tokyo, Japan |
Nylon mesh filter (r = 11 µm) | NM11 | NY1104700 | Merck KGaA (Darmstadt, German) |
Cells | |||
HT-29 cells | HT-29 cells | 60157 | BCRC, Food Industry Research and Development Institute (Hsinchu, Taiwan) |
Cell culture dishes | |||
Six-well tissue culture polystyrene plate | TCPS | 353046 | Corning (Corning, NY, USA) |
Chemicals | |||
2-Hydroxyethyl agarose | Agarose | A4018 | Sigma-Aldrich (St. Louis, MO, USA) |
High-vacuum grease | High-vacuum grease | 1658832 | Dow Corning Corporation, Midland, MI, USA |
Human CEA ELISA kit | Human CEA ELISA kit | EHCEA | Thermo Fisher Scientific Inc. (Waltham, MA, USA) |
Cell culture medium and component | |||
DMEM | DMEM | D5648-10×1 L | Sigma-Aldrich (St. Louis, MO, USA) |
Fetal bovine serum | FBS | 04-001-1A | Biological Industries, Kibbutz Beit-Haemek, Israel |
Hoechst 33342 | Hoechst | PA-3014 | Lonza (Basel, Switzerland) |
Surface markers | |||
7-AAD viability dye | 7-AAD | 559925 | BD Biosciences (San Jose, CA, USA) |
FITC mouse anti-human CD44 | FITC anti-CD44 | 555478 | BD Biosciences (San Jose, CA, USA) |
PE mouse anti-human CD133/1 | PE anti-CD133 | 130-080-801 | Miltenyi Biotec (Bergisch Gladbach, North Rhine-Westphalia, Germany) |
FITC mouse IgG2bκ, isotype control | FITC isotype | 555742 | BD Biosciences (San Jose, CA, USA) |
PE mouse IgG1κ, isotype control | PE isotype | 555749 | BD Biosciences (San Jose, CA, USA) |
Membranes | ||||
---|---|---|---|---|
NM-11 | PLGA-10/SK | PLGA-5/SK | PLGA-3/SK | |
Average pore size (μm) | 11.2 ± 2.1 | 28.9 ± 8.9 | 34.0 ± 8.2 | 36.3 ± 12.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-H.; Ban, L.-K.; Lee, H.H.-C.; Chen, Y.-H.; Lin, H.-Y.; Zhu, Z.-W.; Su, H.-Y.; Umezawa, A.; Almansour, A.I.; Arumugam, N.; et al. Purification of Colon Carcinoma Cells from Primary Colon Tumor Using a Filtration Method via Porous Polymeric Filters. Polymers 2021, 13, 3411. https://doi.org/10.3390/polym13193411
Wang J-H, Ban L-K, Lee HH-C, Chen Y-H, Lin H-Y, Zhu Z-W, Su H-Y, Umezawa A, Almansour AI, Arumugam N, et al. Purification of Colon Carcinoma Cells from Primary Colon Tumor Using a Filtration Method via Porous Polymeric Filters. Polymers. 2021; 13(19):3411. https://doi.org/10.3390/polym13193411
Chicago/Turabian StyleWang, Jia-Hua, Lee-Kiat Ban, Henry Hsin-Chung Lee, Yen-Hung Chen, Hui-Yu Lin, Zhe-Wei Zhu, Her-Young Su, Akihiro Umezawa, Abdulrahman I. Almansour, Natarajan Arumugam, and et al. 2021. "Purification of Colon Carcinoma Cells from Primary Colon Tumor Using a Filtration Method via Porous Polymeric Filters" Polymers 13, no. 19: 3411. https://doi.org/10.3390/polym13193411
APA StyleWang, J.-H., Ban, L.-K., Lee, H. H.-C., Chen, Y.-H., Lin, H.-Y., Zhu, Z.-W., Su, H.-Y., Umezawa, A., Almansour, A. I., Arumugam, N., Kumar, R. S., Wu, G.-J., & Higuchi, A. (2021). Purification of Colon Carcinoma Cells from Primary Colon Tumor Using a Filtration Method via Porous Polymeric Filters. Polymers, 13(19), 3411. https://doi.org/10.3390/polym13193411